go op 源码
golang op 代码
文件路径:/src/cmd/compile/internal/ssa/op.go
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/obj"
"fmt"
"strings"
)
// An Op encodes the specific operation that a Value performs.
// Opcodes' semantics can be modified by the type and aux fields of the Value.
// For instance, OpAdd can be 32 or 64 bit, signed or unsigned, float or complex, depending on Value.Type.
// Semantics of each op are described in the opcode files in gen/*Ops.go.
// There is one file for generic (architecture-independent) ops and one file
// for each architecture.
type Op int32
type opInfo struct {
name string
reg regInfo
auxType auxType
argLen int32 // the number of arguments, -1 if variable length
asm obj.As
generic bool // this is a generic (arch-independent) opcode
rematerializeable bool // this op is rematerializeable
commutative bool // this operation is commutative (e.g. addition)
resultInArg0 bool // (first, if a tuple) output of v and v.Args[0] must be allocated to the same register
resultNotInArgs bool // outputs must not be allocated to the same registers as inputs
clobberFlags bool // this op clobbers flags register
call bool // is a function call
tailCall bool // is a tail call
nilCheck bool // this op is a nil check on arg0
faultOnNilArg0 bool // this op will fault if arg0 is nil (and aux encodes a small offset)
faultOnNilArg1 bool // this op will fault if arg1 is nil (and aux encodes a small offset)
usesScratch bool // this op requires scratch memory space
hasSideEffects bool // for "reasons", not to be eliminated. E.g., atomic store, #19182.
zeroWidth bool // op never translates into any machine code. example: copy, which may sometimes translate to machine code, is not zero-width.
unsafePoint bool // this op is an unsafe point, i.e. not safe for async preemption
symEffect SymEffect // effect this op has on symbol in aux
scale uint8 // amd64/386 indexed load scale
}
type inputInfo struct {
idx int // index in Args array
regs regMask // allowed input registers
}
type outputInfo struct {
idx int // index in output tuple
regs regMask // allowed output registers
}
type regInfo struct {
// inputs encodes the register restrictions for an instruction's inputs.
// Each entry specifies an allowed register set for a particular input.
// They are listed in the order in which regalloc should pick a register
// from the register set (most constrained first).
// Inputs which do not need registers are not listed.
inputs []inputInfo
// clobbers encodes the set of registers that are overwritten by
// the instruction (other than the output registers).
clobbers regMask
// outputs is the same as inputs, but for the outputs of the instruction.
outputs []outputInfo
}
func (r *regInfo) String() string {
s := ""
s += "INS:\n"
for _, i := range r.inputs {
mask := fmt.Sprintf("%64b", i.regs)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
}
s += "OUTS:\n"
for _, i := range r.outputs {
mask := fmt.Sprintf("%64b", i.regs)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
}
s += "CLOBBERS:\n"
mask := fmt.Sprintf("%64b", r.clobbers)
mask = strings.Replace(mask, "0", ".", -1)
s += fmt.Sprintf(" |%s|\n", mask)
return s
}
type auxType int8
type AuxNameOffset struct {
Name *ir.Name
Offset int64
}
func (a *AuxNameOffset) CanBeAnSSAAux() {}
func (a *AuxNameOffset) String() string {
return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset)
}
func (a *AuxNameOffset) FrameOffset() int64 {
return a.Name.FrameOffset() + a.Offset
}
type AuxCall struct {
Fn *obj.LSym
reg *regInfo // regInfo for this call
abiInfo *abi.ABIParamResultInfo
}
// Reg returns the regInfo for a given call, combining the derived in/out register masks
// with the machine-specific register information in the input i. (The machine-specific
// regInfo is much handier at the call site than it is when the AuxCall is being constructed,
// therefore do this lazily).
//
// TODO: there is a Clever Hack that allows pre-generation of a small-ish number of the slices
// of inputInfo and outputInfo used here, provided that we are willing to reorder the inputs
// and outputs from calls, so that all integer registers come first, then all floating registers.
// At this point (active development of register ABI) that is very premature,
// but if this turns out to be a cost, we could do it.
func (a *AuxCall) Reg(i *regInfo, c *Config) *regInfo {
if a.reg.clobbers != 0 {
// Already updated
return a.reg
}
if a.abiInfo.InRegistersUsed()+a.abiInfo.OutRegistersUsed() == 0 {
// Shortcut for zero case, also handles old ABI.
a.reg = i
return a.reg
}
k := len(i.inputs)
for _, p := range a.abiInfo.InParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
k++
}
}
a.reg.inputs = append(a.reg.inputs, i.inputs...) // These are less constrained, thus should come last
k = len(i.outputs)
for _, p := range a.abiInfo.OutParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.outputs = append(a.reg.outputs, outputInfo{idx: k, regs: (1 << m)})
k++
}
}
a.reg.outputs = append(a.reg.outputs, i.outputs...)
a.reg.clobbers = i.clobbers
return a.reg
}
func (a *AuxCall) ABI() *abi.ABIConfig {
return a.abiInfo.Config()
}
func (a *AuxCall) ABIInfo() *abi.ABIParamResultInfo {
return a.abiInfo
}
func (a *AuxCall) ResultReg(c *Config) *regInfo {
if a.abiInfo.OutRegistersUsed() == 0 {
return a.reg
}
if len(a.reg.inputs) > 0 {
return a.reg
}
k := 0
for _, p := range a.abiInfo.OutParams() {
for _, r := range p.Registers {
m := archRegForAbiReg(r, c)
a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
k++
}
}
return a.reg
}
// For ABI register index r, returns the (dense) register number used in
// SSA backend.
func archRegForAbiReg(r abi.RegIndex, c *Config) uint8 {
var m int8
if int(r) < len(c.intParamRegs) {
m = c.intParamRegs[r]
} else {
m = c.floatParamRegs[int(r)-len(c.intParamRegs)]
}
return uint8(m)
}
// For ABI register index r, returns the register number used in the obj
// package (assembler).
func ObjRegForAbiReg(r abi.RegIndex, c *Config) int16 {
m := archRegForAbiReg(r, c)
return c.registers[m].objNum
}
// ArgWidth returns the amount of stack needed for all the inputs
// and outputs of a function or method, including ABI-defined parameter
// slots and ABI-defined spill slots for register-resident parameters.
//
// The name is taken from the types package's ArgWidth(<function type>),
// which predated changes to the ABI; this version handles those changes.
func (a *AuxCall) ArgWidth() int64 {
return a.abiInfo.ArgWidth()
}
// ParamAssignmentForResult returns the ABI Parameter assignment for result which (indexed 0, 1, etc).
func (a *AuxCall) ParamAssignmentForResult(which int64) *abi.ABIParamAssignment {
return a.abiInfo.OutParam(int(which))
}
// OffsetOfResult returns the SP offset of result which (indexed 0, 1, etc).
func (a *AuxCall) OffsetOfResult(which int64) int64 {
n := int64(a.abiInfo.OutParam(int(which)).Offset())
return n
}
// OffsetOfArg returns the SP offset of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) OffsetOfArg(which int64) int64 {
n := int64(a.abiInfo.InParam(int(which)).Offset())
return n
}
// RegsOfResult returns the register(s) used for result which (indexed 0, 1, etc).
func (a *AuxCall) RegsOfResult(which int64) []abi.RegIndex {
return a.abiInfo.OutParam(int(which)).Registers
}
// RegsOfArg returns the register(s) used for argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) RegsOfArg(which int64) []abi.RegIndex {
return a.abiInfo.InParam(int(which)).Registers
}
// NameOfResult returns the type of result which (indexed 0, 1, etc).
func (a *AuxCall) NameOfResult(which int64) *ir.Name {
name := a.abiInfo.OutParam(int(which)).Name
if name == nil {
return nil
}
return name.(*ir.Name)
}
// TypeOfResult returns the type of result which (indexed 0, 1, etc).
func (a *AuxCall) TypeOfResult(which int64) *types.Type {
return a.abiInfo.OutParam(int(which)).Type
}
// TypeOfArg returns the type of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) TypeOfArg(which int64) *types.Type {
return a.abiInfo.InParam(int(which)).Type
}
// SizeOfResult returns the size of result which (indexed 0, 1, etc).
func (a *AuxCall) SizeOfResult(which int64) int64 {
return a.TypeOfResult(which).Size()
}
// SizeOfArg returns the size of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) SizeOfArg(which int64) int64 {
return a.TypeOfArg(which).Size()
}
// NResults returns the number of results
func (a *AuxCall) NResults() int64 {
return int64(len(a.abiInfo.OutParams()))
}
// LateExpansionResultType returns the result type (including trailing mem)
// for a call that will be expanded later in the SSA phase.
func (a *AuxCall) LateExpansionResultType() *types.Type {
var tys []*types.Type
for i := int64(0); i < a.NResults(); i++ {
tys = append(tys, a.TypeOfResult(i))
}
tys = append(tys, types.TypeMem)
return types.NewResults(tys)
}
// NArgs returns the number of arguments (including receiver, if there is one).
func (a *AuxCall) NArgs() int64 {
return int64(len(a.abiInfo.InParams()))
}
// String returns "AuxCall{<fn>}"
func (a *AuxCall) String() string {
var fn string
if a.Fn == nil {
fn = "AuxCall{nil" // could be interface/closure etc.
} else {
fn = fmt.Sprintf("AuxCall{%v", a.Fn)
}
// TODO how much of the ABI should be printed?
return fn + "}"
}
// StaticAuxCall returns an AuxCall for a static call.
func StaticAuxCall(sym *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
if paramResultInfo == nil {
panic(fmt.Errorf("Nil paramResultInfo, sym=%v", sym))
}
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = ®Info{}
}
return &AuxCall{Fn: sym, abiInfo: paramResultInfo, reg: reg}
}
// InterfaceAuxCall returns an AuxCall for an interface call.
func InterfaceAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = ®Info{}
}
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}
// ClosureAuxCall returns an AuxCall for a closure call.
func ClosureAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = ®Info{}
}
return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}
func (*AuxCall) CanBeAnSSAAux() {}
// OwnAuxCall returns a function's own AuxCall
func OwnAuxCall(fn *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
// TODO if this remains identical to ClosureAuxCall above after new ABI is done, should deduplicate.
var reg *regInfo
if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
reg = ®Info{}
}
return &AuxCall{Fn: fn, abiInfo: paramResultInfo, reg: reg}
}
const (
auxNone auxType = iota
auxBool // auxInt is 0/1 for false/true
auxInt8 // auxInt is an 8-bit integer
auxInt16 // auxInt is a 16-bit integer
auxInt32 // auxInt is a 32-bit integer
auxInt64 // auxInt is a 64-bit integer
auxInt128 // auxInt represents a 128-bit integer. Always 0.
auxUInt8 // auxInt is an 8-bit unsigned integer
auxFloat32 // auxInt is a float32 (encoded with math.Float64bits)
auxFloat64 // auxInt is a float64 (encoded with math.Float64bits)
auxFlagConstant // auxInt is a flagConstant
auxNameOffsetInt8 // aux is a &struct{Name ir.Name, Offset int64}; auxInt is index in parameter registers array
auxString // aux is a string
auxSym // aux is a symbol (a *gc.Node for locals, an *obj.LSym for globals, or nil for none)
auxSymOff // aux is a symbol, auxInt is an offset
auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff
auxTyp // aux is a type
auxTypSize // aux is a type, auxInt is a size, must have Aux.(Type).Size() == AuxInt
auxCCop // aux is a ssa.Op that represents a flags-to-bool conversion (e.g. LessThan)
auxCall // aux is a *ssa.AuxCall
auxCallOff // aux is a *ssa.AuxCall, AuxInt is int64 param (in+out) size
// architecture specific aux types
auxARM64BitField // aux is an arm64 bitfield lsb and width packed into auxInt
auxS390XRotateParams // aux is a s390x rotate parameters object encoding start bit, end bit and rotate amount
auxS390XCCMask // aux is a s390x 4-bit condition code mask
auxS390XCCMaskInt8 // aux is a s390x 4-bit condition code mask, auxInt is a int8 immediate
auxS390XCCMaskUint8 // aux is a s390x 4-bit condition code mask, auxInt is a uint8 immediate
)
// A SymEffect describes the effect that an SSA Value has on the variable
// identified by the symbol in its Aux field.
type SymEffect int8
const (
SymRead SymEffect = 1 << iota
SymWrite
SymAddr
SymRdWr = SymRead | SymWrite
SymNone SymEffect = 0
)
// A Sym represents a symbolic offset from a base register.
// Currently a Sym can be one of 3 things:
// - a *gc.Node, for an offset from SP (the stack pointer)
// - a *obj.LSym, for an offset from SB (the global pointer)
// - nil, for no offset
type Sym interface {
CanBeAnSSASym()
CanBeAnSSAAux()
}
// A ValAndOff is used by the several opcodes. It holds
// both a value and a pointer offset.
// A ValAndOff is intended to be encoded into an AuxInt field.
// The zero ValAndOff encodes a value of 0 and an offset of 0.
// The high 32 bits hold a value.
// The low 32 bits hold a pointer offset.
type ValAndOff int64
func (x ValAndOff) Val() int32 { return int32(int64(x) >> 32) }
func (x ValAndOff) Val64() int64 { return int64(x) >> 32 }
func (x ValAndOff) Val16() int16 { return int16(int64(x) >> 32) }
func (x ValAndOff) Val8() int8 { return int8(int64(x) >> 32) }
func (x ValAndOff) Off64() int64 { return int64(int32(x)) }
func (x ValAndOff) Off() int32 { return int32(x) }
func (x ValAndOff) String() string {
return fmt.Sprintf("val=%d,off=%d", x.Val(), x.Off())
}
// validVal reports whether the value can be used
// as an argument to makeValAndOff.
func validVal(val int64) bool {
return val == int64(int32(val))
}
func makeValAndOff(val, off int32) ValAndOff {
return ValAndOff(int64(val)<<32 + int64(uint32(off)))
}
func (x ValAndOff) canAdd32(off int32) bool {
newoff := x.Off64() + int64(off)
return newoff == int64(int32(newoff))
}
func (x ValAndOff) canAdd64(off int64) bool {
newoff := x.Off64() + off
return newoff == int64(int32(newoff))
}
func (x ValAndOff) addOffset32(off int32) ValAndOff {
if !x.canAdd32(off) {
panic("invalid ValAndOff.addOffset32")
}
return makeValAndOff(x.Val(), x.Off()+off)
}
func (x ValAndOff) addOffset64(off int64) ValAndOff {
if !x.canAdd64(off) {
panic("invalid ValAndOff.addOffset64")
}
return makeValAndOff(x.Val(), x.Off()+int32(off))
}
// int128 is a type that stores a 128-bit constant.
// The only allowed constant right now is 0, so we can cheat quite a bit.
type int128 int64
type BoundsKind uint8
const (
BoundsIndex BoundsKind = iota // indexing operation, 0 <= idx < len failed
BoundsIndexU // ... with unsigned idx
BoundsSliceAlen // 2-arg slicing operation, 0 <= high <= len failed
BoundsSliceAlenU // ... with unsigned high
BoundsSliceAcap // 2-arg slicing operation, 0 <= high <= cap failed
BoundsSliceAcapU // ... with unsigned high
BoundsSliceB // 2-arg slicing operation, 0 <= low <= high failed
BoundsSliceBU // ... with unsigned low
BoundsSlice3Alen // 3-arg slicing operation, 0 <= max <= len failed
BoundsSlice3AlenU // ... with unsigned max
BoundsSlice3Acap // 3-arg slicing operation, 0 <= max <= cap failed
BoundsSlice3AcapU // ... with unsigned max
BoundsSlice3B // 3-arg slicing operation, 0 <= high <= max failed
BoundsSlice3BU // ... with unsigned high
BoundsSlice3C // 3-arg slicing operation, 0 <= low <= high failed
BoundsSlice3CU // ... with unsigned low
BoundsConvert // conversion to array pointer failed
BoundsKindCount
)
// boundsAPI determines which register arguments a bounds check call should use. For an [a:b:c] slice, we do:
//
// CMPQ c, cap
// JA fail1
// CMPQ b, c
// JA fail2
// CMPQ a, b
// JA fail3
//
// fail1: CALL panicSlice3Acap (c, cap)
// fail2: CALL panicSlice3B (b, c)
// fail3: CALL panicSlice3C (a, b)
//
// When we register allocate that code, we want the same register to be used for
// the first arg of panicSlice3Acap and the second arg to panicSlice3B. That way,
// initializing that register once will satisfy both calls.
// That desire ends up dividing the set of bounds check calls into 3 sets. This function
// determines which set to use for a given panic call.
// The first arg for set 0 should be the second arg for set 1.
// The first arg for set 1 should be the second arg for set 2.
func boundsABI(b int64) int {
switch BoundsKind(b) {
case BoundsSlice3Alen,
BoundsSlice3AlenU,
BoundsSlice3Acap,
BoundsSlice3AcapU,
BoundsConvert:
return 0
case BoundsSliceAlen,
BoundsSliceAlenU,
BoundsSliceAcap,
BoundsSliceAcapU,
BoundsSlice3B,
BoundsSlice3BU:
return 1
case BoundsIndex,
BoundsIndexU,
BoundsSliceB,
BoundsSliceBU,
BoundsSlice3C,
BoundsSlice3CU:
return 2
default:
panic("bad BoundsKind")
}
}
// arm64BitFileld is the GO type of ARM64BitField auxInt.
// if x is an ARM64BitField, then width=x&0xff, lsb=(x>>8)&0xff, and
// width+lsb<64 for 64-bit variant, width+lsb<32 for 32-bit variant.
// the meaning of width and lsb are instruction-dependent.
type arm64BitField int16
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦