spark ProtobufDataToCatalyst 源码

  • 2022-10-20
  • 浏览 (411)

spark ProtobufDataToCatalyst 代码

文件路径:/connector/protobuf/src/main/scala/org/apache/spark/sql/protobuf/ProtobufDataToCatalyst.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.sql.protobuf

import scala.collection.JavaConverters._
import scala.util.control.NonFatal

import com.google.protobuf.DynamicMessage

import org.apache.spark.SparkException
import org.apache.spark.sql.AnalysisException
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression, SpecificInternalRow, UnaryExpression}
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, CodeGenerator, ExprCode}
import org.apache.spark.sql.catalyst.util.{FailFastMode, ParseMode, PermissiveMode}
import org.apache.spark.sql.protobuf.utils.{ProtobufOptions, ProtobufUtils, SchemaConverters}
import org.apache.spark.sql.types.{AbstractDataType, BinaryType, DataType, StructType}

private[protobuf] case class ProtobufDataToCatalyst(
    child: Expression,
    descFilePath: String,
    messageName: String,
    options: Map[String, String])
    extends UnaryExpression
    with ExpectsInputTypes {

  override def inputTypes: Seq[AbstractDataType] = Seq(BinaryType)

  override lazy val dataType: DataType = {
    val dt = SchemaConverters.toSqlType(messageDescriptor).dataType
    parseMode match {
      // With PermissiveMode, the output Catalyst row might contain columns of null values for
      // corrupt records, even if some of the columns are not nullable in the user-provided schema.
      // Therefore we force the schema to be all nullable here.
      case PermissiveMode => dt.asNullable
      case _ => dt
    }
  }

  override def nullable: Boolean = true

  private lazy val protobufOptions = ProtobufOptions(options)

  @transient private lazy val messageDescriptor =
    ProtobufUtils.buildDescriptor(descFilePath, messageName)

  @transient private lazy val fieldsNumbers =
    messageDescriptor.getFields.asScala.map(f => f.getNumber)

  @transient private lazy val deserializer = new ProtobufDeserializer(messageDescriptor, dataType)

  @transient private var result: DynamicMessage = _

  @transient private lazy val parseMode: ParseMode = {
    val mode = protobufOptions.parseMode
    if (mode != PermissiveMode && mode != FailFastMode) {
      throw new AnalysisException(unacceptableModeMessage(mode.name))
    }
    mode
  }

  private def unacceptableModeMessage(name: String): String = {
    s"from_protobuf() doesn't support the $name mode. " +
      s"Acceptable modes are ${PermissiveMode.name} and ${FailFastMode.name}."
  }

  @transient private lazy val nullResultRow: Any = dataType match {
    case st: StructType =>
      val resultRow = new SpecificInternalRow(st.map(_.dataType))
      for (i <- 0 until st.length) {
        resultRow.setNullAt(i)
      }
      resultRow

    case _ =>
      null
  }

  private def handleException(e: Throwable): Any = {
    parseMode match {
      case PermissiveMode =>
        nullResultRow
      case FailFastMode =>
        throw new SparkException(
          "Malformed records are detected in record parsing. " +
            s"Current parse Mode: ${FailFastMode.name}. To process malformed records as null " +
            "result, try setting the option 'mode' as 'PERMISSIVE'.",
          e)
      case _ =>
        throw new AnalysisException(unacceptableModeMessage(parseMode.name))
    }
  }

  override def nullSafeEval(input: Any): Any = {
    val binary = input.asInstanceOf[Array[Byte]]
    try {
      result = DynamicMessage.parseFrom(messageDescriptor, binary)
      val unknownFields = result.getUnknownFields
      if (!unknownFields.asMap().isEmpty) {
        unknownFields.asMap().keySet().asScala.map { number =>
          {
            if (fieldsNumbers.contains(number)) {
              return handleException(
                new Throwable(s"Type mismatch encountered for field:" +
                  s" ${messageDescriptor.getFields.get(number)}"))
            }
          }
        }
      }
      val deserialized = deserializer.deserialize(result)
      assert(
        deserialized.isDefined,
        "Protobuf deserializer cannot return an empty result because filters are not pushed down")
      deserialized.get
    } catch {
      // There could be multiple possible exceptions here, e.g. java.io.IOException,
      // ProtoRuntimeException, ArrayIndexOutOfBoundsException, etc.
      // To make it simple, catch all the exceptions here.
      case NonFatal(e) =>
        handleException(e)
    }
  }

  override def prettyName: String = "from_protobuf"

  override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
    val expr = ctx.addReferenceObj("this", this)
    nullSafeCodeGen(
      ctx,
      ev,
      eval => {
        val result = ctx.freshName("result")
        val dt = CodeGenerator.boxedType(dataType)
        s"""
        $dt $result = ($dt) $expr.nullSafeEval($eval);
        if ($result == null) {
          ${ev.isNull} = true;
        } else {
          ${ev.value} = $result;
        }
      """
      })
  }

  override protected def withNewChildInternal(newChild: Expression): ProtobufDataToCatalyst =
    copy(child = newChild)
}

相关信息

spark 源码目录

相关文章

spark CatalystDataToProtobuf 源码

spark ProtobufDeserializer 源码

spark ProtobufSerializer 源码

spark functions 源码

spark package 源码

0  赞