spark package 源码

  • 2022-10-20
  • 浏览 (387)

spark package 代码

文件路径:/core/src/main/scala/org/apache/spark/internal/config/package.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.internal

import java.util.Locale
import java.util.concurrent.TimeUnit

import org.apache.spark.launcher.SparkLauncher
import org.apache.spark.metrics.GarbageCollectionMetrics
import org.apache.spark.network.shuffle.Constants
import org.apache.spark.network.shuffledb.DBBackend
import org.apache.spark.network.util.ByteUnit
import org.apache.spark.scheduler.{EventLoggingListener, SchedulingMode}
import org.apache.spark.shuffle.sort.io.LocalDiskShuffleDataIO
import org.apache.spark.storage.{DefaultTopologyMapper, RandomBlockReplicationPolicy}
import org.apache.spark.unsafe.array.ByteArrayMethods
import org.apache.spark.util.Utils
import org.apache.spark.util.collection.unsafe.sort.UnsafeSorterSpillReader.MAX_BUFFER_SIZE_BYTES

package object config {

  private[spark] val SPARK_DRIVER_PREFIX = "spark.driver"
  private[spark] val SPARK_EXECUTOR_PREFIX = "spark.executor"
  private[spark] val SPARK_TASK_PREFIX = "spark.task"
  private[spark] val LISTENER_BUS_EVENT_QUEUE_PREFIX = "spark.scheduler.listenerbus.eventqueue"

  private[spark] val RESOURCES_DISCOVERY_PLUGIN =
    ConfigBuilder("spark.resources.discoveryPlugin")
      .doc("Comma-separated list of class names implementing" +
        "org.apache.spark.api.resource.ResourceDiscoveryPlugin to load into the application." +
        "This is for advanced users to replace the resource discovery class with a " +
        "custom implementation. Spark will try each class specified until one of them " +
        "returns the resource information for that resource. It tries the discovery " +
        "script last if none of the plugins return information for that resource.")
      .version("3.0.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val DRIVER_RESOURCES_FILE =
    ConfigBuilder("spark.driver.resourcesFile")
      .internal()
      .doc("Path to a file containing the resources allocated to the driver. " +
        "The file should be formatted as a JSON array of ResourceAllocation objects. " +
        "Only used internally in standalone mode.")
      .version("3.0.0")
      .stringConf
      .createOptional

  private[spark] val DRIVER_CLASS_PATH =
    ConfigBuilder(SparkLauncher.DRIVER_EXTRA_CLASSPATH)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val DRIVER_JAVA_OPTIONS =
    ConfigBuilder(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS)
      .withPrepended(SparkLauncher.DRIVER_DEFAULT_JAVA_OPTIONS)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val DRIVER_LIBRARY_PATH =
    ConfigBuilder(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val DRIVER_USER_CLASS_PATH_FIRST =
    ConfigBuilder("spark.driver.userClassPathFirst")
      .version("1.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val DRIVER_CORES = ConfigBuilder("spark.driver.cores")
    .doc("Number of cores to use for the driver process, only in cluster mode.")
    .version("1.3.0")
    .intConf
    .createWithDefault(1)

  private[spark] val DRIVER_MEMORY = ConfigBuilder(SparkLauncher.DRIVER_MEMORY)
    .doc("Amount of memory to use for the driver process, in MiB unless otherwise specified.")
    .version("1.1.1")
    .bytesConf(ByteUnit.MiB)
    .createWithDefaultString("1g")

  private[spark] val DRIVER_MEMORY_OVERHEAD = ConfigBuilder("spark.driver.memoryOverhead")
    .doc("The amount of non-heap memory to be allocated per driver in cluster mode, " +
      "in MiB unless otherwise specified.")
    .version("2.3.0")
    .bytesConf(ByteUnit.MiB)
    .createOptional

  private[spark] val DRIVER_MEMORY_OVERHEAD_FACTOR =
    ConfigBuilder("spark.driver.memoryOverheadFactor")
      .doc("Fraction of driver memory to be allocated as additional non-heap memory per driver " +
        "process in cluster mode. This is memory that accounts for things like VM overheads, " +
        "interned strings, other native overheads, etc. This tends to grow with the container " +
        "size. This value defaults to 0.10 except for Kubernetes non-JVM jobs, which defaults to " +
        "0.40. This is done as non-JVM tasks need more non-JVM heap space and such tasks " +
        "commonly fail with \"Memory Overhead Exceeded\" errors. This preempts this error " +
        "with a higher default. This value is ignored if spark.driver.memoryOverhead is set " +
        "directly.")
      .version("3.3.0")
      .doubleConf
      .checkValue(factor => factor > 0,
        "Ensure that memory overhead is a double greater than 0")
      .createWithDefault(0.1)

  private[spark] val DRIVER_LOG_DFS_DIR =
    ConfigBuilder("spark.driver.log.dfsDir").version("3.0.0").stringConf.createOptional

  private[spark] val DRIVER_LOG_LAYOUT =
    ConfigBuilder("spark.driver.log.layout")
      .version("3.0.0")
      .stringConf
      .createOptional

  private[spark] val DRIVER_LOG_PERSISTTODFS =
    ConfigBuilder("spark.driver.log.persistToDfs.enabled")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val DRIVER_LOG_ALLOW_EC =
    ConfigBuilder("spark.driver.log.allowErasureCoding")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_ENABLED = ConfigBuilder("spark.eventLog.enabled")
    .version("1.0.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val EVENT_LOG_DIR = ConfigBuilder("spark.eventLog.dir")
    .version("1.0.0")
    .stringConf
    .createWithDefault(EventLoggingListener.DEFAULT_LOG_DIR)

  private[spark] val EVENT_LOG_COMPRESS =
    ConfigBuilder("spark.eventLog.compress")
      .version("1.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_BLOCK_UPDATES =
    ConfigBuilder("spark.eventLog.logBlockUpdates.enabled")
      .version("2.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_ALLOW_EC =
    ConfigBuilder("spark.eventLog.erasureCoding.enabled")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_TESTING =
    ConfigBuilder("spark.eventLog.testing")
      .internal()
      .version("1.0.1")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_OUTPUT_BUFFER_SIZE = ConfigBuilder("spark.eventLog.buffer.kb")
    .doc("Buffer size to use when writing to output streams, in KiB unless otherwise specified.")
    .version("1.0.0")
    .bytesConf(ByteUnit.KiB)
    .createWithDefaultString("100k")

  private[spark] val EVENT_LOG_STAGE_EXECUTOR_METRICS =
    ConfigBuilder("spark.eventLog.logStageExecutorMetrics")
      .doc("Whether to write per-stage peaks of executor metrics (for each executor) " +
        "to the event log.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_GC_METRICS_YOUNG_GENERATION_GARBAGE_COLLECTORS =
    ConfigBuilder("spark.eventLog.gcMetrics.youngGenerationGarbageCollectors")
      .doc("Names of supported young generation garbage collector. A name usually is " +
        " the return of GarbageCollectorMXBean.getName. The built-in young generation garbage " +
        s"collectors are ${GarbageCollectionMetrics.YOUNG_GENERATION_BUILTIN_GARBAGE_COLLECTORS}")
      .version("3.0.0")
      .stringConf
      .toSequence
      .createWithDefault(GarbageCollectionMetrics.YOUNG_GENERATION_BUILTIN_GARBAGE_COLLECTORS)

  private[spark] val EVENT_LOG_GC_METRICS_OLD_GENERATION_GARBAGE_COLLECTORS =
    ConfigBuilder("spark.eventLog.gcMetrics.oldGenerationGarbageCollectors")
      .doc("Names of supported old generation garbage collector. A name usually is " +
        "the return of GarbageCollectorMXBean.getName. The built-in old generation garbage " +
        s"collectors are ${GarbageCollectionMetrics.OLD_GENERATION_BUILTIN_GARBAGE_COLLECTORS}")
      .version("3.0.0")
      .stringConf
      .toSequence
      .createWithDefault(GarbageCollectionMetrics.OLD_GENERATION_BUILTIN_GARBAGE_COLLECTORS)

  private[spark] val EVENT_LOG_OVERWRITE =
    ConfigBuilder("spark.eventLog.overwrite")
      .version("1.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_CALLSITE_LONG_FORM =
    ConfigBuilder("spark.eventLog.longForm.enabled")
      .version("2.4.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_ENABLE_ROLLING =
    ConfigBuilder("spark.eventLog.rolling.enabled")
      .doc("Whether rolling over event log files is enabled. If set to true, it cuts down " +
        "each event log file to the configured size.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EVENT_LOG_ROLLING_MAX_FILE_SIZE =
    ConfigBuilder("spark.eventLog.rolling.maxFileSize")
      .doc(s"When ${EVENT_LOG_ENABLE_ROLLING.key}=true, specifies the max size of event log file" +
        " to be rolled over.")
      .version("3.0.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(_ >= ByteUnit.MiB.toBytes(10), "Max file size of event log should be " +
        "configured to be at least 10 MiB.")
      .createWithDefaultString("128m")

  private[spark] val EXECUTOR_ID =
    ConfigBuilder("spark.executor.id").version("1.2.0").stringConf.createOptional

  private[spark] val EXECUTOR_CLASS_PATH =
    ConfigBuilder(SparkLauncher.EXECUTOR_EXTRA_CLASSPATH)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val EXECUTOR_HEARTBEAT_DROP_ZERO_ACCUMULATOR_UPDATES =
    ConfigBuilder("spark.executor.heartbeat.dropZeroAccumulatorUpdates")
      .internal()
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val EXECUTOR_HEARTBEAT_INTERVAL =
    ConfigBuilder("spark.executor.heartbeatInterval")
      .version("1.1.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("10s")

  private[spark] val EXECUTOR_HEARTBEAT_MAX_FAILURES =
    ConfigBuilder("spark.executor.heartbeat.maxFailures")
      .internal()
      .version("1.6.2")
      .intConf
      .createWithDefault(60)

  private[spark] val EXECUTOR_PROCESS_TREE_METRICS_ENABLED =
    ConfigBuilder("spark.executor.processTreeMetrics.enabled")
      .doc("Whether to collect process tree metrics (from the /proc filesystem) when collecting " +
        "executor metrics.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_METRICS_POLLING_INTERVAL =
    ConfigBuilder("spark.executor.metrics.pollingInterval")
      .doc("How often to collect executor metrics (in milliseconds). " +
        "If 0, the polling is done on executor heartbeats. " +
        "If positive, the polling is done at this interval.")
      .version("3.0.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("0")

  private[spark] val EXECUTOR_METRICS_FILESYSTEM_SCHEMES =
    ConfigBuilder("spark.executor.metrics.fileSystemSchemes")
      .doc("The file system schemes to report in executor metrics.")
      .version("3.1.0")
      .stringConf
      .createWithDefaultString("file,hdfs")

  private[spark] val EXECUTOR_JAVA_OPTIONS =
    ConfigBuilder(SparkLauncher.EXECUTOR_EXTRA_JAVA_OPTIONS)
      .withPrepended(SparkLauncher.EXECUTOR_DEFAULT_JAVA_OPTIONS)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val EXECUTOR_LIBRARY_PATH =
    ConfigBuilder(SparkLauncher.EXECUTOR_EXTRA_LIBRARY_PATH)
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val EXECUTOR_USER_CLASS_PATH_FIRST =
    ConfigBuilder("spark.executor.userClassPathFirst")
      .version("1.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_CORES = ConfigBuilder(SparkLauncher.EXECUTOR_CORES)
    .version("1.0.0")
    .intConf
    .createWithDefault(1)

  private[spark] val EXECUTOR_MEMORY = ConfigBuilder(SparkLauncher.EXECUTOR_MEMORY)
    .doc("Amount of memory to use per executor process, in MiB unless otherwise specified.")
    .version("0.7.0")
    .bytesConf(ByteUnit.MiB)
    .createWithDefaultString("1g")

  private[spark] val EXECUTOR_MEMORY_OVERHEAD = ConfigBuilder("spark.executor.memoryOverhead")
    .doc("The amount of non-heap memory to be allocated per executor, in MiB unless otherwise" +
      " specified.")
    .version("2.3.0")
    .bytesConf(ByteUnit.MiB)
    .createOptional

  private[spark] val EXECUTOR_MEMORY_OVERHEAD_FACTOR =
    ConfigBuilder("spark.executor.memoryOverheadFactor")
      .doc("Fraction of executor memory to be allocated as additional non-heap memory per " +
        "executor process. This is memory that accounts for things like VM overheads, " +
        "interned strings, other native overheads, etc. This tends to grow with the container " +
        "size. This value defaults to 0.10 except for Kubernetes non-JVM jobs, which defaults " +
        "to 0.40. This is done as non-JVM tasks need more non-JVM heap space and such tasks " +
        "commonly fail with \"Memory Overhead Exceeded\" errors. This preempts this error " +
        "with a higher default. This value is ignored if spark.executor.memoryOverhead is set " +
        "directly.")
      .version("3.3.0")
      .doubleConf
      .checkValue(factor => factor > 0,
        "Ensure that memory overhead is a double greater than 0")
      .createWithDefault(0.1)

  private[spark] val CORES_MAX = ConfigBuilder("spark.cores.max")
    .doc("When running on a standalone deploy cluster or a Mesos cluster in coarse-grained " +
      "sharing mode, the maximum amount of CPU cores to request for the application from across " +
      "the cluster (not from each machine). If not set, the default will be " +
      "`spark.deploy.defaultCores` on Spark's standalone cluster manager, or infinite " +
      "(all available cores) on Mesos.")
    .version("0.6.0")
    .intConf
    .createOptional

  private[spark] val MEMORY_OFFHEAP_ENABLED = ConfigBuilder("spark.memory.offHeap.enabled")
    .doc("If true, Spark will attempt to use off-heap memory for certain operations. " +
      "If off-heap memory use is enabled, then spark.memory.offHeap.size must be positive.")
    .version("1.6.0")
    .withAlternative("spark.unsafe.offHeap")
    .booleanConf
    .createWithDefault(false)

  private[spark] val MEMORY_OFFHEAP_SIZE = ConfigBuilder("spark.memory.offHeap.size")
    .doc("The absolute amount of memory which can be used for off-heap allocation, " +
      " in bytes unless otherwise specified. " +
      "This setting has no impact on heap memory usage, so if your executors' total memory " +
      "consumption must fit within some hard limit then be sure to shrink your JVM heap size " +
      "accordingly. This must be set to a positive value when spark.memory.offHeap.enabled=true.")
    .version("1.6.0")
    .bytesConf(ByteUnit.BYTE)
    .checkValue(_ >= 0, "The off-heap memory size must not be negative")
    .createWithDefault(0)

  private[spark] val MEMORY_STORAGE_FRACTION = ConfigBuilder("spark.memory.storageFraction")
    .doc("Amount of storage memory immune to eviction, expressed as a fraction of the " +
      "size of the region set aside by spark.memory.fraction. The higher this is, the " +
      "less working memory may be available to execution and tasks may spill to disk more " +
      "often. Leaving this at the default value is recommended. ")
    .version("1.6.0")
    .doubleConf
    .checkValue(v => v >= 0.0 && v < 1.0, "Storage fraction must be in [0,1)")
    .createWithDefault(0.5)

  private[spark] val MEMORY_FRACTION = ConfigBuilder("spark.memory.fraction")
    .doc("Fraction of (heap space - 300MB) used for execution and storage. The " +
      "lower this is, the more frequently spills and cached data eviction occur. " +
      "The purpose of this config is to set aside memory for internal metadata, " +
      "user data structures, and imprecise size estimation in the case of sparse, " +
      "unusually large records. Leaving this at the default value is recommended.  ")
    .version("1.6.0")
    .doubleConf
    .createWithDefault(0.6)

  private[spark] val STORAGE_UNROLL_MEMORY_THRESHOLD =
    ConfigBuilder("spark.storage.unrollMemoryThreshold")
      .doc("Initial memory to request before unrolling any block")
      .version("1.1.0")
      .longConf
      .createWithDefault(1024 * 1024)

  private[spark] val STORAGE_REPLICATION_PROACTIVE =
    ConfigBuilder("spark.storage.replication.proactive")
      .doc("Enables proactive block replication for RDD blocks. " +
        "Cached RDD block replicas lost due to executor failures are replenished " +
        "if there are any existing available replicas. This tries to " +
        "get the replication level of the block to the initial number")
      .version("2.2.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val STORAGE_MEMORY_MAP_THRESHOLD =
    ConfigBuilder("spark.storage.memoryMapThreshold")
      .doc("Size in bytes of a block above which Spark memory maps when " +
        "reading a block from disk. " +
        "This prevents Spark from memory mapping very small blocks. " +
        "In general, memory mapping has high overhead for blocks close to or below " +
        "the page size of the operating system.")
      .version("0.9.2")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("2m")

  private[spark] val STORAGE_REPLICATION_POLICY =
    ConfigBuilder("spark.storage.replication.policy")
      .version("2.1.0")
      .stringConf
      .createWithDefaultString(classOf[RandomBlockReplicationPolicy].getName)

  private[spark] val STORAGE_REPLICATION_TOPOLOGY_MAPPER =
    ConfigBuilder("spark.storage.replication.topologyMapper")
      .version("2.1.0")
      .stringConf
      .createWithDefaultString(classOf[DefaultTopologyMapper].getName)

  private[spark] val STORAGE_CACHED_PEERS_TTL = ConfigBuilder("spark.storage.cachedPeersTtl")
    .version("1.1.1")
    .intConf
    .createWithDefault(60 * 1000)

  private[spark] val STORAGE_MAX_REPLICATION_FAILURE =
    ConfigBuilder("spark.storage.maxReplicationFailures")
      .version("1.1.1")
      .intConf
      .createWithDefault(1)

  private[spark] val STORAGE_DECOMMISSION_ENABLED =
    ConfigBuilder("spark.storage.decommission.enabled")
      .doc("Whether to decommission the block manager when decommissioning executor")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val STORAGE_DECOMMISSION_SHUFFLE_BLOCKS_ENABLED =
    ConfigBuilder("spark.storage.decommission.shuffleBlocks.enabled")
      .doc("Whether to transfer shuffle blocks during block manager decommissioning. Requires " +
        "a migratable shuffle resolver (like sort based shuffle)")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val STORAGE_DECOMMISSION_SHUFFLE_MAX_THREADS =
    ConfigBuilder("spark.storage.decommission.shuffleBlocks.maxThreads")
      .doc("Maximum number of threads to use in migrating shuffle files.")
      .version("3.1.0")
      .intConf
      .checkValue(_ > 0, "The maximum number of threads should be positive")
      .createWithDefault(8)

  private[spark] val STORAGE_DECOMMISSION_RDD_BLOCKS_ENABLED =
    ConfigBuilder("spark.storage.decommission.rddBlocks.enabled")
      .doc("Whether to transfer RDD blocks during block manager decommissioning.")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val STORAGE_DECOMMISSION_MAX_REPLICATION_FAILURE_PER_BLOCK =
    ConfigBuilder("spark.storage.decommission.maxReplicationFailuresPerBlock")
      .internal()
      .doc("Maximum number of failures which can be handled for the replication of " +
        "one RDD block when block manager is decommissioning and trying to move its " +
        "existing blocks.")
      .version("3.1.0")
      .intConf
      .createWithDefault(3)

  private[spark] val STORAGE_DECOMMISSION_REPLICATION_REATTEMPT_INTERVAL =
    ConfigBuilder("spark.storage.decommission.replicationReattemptInterval")
      .internal()
      .doc("The interval of time between consecutive cache block replication reattempts " +
        "happening on each decommissioning executor (due to storage decommissioning).")
      .version("3.1.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .checkValue(_ > 0, "Time interval between two consecutive attempts of " +
        "cache block replication should be positive.")
      .createWithDefaultString("30s")

  private[spark] val STORAGE_DECOMMISSION_FALLBACK_STORAGE_PATH =
    ConfigBuilder("spark.storage.decommission.fallbackStorage.path")
      .doc("The location for fallback storage during block manager decommissioning. " +
        "For example, `s3a://spark-storage/`. In case of empty, fallback storage is disabled. " +
        "The storage should be managed by TTL because Spark will not clean it up.")
      .version("3.1.0")
      .stringConf
      .checkValue(_.endsWith(java.io.File.separator), "Path should end with separator.")
      .createOptional

  private[spark] val STORAGE_DECOMMISSION_FALLBACK_STORAGE_CLEANUP =
    ConfigBuilder("spark.storage.decommission.fallbackStorage.cleanUp")
      .doc("If true, Spark cleans up its fallback storage data during shutting down.")
      .version("3.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val STORAGE_DECOMMISSION_SHUFFLE_MAX_DISK_SIZE =
    ConfigBuilder("spark.storage.decommission.shuffleBlocks.maxDiskSize")
      .doc("Maximum disk space to use to store shuffle blocks before rejecting remote " +
        "shuffle blocks. Rejecting remote shuffle blocks means that an executor will not receive " +
        "any shuffle migrations, and if there are no other executors available for migration " +
        "then shuffle blocks will be lost unless " +
        s"${STORAGE_DECOMMISSION_FALLBACK_STORAGE_PATH.key} is configured.")
      .version("3.2.0")
      .bytesConf(ByteUnit.BYTE)
      .createOptional

  private[spark] val STORAGE_REPLICATION_TOPOLOGY_FILE =
    ConfigBuilder("spark.storage.replication.topologyFile")
      .version("2.1.0")
      .stringConf
      .createOptional

  private[spark] val STORAGE_EXCEPTION_PIN_LEAK =
    ConfigBuilder("spark.storage.exceptionOnPinLeak")
      .version("1.6.2")
      .booleanConf
      .createWithDefault(false)

  private[spark] val STORAGE_BLOCKMANAGER_TIMEOUTINTERVAL =
    ConfigBuilder("spark.storage.blockManagerTimeoutIntervalMs")
      .version("0.7.3")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("60s")

  private[spark] val STORAGE_BLOCKMANAGER_MASTER_DRIVER_HEARTBEAT_TIMEOUT =
    ConfigBuilder("spark.storage.blockManagerMasterDriverHeartbeatTimeoutMs")
      .doc("A timeout used for block manager master's driver heartbeat endpoint.")
      .version("3.2.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("10m")

  private[spark] val STORAGE_BLOCKMANAGER_HEARTBEAT_TIMEOUT =
    ConfigBuilder("spark.storage.blockManagerHeartbeatTimeoutMs")
      .version("0.7.0")
      .withAlternative("spark.storage.blockManagerSlaveTimeoutMs")
      .timeConf(TimeUnit.MILLISECONDS)
      .createOptional

  private[spark] val STORAGE_CLEANUP_FILES_AFTER_EXECUTOR_EXIT =
    ConfigBuilder("spark.storage.cleanupFilesAfterExecutorExit")
      .doc("Whether or not cleanup the files not served by the external shuffle service " +
        "on executor exits.")
      .version("2.4.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val DISKSTORE_SUB_DIRECTORIES =
    ConfigBuilder("spark.diskStore.subDirectories")
      .doc("Number of subdirectories inside each path listed in spark.local.dir for " +
        "hashing Block files into.")
      .version("0.6.0")
      .intConf
      .checkValue(_ > 0, "The number of subdirectories must be positive.")
      .createWithDefault(64)

  private[spark] val BLOCK_FAILURES_BEFORE_LOCATION_REFRESH =
    ConfigBuilder("spark.block.failures.beforeLocationRefresh")
      .doc("Max number of failures before this block manager refreshes " +
        "the block locations from the driver.")
      .version("2.0.0")
      .intConf
      .createWithDefault(5)

  private[spark] val IS_PYTHON_APP =
    ConfigBuilder("spark.yarn.isPython")
      .internal()
      .version("1.5.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val CPUS_PER_TASK =
    ConfigBuilder("spark.task.cpus").version("0.5.0").intConf.createWithDefault(1)

  private[spark] val DYN_ALLOCATION_ENABLED =
    ConfigBuilder("spark.dynamicAllocation.enabled")
      .version("1.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val DYN_ALLOCATION_TESTING =
    ConfigBuilder("spark.dynamicAllocation.testing")
      .version("1.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val DYN_ALLOCATION_MIN_EXECUTORS =
    ConfigBuilder("spark.dynamicAllocation.minExecutors")
      .version("1.2.0")
      .intConf
      .createWithDefault(0)

  private[spark] val DYN_ALLOCATION_INITIAL_EXECUTORS =
    ConfigBuilder("spark.dynamicAllocation.initialExecutors")
      .version("1.3.0")
      .fallbackConf(DYN_ALLOCATION_MIN_EXECUTORS)

  private[spark] val DYN_ALLOCATION_MAX_EXECUTORS =
    ConfigBuilder("spark.dynamicAllocation.maxExecutors")
      .version("1.2.0")
      .intConf
      .createWithDefault(Int.MaxValue)

  private[spark] val DYN_ALLOCATION_EXECUTOR_ALLOCATION_RATIO =
    ConfigBuilder("spark.dynamicAllocation.executorAllocationRatio")
      .version("2.4.0")
      .doubleConf
      .createWithDefault(1.0)

  private[spark] val DYN_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT =
    ConfigBuilder("spark.dynamicAllocation.cachedExecutorIdleTimeout")
      .version("1.4.0")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(_ >= 0L, "Timeout must be >= 0.")
      .createWithDefault(Integer.MAX_VALUE)

  private[spark] val DYN_ALLOCATION_EXECUTOR_IDLE_TIMEOUT =
    ConfigBuilder("spark.dynamicAllocation.executorIdleTimeout")
      .version("1.2.0")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(_ >= 0L, "Timeout must be >= 0.")
      .createWithDefault(60)

  private[spark] val DYN_ALLOCATION_SHUFFLE_TRACKING_ENABLED =
    ConfigBuilder("spark.dynamicAllocation.shuffleTracking.enabled")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val DYN_ALLOCATION_SHUFFLE_TRACKING_TIMEOUT =
    ConfigBuilder("spark.dynamicAllocation.shuffleTracking.timeout")
      .version("3.0.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .checkValue(_ >= 0L, "Timeout must be >= 0.")
      .createWithDefault(Long.MaxValue)

  private[spark] val DYN_ALLOCATION_SCHEDULER_BACKLOG_TIMEOUT =
    ConfigBuilder("spark.dynamicAllocation.schedulerBacklogTimeout")
      .version("1.2.0")
      .timeConf(TimeUnit.SECONDS).createWithDefault(1)

  private[spark] val DYN_ALLOCATION_SUSTAINED_SCHEDULER_BACKLOG_TIMEOUT =
    ConfigBuilder("spark.dynamicAllocation.sustainedSchedulerBacklogTimeout")
      .version("1.2.0")
      .fallbackConf(DYN_ALLOCATION_SCHEDULER_BACKLOG_TIMEOUT)

  private[spark] val LEGACY_LOCALITY_WAIT_RESET =
    ConfigBuilder("spark.locality.wait.legacyResetOnTaskLaunch")
    .doc("Whether to use the legacy behavior of locality wait, which resets the delay timer " +
      "anytime a task is scheduled. See Delay Scheduling section of TaskSchedulerImpl's class " +
      "documentation for more details.")
    .internal()
    .version("3.1.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val LOCALITY_WAIT = ConfigBuilder("spark.locality.wait")
    .version("0.5.0")
    .timeConf(TimeUnit.MILLISECONDS)
    .createWithDefaultString("3s")

  private[spark] val SHUFFLE_SERVICE_ENABLED =
    ConfigBuilder("spark.shuffle.service.enabled")
      .version("1.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_SERVICE_REMOVE_SHUFFLE_ENABLED =
    ConfigBuilder("spark.shuffle.service.removeShuffle")
      .doc("Whether to use the ExternalShuffleService for deleting shuffle blocks for " +
        "deallocated executors when the shuffle is no longer needed. Without this enabled, " +
        "shuffle data on executors that are deallocated will remain on disk until the " +
        "application ends.")
      .version("3.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_SERVICE_FETCH_RDD_ENABLED =
    ConfigBuilder(Constants.SHUFFLE_SERVICE_FETCH_RDD_ENABLED)
      .doc("Whether to use the ExternalShuffleService for fetching disk persisted RDD blocks. " +
        "In case of dynamic allocation if this feature is enabled executors having only disk " +
        "persisted blocks are considered idle after " +
        "'spark.dynamicAllocation.executorIdleTimeout' and will be released accordingly.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_SERVICE_DB_ENABLED =
    ConfigBuilder("spark.shuffle.service.db.enabled")
      .doc("Whether to use db in ExternalShuffleService. Note that this only affects " +
        "standalone mode.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_SERVICE_DB_BACKEND =
    ConfigBuilder(Constants.SHUFFLE_SERVICE_DB_BACKEND)
      .doc("Specifies a disk-based store used in shuffle service local db. " +
        "LEVELDB or ROCKSDB.")
      .version("3.4.0")
      .stringConf
      .transform(_.toUpperCase(Locale.ROOT))
      .checkValues(DBBackend.values.map(_.toString).toSet)
      .createWithDefault(DBBackend.LEVELDB.name)

  private[spark] val SHUFFLE_SERVICE_PORT =
    ConfigBuilder("spark.shuffle.service.port").version("1.2.0").intConf.createWithDefault(7337)

  private[spark] val SHUFFLE_SERVICE_NAME =
    ConfigBuilder("spark.shuffle.service.name")
      .doc("The configured name of the Spark shuffle service the client should communicate with. " +
        "This must match the name used to configure the Shuffle within the YARN NodeManager " +
        "configuration (`yarn.nodemanager.aux-services`). Only takes effect when " +
        s"$SHUFFLE_SERVICE_ENABLED is set to true.")
      .version("3.2.0")
      .stringConf
      .createWithDefault("spark_shuffle")

  private[spark] val KEYTAB = ConfigBuilder("spark.kerberos.keytab")
    .doc("Location of user's keytab.")
    .version("3.0.0")
    .stringConf.createOptional

  private[spark] val PRINCIPAL = ConfigBuilder("spark.kerberos.principal")
    .doc("Name of the Kerberos principal.")
    .version("3.0.0")
    .stringConf
    .createOptional

  private[spark] val KERBEROS_RELOGIN_PERIOD = ConfigBuilder("spark.kerberos.relogin.period")
    .version("3.0.0")
    .timeConf(TimeUnit.SECONDS)
    .createWithDefaultString("1m")

  private[spark] val KERBEROS_RENEWAL_CREDENTIALS =
    ConfigBuilder("spark.kerberos.renewal.credentials")
      .doc(
        "Which credentials to use when renewing delegation tokens for executors. Can be either " +
        "'keytab', the default, which requires a keytab to be provided, or 'ccache', which uses " +
        "the local credentials cache.")
      .version("3.0.0")
      .stringConf
      .checkValues(Set("keytab", "ccache"))
      .createWithDefault("keytab")

  private[spark] val KERBEROS_FILESYSTEMS_TO_ACCESS =
    ConfigBuilder("spark.kerberos.access.hadoopFileSystems")
    .doc("Extra Hadoop filesystem URLs for which to request delegation tokens. The filesystem " +
      "that hosts fs.defaultFS does not need to be listed here.")
    .version("3.0.0")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val YARN_KERBEROS_FILESYSTEM_RENEWAL_EXCLUDE =
    ConfigBuilder("spark.yarn.kerberos.renewal.excludeHadoopFileSystems")
      .doc("The list of Hadoop filesystem URLs whose hosts will be excluded from " +
        "delegation token renewal at resource scheduler. Currently this is known to " +
        "work under YARN, so YARN Resource Manager won't renew tokens for the application. " +
        "Note that as resource scheduler does not renew token, so any application running " +
        "longer than the original token expiration that tries to use that token will likely fail.")
      .version("3.2.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val EXECUTOR_INSTANCES = ConfigBuilder("spark.executor.instances")
    .version("1.0.0")
    .intConf
    .createOptional

  private[spark] val PY_FILES = ConfigBuilder("spark.yarn.dist.pyFiles")
    .internal()
    .version("2.2.1")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val TASK_MAX_DIRECT_RESULT_SIZE =
    ConfigBuilder("spark.task.maxDirectResultSize")
      .version("2.0.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefault(1L << 20)

  private[spark] val TASK_MAX_FAILURES =
    ConfigBuilder("spark.task.maxFailures")
      .version("0.8.0")
      .intConf
      .createWithDefault(4)

  private[spark] val TASK_REAPER_ENABLED =
    ConfigBuilder("spark.task.reaper.enabled")
      .version("2.0.3")
      .booleanConf
      .createWithDefault(false)

  private[spark] val TASK_REAPER_KILL_TIMEOUT =
    ConfigBuilder("spark.task.reaper.killTimeout")
      .version("2.0.3")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefault(-1)

  private[spark] val TASK_REAPER_POLLING_INTERVAL =
    ConfigBuilder("spark.task.reaper.pollingInterval")
      .version("2.0.3")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("10s")

  private[spark] val TASK_REAPER_THREAD_DUMP =
    ConfigBuilder("spark.task.reaper.threadDump")
      .version("2.0.3")
      .booleanConf
      .createWithDefault(true)

  private[spark] val EXCLUDE_ON_FAILURE_ENABLED =
    ConfigBuilder("spark.excludeOnFailure.enabled")
      .version("3.1.0")
      .withAlternative("spark.blacklist.enabled")
      .booleanConf
      .createOptional

  private[spark] val MAX_TASK_ATTEMPTS_PER_EXECUTOR =
    ConfigBuilder("spark.excludeOnFailure.task.maxTaskAttemptsPerExecutor")
      .version("3.1.0")
      .withAlternative("spark.blacklist.task.maxTaskAttemptsPerExecutor")
      .intConf
      .createWithDefault(1)

  private[spark] val MAX_TASK_ATTEMPTS_PER_NODE =
    ConfigBuilder("spark.excludeOnFailure.task.maxTaskAttemptsPerNode")
      .version("3.1.0")
      .withAlternative("spark.blacklist.task.maxTaskAttemptsPerNode")
      .intConf
      .createWithDefault(2)

  private[spark] val MAX_FAILURES_PER_EXEC =
    ConfigBuilder("spark.excludeOnFailure.application.maxFailedTasksPerExecutor")
      .version("3.1.0")
      .withAlternative("spark.blacklist.application.maxFailedTasksPerExecutor")
      .intConf
      .createWithDefault(2)

  private[spark] val MAX_FAILURES_PER_EXEC_STAGE =
    ConfigBuilder("spark.excludeOnFailure.stage.maxFailedTasksPerExecutor")
      .version("3.1.0")
      .withAlternative("spark.blacklist.stage.maxFailedTasksPerExecutor")
      .intConf
      .createWithDefault(2)

  private[spark] val MAX_FAILED_EXEC_PER_NODE =
    ConfigBuilder("spark.excludeOnFailure.application.maxFailedExecutorsPerNode")
      .version("3.1.0")
      .withAlternative("spark.blacklist.application.maxFailedExecutorsPerNode")
      .intConf
      .createWithDefault(2)

  private[spark] val MAX_FAILED_EXEC_PER_NODE_STAGE =
    ConfigBuilder("spark.excludeOnFailure.stage.maxFailedExecutorsPerNode")
      .version("3.1.0")
      .withAlternative("spark.blacklist.stage.maxFailedExecutorsPerNode")
      .intConf
      .createWithDefault(2)

  private[spark] val EXCLUDE_ON_FAILURE_TIMEOUT_CONF =
    ConfigBuilder("spark.excludeOnFailure.timeout")
      .version("3.1.0")
      .withAlternative("spark.blacklist.timeout")
      .timeConf(TimeUnit.MILLISECONDS)
      .createOptional

  private[spark] val EXCLUDE_ON_FAILURE_KILL_ENABLED =
    ConfigBuilder("spark.excludeOnFailure.killExcludedExecutors")
      .version("3.1.0")
      .withAlternative("spark.blacklist.killBlacklistedExecutors")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXCLUDE_ON_FAILURE_DECOMMISSION_ENABLED =
    ConfigBuilder("spark.excludeOnFailure.killExcludedExecutors.decommission")
      .doc("Attempt decommission of excluded nodes instead of going directly to kill")
      .version("3.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXCLUDE_ON_FAILURE_LEGACY_TIMEOUT_CONF =
    ConfigBuilder("spark.scheduler.executorTaskExcludeOnFailureTime")
      .internal()
      .version("3.1.0")
      .withAlternative("spark.scheduler.executorTaskBlacklistTime")
      .timeConf(TimeUnit.MILLISECONDS)
      .createOptional

  private[spark] val EXCLUDE_ON_FAILURE_FETCH_FAILURE_ENABLED =
    ConfigBuilder("spark.excludeOnFailure.application.fetchFailure.enabled")
      .version("3.1.0")
      .withAlternative("spark.blacklist.application.fetchFailure.enabled")
      .booleanConf
      .createWithDefault(false)

  private[spark] val UNREGISTER_OUTPUT_ON_HOST_ON_FETCH_FAILURE =
    ConfigBuilder("spark.files.fetchFailure.unRegisterOutputOnHost")
      .doc("Whether to un-register all the outputs on the host in condition that we receive " +
        " a FetchFailure. This is set default to false, which means, we only un-register the " +
        " outputs related to the exact executor(instead of the host) on a FetchFailure.")
      .version("2.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val LISTENER_BUS_EVENT_QUEUE_CAPACITY =
    ConfigBuilder("spark.scheduler.listenerbus.eventqueue.capacity")
      .doc("The default capacity for event queues. Spark will try to initialize " +
        "an event queue using capacity specified by `spark.scheduler.listenerbus" +
        ".eventqueue.queueName.capacity` first. If it's not configured, Spark will " +
        "use the default capacity specified by this config.")
      .version("2.3.0")
      .intConf
      .checkValue(_ > 0, "The capacity of listener bus event queue must be positive")
      .createWithDefault(10000)

  private[spark] val LISTENER_BUS_METRICS_MAX_LISTENER_CLASSES_TIMED =
    ConfigBuilder("spark.scheduler.listenerbus.metrics.maxListenerClassesTimed")
      .internal()
      .doc("The number of listeners that have timers to track the elapsed time of" +
        "processing events. If 0 is set, disables this feature. If -1 is set," +
        "it sets no limit to the number.")
      .version("2.3.0")
      .intConf
      .checkValue(_ >= -1, "The number of listeners should be larger than -1.")
      .createWithDefault(128)

  private[spark] val LISTENER_BUS_LOG_SLOW_EVENT_ENABLED =
    ConfigBuilder("spark.scheduler.listenerbus.logSlowEvent")
      .internal()
      .doc("When enabled, log the event that takes too much time to process. This helps us " +
        "discover the event types that cause performance bottlenecks. The time threshold is " +
        "controlled by spark.scheduler.listenerbus.logSlowEvent.threshold.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val LISTENER_BUS_LOG_SLOW_EVENT_TIME_THRESHOLD =
    ConfigBuilder("spark.scheduler.listenerbus.logSlowEvent.threshold")
      .internal()
      .doc("The time threshold of whether a event is considered to be taking too much time to " +
        s"process. Log the event if ${LISTENER_BUS_LOG_SLOW_EVENT_ENABLED.key} is true.")
      .version("3.0.0")
      .timeConf(TimeUnit.NANOSECONDS)
      .createWithDefaultString("1s")

  // This property sets the root namespace for metrics reporting
  private[spark] val METRICS_NAMESPACE = ConfigBuilder("spark.metrics.namespace")
    .version("2.1.0")
    .stringConf
    .createOptional

  private[spark] val METRICS_CONF = ConfigBuilder("spark.metrics.conf")
    .version("0.8.0")
    .stringConf
    .createOptional

  private[spark] val METRICS_EXECUTORMETRICS_SOURCE_ENABLED =
    ConfigBuilder("spark.metrics.executorMetricsSource.enabled")
      .doc("Whether to register the ExecutorMetrics source with the metrics system.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val METRICS_STATIC_SOURCES_ENABLED =
    ConfigBuilder("spark.metrics.staticSources.enabled")
      .doc("Whether to register static sources with the metrics system.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val PYSPARK_DRIVER_PYTHON = ConfigBuilder("spark.pyspark.driver.python")
    .version("2.1.0")
    .stringConf
    .createOptional

  private[spark] val PYSPARK_PYTHON = ConfigBuilder("spark.pyspark.python")
    .version("2.1.0")
    .stringConf
    .createOptional

  // To limit how many applications are shown in the History Server summary ui
  private[spark] val HISTORY_UI_MAX_APPS =
    ConfigBuilder("spark.history.ui.maxApplications")
      .version("2.0.1")
      .intConf
      .createWithDefault(Integer.MAX_VALUE)

  private[spark] val IO_ENCRYPTION_ENABLED = ConfigBuilder("spark.io.encryption.enabled")
    .version("2.1.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val IO_ENCRYPTION_KEYGEN_ALGORITHM =
    ConfigBuilder("spark.io.encryption.keygen.algorithm")
      .version("2.1.0")
      .stringConf
      .createWithDefault("HmacSHA1")

  private[spark] val IO_ENCRYPTION_KEY_SIZE_BITS = ConfigBuilder("spark.io.encryption.keySizeBits")
    .version("2.1.0")
    .intConf
    .checkValues(Set(128, 192, 256))
    .createWithDefault(128)

  private[spark] val IO_CRYPTO_CIPHER_TRANSFORMATION =
    ConfigBuilder("spark.io.crypto.cipher.transformation")
      .internal()
      .version("2.1.0")
      .stringConf
      .createWithDefaultString("AES/CTR/NoPadding")

  private[spark] val DRIVER_HOST_ADDRESS = ConfigBuilder("spark.driver.host")
    .doc("Address of driver endpoints.")
    .version("0.7.0")
    .stringConf
    .createWithDefault(Utils.localCanonicalHostName())

  private[spark] val DRIVER_PORT = ConfigBuilder("spark.driver.port")
    .doc("Port of driver endpoints.")
    .version("0.7.0")
    .intConf
    .createWithDefault(0)

  private[spark] val DRIVER_SUPERVISE = ConfigBuilder("spark.driver.supervise")
    .doc("If true, restarts the driver automatically if it fails with a non-zero exit status. " +
      "Only has effect in Spark standalone mode or Mesos cluster deploy mode.")
    .version("1.3.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val DRIVER_BIND_ADDRESS = ConfigBuilder("spark.driver.bindAddress")
    .doc("Address where to bind network listen sockets on the driver.")
    .version("2.1.0")
    .fallbackConf(DRIVER_HOST_ADDRESS)

  private[spark] val BLOCK_MANAGER_PORT = ConfigBuilder("spark.blockManager.port")
    .doc("Port to use for the block manager when a more specific setting is not provided.")
    .version("1.1.0")
    .intConf
    .createWithDefault(0)

  private[spark] val DRIVER_BLOCK_MANAGER_PORT = ConfigBuilder("spark.driver.blockManager.port")
    .doc("Port to use for the block manager on the driver.")
    .version("2.1.0")
    .fallbackConf(BLOCK_MANAGER_PORT)

  private[spark] val IGNORE_CORRUPT_FILES = ConfigBuilder("spark.files.ignoreCorruptFiles")
    .doc("Whether to ignore corrupt files. If true, the Spark jobs will continue to run when " +
      "encountering corrupted or non-existing files and contents that have been read will still " +
      "be returned.")
    .version("2.1.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val IGNORE_MISSING_FILES = ConfigBuilder("spark.files.ignoreMissingFiles")
    .doc("Whether to ignore missing files. If true, the Spark jobs will continue to run when " +
      "encountering missing files and the contents that have been read will still be returned.")
    .version("2.4.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val APP_CALLER_CONTEXT = ConfigBuilder("spark.log.callerContext")
    .version("2.2.0")
    .stringConf
    .createOptional

  private[spark] val FILES_MAX_PARTITION_BYTES = ConfigBuilder("spark.files.maxPartitionBytes")
    .doc("The maximum number of bytes to pack into a single partition when reading files.")
    .version("2.1.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefault(128 * 1024 * 1024)

  private[spark] val FILES_OPEN_COST_IN_BYTES = ConfigBuilder("spark.files.openCostInBytes")
    .doc("The estimated cost to open a file, measured by the number of bytes could be scanned in" +
      " the same time. This is used when putting multiple files into a partition. It's better to" +
      " over estimate, then the partitions with small files will be faster than partitions with" +
      " bigger files.")
    .version("2.1.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefault(4 * 1024 * 1024)

  private[spark] val HADOOP_RDD_IGNORE_EMPTY_SPLITS =
    ConfigBuilder("spark.hadoopRDD.ignoreEmptySplits")
      .internal()
      .doc("When true, HadoopRDD/NewHadoopRDD will not create partitions for empty input splits.")
      .version("2.3.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SECRET_REDACTION_PATTERN =
    ConfigBuilder("spark.redaction.regex")
      .doc("Regex to decide which Spark configuration properties and environment variables in " +
        "driver and executor environments contain sensitive information. When this regex matches " +
        "a property key or value, the value is redacted from the environment UI and various logs " +
        "like YARN and event logs.")
      .version("2.1.2")
      .regexConf
      .createWithDefault("(?i)secret|password|token|access[.]key".r)

  private[spark] val STRING_REDACTION_PATTERN =
    ConfigBuilder("spark.redaction.string.regex")
      .doc("Regex to decide which parts of strings produced by Spark contain sensitive " +
        "information. When this regex matches a string part, that string part is replaced by a " +
        "dummy value. This is currently used to redact the output of SQL explain commands.")
      .version("2.2.0")
      .regexConf
      .createOptional

  private[spark] val AUTH_SECRET =
    ConfigBuilder("spark.authenticate.secret")
      .version("1.0.0")
      .stringConf
      .createOptional

  private[spark] val AUTH_SECRET_BIT_LENGTH =
    ConfigBuilder("spark.authenticate.secretBitLength")
      .version("1.6.0")
      .intConf
      .createWithDefault(256)

  private[spark] val NETWORK_AUTH_ENABLED =
    ConfigBuilder("spark.authenticate")
      .version("1.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SASL_ENCRYPTION_ENABLED =
    ConfigBuilder("spark.authenticate.enableSaslEncryption")
      .version("1.4.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val AUTH_SECRET_FILE =
    ConfigBuilder("spark.authenticate.secret.file")
      .doc("Path to a file that contains the authentication secret to use. The secret key is " +
        "loaded from this path on both the driver and the executors if overrides are not set for " +
        "either entity (see below). File-based secret keys are only allowed when using " +
        "Kubernetes.")
      .version("3.0.0")
      .stringConf
      .createOptional

  private[spark] val AUTH_SECRET_FILE_DRIVER =
    ConfigBuilder("spark.authenticate.secret.driver.file")
      .doc("Path to a file that contains the authentication secret to use. Loaded by the " +
        "driver. In Kubernetes client mode it is often useful to set a different secret " +
        "path for the driver vs. the executors, since the driver may not be running in " +
        "a pod unlike the executors. If this is set, an accompanying secret file must " +
        "be specified for the executors. The fallback configuration allows the same path to be " +
        "used for both the driver and the executors when running in cluster mode. File-based " +
        "secret keys are only allowed when using Kubernetes.")
      .version("3.0.0")
      .fallbackConf(AUTH_SECRET_FILE)

  private[spark] val AUTH_SECRET_FILE_EXECUTOR =
    ConfigBuilder("spark.authenticate.secret.executor.file")
      .doc("Path to a file that contains the authentication secret to use. Loaded by the " +
        "executors only. In Kubernetes client mode it is often useful to set a different " +
        "secret path for the driver vs. the executors, since the driver may not be running " +
        "in a pod unlike the executors. If this is set, an accompanying secret file must be " +
        "specified for the executors. The fallback configuration allows the same path to be " +
        "used for both the driver and the executors when running in cluster mode. File-based " +
        "secret keys are only allowed when using Kubernetes.")
      .version("3.0.0")
      .fallbackConf(AUTH_SECRET_FILE)

  private[spark] val BUFFER_WRITE_CHUNK_SIZE =
    ConfigBuilder("spark.buffer.write.chunkSize")
      .internal()
      .doc("The chunk size in bytes during writing out the bytes of ChunkedByteBuffer.")
      .version("2.3.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(_ <= ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH,
        "The chunk size during writing out the bytes of ChunkedByteBuffer should" +
          s" be less than or equal to ${ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH}.")
      .createWithDefault(64 * 1024 * 1024)

  private[spark] val CHECKPOINT_COMPRESS =
    ConfigBuilder("spark.checkpoint.compress")
      .doc("Whether to compress RDD checkpoints. Generally a good idea. Compression will use " +
        "spark.io.compression.codec.")
      .version("2.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val CACHE_CHECKPOINT_PREFERRED_LOCS_EXPIRE_TIME =
    ConfigBuilder("spark.rdd.checkpoint.cachePreferredLocsExpireTime")
      .internal()
      .doc("Expire time in minutes for caching preferred locations of checkpointed RDD." +
        "Caching preferred locations can relieve query loading to DFS and save the query " +
        "time. The drawback is that the cached locations can be possibly outdated and " +
        "lose data locality. If this config is not specified, it will not cache.")
      .version("3.0.0")
      .timeConf(TimeUnit.MINUTES)
      .checkValue(_ > 0, "The expire time for caching preferred locations cannot be non-positive.")
      .createOptional

  private[spark] val SHUFFLE_ACCURATE_BLOCK_THRESHOLD =
    ConfigBuilder("spark.shuffle.accurateBlockThreshold")
      .doc("Threshold in bytes above which the size of shuffle blocks in " +
        "HighlyCompressedMapStatus is accurately recorded. This helps to prevent OOM " +
        "by avoiding underestimating shuffle block size when fetch shuffle blocks.")
      .version("2.2.1")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefault(100 * 1024 * 1024)

  private[spark] val SHUFFLE_ACCURATE_BLOCK_SKEWED_FACTOR =
    ConfigBuilder("spark.shuffle.accurateBlockSkewedFactor")
      .internal()
      .doc("A shuffle block is considered as skewed and will be accurately recorded in " +
        "HighlyCompressedMapStatus if its size is larger than this factor multiplying " +
        "the median shuffle block size or SHUFFLE_ACCURATE_BLOCK_THRESHOLD. It is " +
        "recommended to set this parameter to be the same as SKEW_JOIN_SKEWED_PARTITION_FACTOR." +
        "Set to -1.0 to disable this feature by default.")
      .version("3.3.0")
      .doubleConf
      .createWithDefault(-1.0)

  private[spark] val SHUFFLE_MAX_ACCURATE_SKEWED_BLOCK_NUMBER =
    ConfigBuilder("spark.shuffle.maxAccurateSkewedBlockNumber")
      .internal()
      .doc("Max skewed shuffle blocks allowed to be accurately recorded in " +
        "HighlyCompressedMapStatus if its size is larger than " +
        "SHUFFLE_ACCURATE_BLOCK_SKEWED_FACTOR multiplying the median shuffle block size or " +
        "SHUFFLE_ACCURATE_BLOCK_THRESHOLD.")
      .version("3.3.0")
      .intConf
      .checkValue(_ > 0, "Allowed max accurate skewed block number must be positive.")
      .createWithDefault(100)

  private[spark] val SHUFFLE_REGISTRATION_TIMEOUT =
    ConfigBuilder("spark.shuffle.registration.timeout")
      .doc("Timeout in milliseconds for registration to the external shuffle service.")
      .version("2.3.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefault(5000)

  private[spark] val SHUFFLE_REGISTRATION_MAX_ATTEMPTS =
    ConfigBuilder("spark.shuffle.registration.maxAttempts")
      .doc("When we fail to register to the external shuffle service, we will " +
        "retry for maxAttempts times.")
      .version("2.3.0")
      .intConf
      .createWithDefault(3)

  private[spark] val SHUFFLE_MAX_ATTEMPTS_ON_NETTY_OOM =
    ConfigBuilder("spark.shuffle.maxAttemptsOnNettyOOM")
      .doc("The max attempts of a shuffle block would retry on Netty OOM issue before throwing " +
        "the shuffle fetch failure.")
      .version("3.2.0")
      .internal()
      .intConf
      .createWithDefault(10)

  private[spark] val REDUCER_MAX_BLOCKS_IN_FLIGHT_PER_ADDRESS =
    ConfigBuilder("spark.reducer.maxBlocksInFlightPerAddress")
      .doc("This configuration limits the number of remote blocks being fetched per reduce task " +
        "from a given host port. When a large number of blocks are being requested from a given " +
        "address in a single fetch or simultaneously, this could crash the serving executor or " +
        "Node Manager. This is especially useful to reduce the load on the Node Manager when " +
        "external shuffle is enabled. You can mitigate the issue by setting it to a lower value.")
      .version("2.2.1")
      .intConf
      .checkValue(_ > 0, "The max no. of blocks in flight cannot be non-positive.")
      .createWithDefault(Int.MaxValue)

  private[spark] val MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM =
    ConfigBuilder("spark.network.maxRemoteBlockSizeFetchToMem")
      .doc("Remote block will be fetched to disk when size of the block is above this threshold " +
        "in bytes. This is to avoid a giant request takes too much memory. Note this " +
        "configuration will affect both shuffle fetch and block manager remote block fetch. " +
        "For users who enabled external shuffle service, this feature can only work when " +
        "external shuffle service is at least 2.3.0.")
      .version("3.0.0")
      .bytesConf(ByteUnit.BYTE)
      // fetch-to-mem is guaranteed to fail if the message is bigger than 2 GB, so we might
      // as well use fetch-to-disk in that case.  The message includes some metadata in addition
      // to the block data itself (in particular UploadBlock has a lot of metadata), so we leave
      // extra room.
      .checkValue(
        _ <= Int.MaxValue - 512,
        "maxRemoteBlockSizeFetchToMem cannot be larger than (Int.MaxValue - 512) bytes.")
      .createWithDefaultString("200m")

  private[spark] val TASK_METRICS_TRACK_UPDATED_BLOCK_STATUSES =
    ConfigBuilder("spark.taskMetrics.trackUpdatedBlockStatuses")
      .doc("Enable tracking of updatedBlockStatuses in the TaskMetrics. Off by default since " +
        "tracking the block statuses can use a lot of memory and its not used anywhere within " +
        "spark.")
      .version("2.3.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_IO_PLUGIN_CLASS =
    ConfigBuilder("spark.shuffle.sort.io.plugin.class")
      .doc("Name of the class to use for shuffle IO.")
      .version("3.0.0")
      .stringConf
      .createWithDefault(classOf[LocalDiskShuffleDataIO].getName)

  private[spark] val SHUFFLE_FILE_BUFFER_SIZE =
    ConfigBuilder("spark.shuffle.file.buffer")
      .doc("Size of the in-memory buffer for each shuffle file output stream, in KiB unless " +
        "otherwise specified. These buffers reduce the number of disk seeks and system calls " +
        "made in creating intermediate shuffle files.")
      .version("1.4.0")
      .bytesConf(ByteUnit.KiB)
      .checkValue(v => v > 0 && v <= ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH / 1024,
        s"The file buffer size must be positive and less than or equal to" +
          s" ${ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH / 1024}.")
      .createWithDefaultString("32k")

  private[spark] val SHUFFLE_UNSAFE_FILE_OUTPUT_BUFFER_SIZE =
    ConfigBuilder("spark.shuffle.unsafe.file.output.buffer")
      .doc("The file system for this buffer size after each partition " +
        "is written in unsafe shuffle writer. In KiB unless otherwise specified.")
      .version("2.3.0")
      .bytesConf(ByteUnit.KiB)
      .checkValue(v => v > 0 && v <= ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH / 1024,
        s"The buffer size must be positive and less than or equal to" +
          s" ${ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH / 1024}.")
      .createWithDefaultString("32k")

  private[spark] val SHUFFLE_DISK_WRITE_BUFFER_SIZE =
    ConfigBuilder("spark.shuffle.spill.diskWriteBufferSize")
      .doc("The buffer size, in bytes, to use when writing the sorted records to an on-disk file.")
      .version("2.3.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(v => v > 12 && v <= ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH,
        s"The buffer size must be greater than 12 and less than or equal to " +
          s"${ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH}.")
      .createWithDefault(1024 * 1024)

  private[spark] val UNROLL_MEMORY_CHECK_PERIOD =
    ConfigBuilder("spark.storage.unrollMemoryCheckPeriod")
      .internal()
      .doc("The memory check period is used to determine how often we should check whether "
        + "there is a need to request more memory when we try to unroll the given block in memory.")
      .version("2.3.0")
      .longConf
      .createWithDefault(16)

  private[spark] val UNROLL_MEMORY_GROWTH_FACTOR =
    ConfigBuilder("spark.storage.unrollMemoryGrowthFactor")
      .internal()
      .doc("Memory to request as a multiple of the size that used to unroll the block.")
      .version("2.3.0")
      .doubleConf
      .createWithDefault(1.5)

  private[spark] val FORCE_DOWNLOAD_SCHEMES =
    ConfigBuilder("spark.yarn.dist.forceDownloadSchemes")
      .doc("Comma-separated list of schemes for which resources will be downloaded to the " +
        "local disk prior to being added to YARN's distributed cache. For use in cases " +
        "where the YARN service does not support schemes that are supported by Spark, like http, " +
        "https and ftp, or jars required to be in the local YARN client's classpath. Wildcard " +
        "'*' is denoted to download resources for all the schemes.")
      .version("2.3.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val EXTRA_LISTENERS = ConfigBuilder("spark.extraListeners")
    .doc("Class names of listeners to add to SparkContext during initialization.")
    .version("1.3.0")
    .stringConf
    .toSequence
    .createOptional

  private[spark] val SHUFFLE_SPILL_NUM_ELEMENTS_FORCE_SPILL_THRESHOLD =
    ConfigBuilder("spark.shuffle.spill.numElementsForceSpillThreshold")
      .internal()
      .doc("The maximum number of elements in memory before forcing the shuffle sorter to spill. " +
        "By default it's Integer.MAX_VALUE, which means we never force the sorter to spill, " +
        "until we reach some limitations, like the max page size limitation for the pointer " +
        "array in the sorter.")
      .version("1.6.0")
      .intConf
      .createWithDefault(Integer.MAX_VALUE)

  private[spark] val SHUFFLE_MAP_OUTPUT_PARALLEL_AGGREGATION_THRESHOLD =
    ConfigBuilder("spark.shuffle.mapOutput.parallelAggregationThreshold")
      .internal()
      .doc("Multi-thread is used when the number of mappers * shuffle partitions is greater than " +
        "or equal to this threshold. Note that the actual parallelism is calculated by number of " +
        "mappers * shuffle partitions / this threshold + 1, so this threshold should be positive.")
      .version("2.3.0")
      .intConf
      .checkValue(v => v > 0, "The threshold should be positive.")
      .createWithDefault(10000000)

  private[spark] val MAX_RESULT_SIZE = ConfigBuilder("spark.driver.maxResultSize")
    .doc("Size limit for results.")
    .version("1.2.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefaultString("1g")

  private[spark] val CREDENTIALS_RENEWAL_INTERVAL_RATIO =
    ConfigBuilder("spark.security.credentials.renewalRatio")
      .doc("Ratio of the credential's expiration time when Spark should fetch new credentials.")
      .version("2.4.0")
      .doubleConf
      .createWithDefault(0.75d)

  private[spark] val CREDENTIALS_RENEWAL_RETRY_WAIT =
    ConfigBuilder("spark.security.credentials.retryWait")
      .doc("How long to wait before retrying to fetch new credentials after a failure.")
      .version("2.4.0")
      .timeConf(TimeUnit.SECONDS)
      .createWithDefaultString("1h")

  private[spark] val SHUFFLE_SORT_INIT_BUFFER_SIZE =
    ConfigBuilder("spark.shuffle.sort.initialBufferSize")
      .internal()
      .version("2.1.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(v => v > 0 && v <= Int.MaxValue,
        s"The buffer size must be greater than 0 and less than or equal to ${Int.MaxValue}.")
      .createWithDefault(4096)

  private[spark] val SHUFFLE_CHECKSUM_ENABLED =
    ConfigBuilder("spark.shuffle.checksum.enabled")
      .doc("Whether to calculate the checksum of shuffle data. If enabled, Spark will calculate " +
        "the checksum values for each partition data within the map output file and store the " +
        "values in a checksum file on the disk. When there's shuffle data corruption detected, " +
        "Spark will try to diagnose the cause (e.g., network issue, disk issue, etc.) of the " +
        "corruption by using the checksum file.")
      .version("3.2.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_CHECKSUM_ALGORITHM =
    ConfigBuilder("spark.shuffle.checksum.algorithm")
      .doc("The algorithm is used to calculate the shuffle checksum. Currently, it only supports " +
        "built-in algorithms of JDK.")
      .version("3.2.0")
      .stringConf
      .transform(_.toUpperCase(Locale.ROOT))
      .checkValue(Set("ADLER32", "CRC32").contains, "Shuffle checksum algorithm " +
        "should be either ADLER32 or CRC32.")
      .createWithDefault("ADLER32")

  private[spark] val SHUFFLE_COMPRESS =
    ConfigBuilder("spark.shuffle.compress")
      .doc("Whether to compress shuffle output. Compression will use " +
        "spark.io.compression.codec.")
      .version("0.6.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_SPILL_COMPRESS =
    ConfigBuilder("spark.shuffle.spill.compress")
      .doc("Whether to compress data spilled during shuffles. Compression will use " +
        "spark.io.compression.codec.")
      .version("0.9.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val MAP_STATUS_COMPRESSION_CODEC =
    ConfigBuilder("spark.shuffle.mapStatus.compression.codec")
      .internal()
      .doc("The codec used to compress MapStatus, which is generated by ShuffleMapTask. " +
        "By default, Spark provides four codecs: lz4, lzf, snappy, and zstd. You can also " +
        "use fully qualified class names to specify the codec.")
      .version("3.0.0")
      .stringConf
      .createWithDefault("zstd")

  private[spark] val SHUFFLE_SPILL_INITIAL_MEM_THRESHOLD =
    ConfigBuilder("spark.shuffle.spill.initialMemoryThreshold")
      .internal()
      .doc("Initial threshold for the size of a collection before we start tracking its " +
        "memory usage.")
      .version("1.1.1")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefault(5 * 1024 * 1024)

  private[spark] val SHUFFLE_SPILL_BATCH_SIZE =
    ConfigBuilder("spark.shuffle.spill.batchSize")
      .internal()
      .doc("Size of object batches when reading/writing from serializers.")
      .version("0.9.0")
      .longConf
      .createWithDefault(10000)

  private[spark] val SHUFFLE_MERGE_PREFER_NIO =
    ConfigBuilder("spark.file.transferTo")
      .doc("If true, NIO's `transferTo` API will be preferentially used when merging " +
        "Spark shuffle spill files")
      .version("1.4.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_SORT_BYPASS_MERGE_THRESHOLD =
    ConfigBuilder("spark.shuffle.sort.bypassMergeThreshold")
      .doc("In the sort-based shuffle manager, avoid merge-sorting data if there is no " +
        "map-side aggregation and there are at most this many reduce partitions")
      .version("1.1.1")
      .intConf
      .createWithDefault(200)

  private[spark] val SHUFFLE_MANAGER =
    ConfigBuilder("spark.shuffle.manager")
      .version("1.1.0")
      .stringConf
      .createWithDefault("sort")

  private[spark] val SHUFFLE_REDUCE_LOCALITY_ENABLE =
    ConfigBuilder("spark.shuffle.reduceLocality.enabled")
      .doc("Whether to compute locality preferences for reduce tasks")
      .version("1.5.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_MAPOUTPUT_MIN_SIZE_FOR_BROADCAST =
    ConfigBuilder("spark.shuffle.mapOutput.minSizeForBroadcast")
      .doc("The size at which we use Broadcast to send the map output statuses to the executors.")
      .version("2.0.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("512k")

  private[spark] val SHUFFLE_MAPOUTPUT_DISPATCHER_NUM_THREADS =
    ConfigBuilder("spark.shuffle.mapOutput.dispatcher.numThreads")
      .version("2.0.0")
      .intConf
      .createWithDefault(8)

  private[spark] val SHUFFLE_DETECT_CORRUPT =
    ConfigBuilder("spark.shuffle.detectCorrupt")
      .doc("Whether to detect any corruption in fetched blocks.")
      .version("2.2.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_DETECT_CORRUPT_MEMORY =
    ConfigBuilder("spark.shuffle.detectCorrupt.useExtraMemory")
      .doc("If enabled, part of a compressed/encrypted stream will be de-compressed/de-crypted " +
        "by using extra memory to detect early corruption. Any IOException thrown will cause " +
        "the task to be retried once and if it fails again with same exception, then " +
        "FetchFailedException will be thrown to retry previous stage")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_SYNC =
    ConfigBuilder("spark.shuffle.sync")
      .doc("Whether to force outstanding writes to disk.")
      .version("0.8.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_UNSAFE_FAST_MERGE_ENABLE =
    ConfigBuilder("spark.shuffle.unsafe.fastMergeEnabled")
      .doc("Whether to perform a fast spill merge.")
      .version("1.4.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_SORT_USE_RADIXSORT =
    ConfigBuilder("spark.shuffle.sort.useRadixSort")
      .doc("Whether to use radix sort for sorting in-memory partition ids. Radix sort is much " +
        "faster, but requires additional memory to be reserved memory as pointers are added.")
      .version("2.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val SHUFFLE_MIN_NUM_PARTS_TO_HIGHLY_COMPRESS =
    ConfigBuilder("spark.shuffle.minNumPartitionsToHighlyCompress")
      .internal()
      .doc("Number of partitions to determine if MapStatus should use HighlyCompressedMapStatus")
      .version("2.4.0")
      .intConf
      .checkValue(v => v > 0, "The value should be a positive integer.")
      .createWithDefault(2000)

  private[spark] val SHUFFLE_USE_OLD_FETCH_PROTOCOL =
    ConfigBuilder("spark.shuffle.useOldFetchProtocol")
      .doc("Whether to use the old protocol while doing the shuffle block fetching. " +
        "It is only enabled while we need the compatibility in the scenario of new Spark " +
        "version job fetching shuffle blocks from old version external shuffle service.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SHUFFLE_HOST_LOCAL_DISK_READING_ENABLED =
    ConfigBuilder("spark.shuffle.readHostLocalDisk")
      .doc(s"If enabled (and `${SHUFFLE_USE_OLD_FETCH_PROTOCOL.key}` is disabled, shuffle " +
        "blocks requested from those block managers which are running on the same host are " +
        "read from the disk directly instead of being fetched as remote blocks over the network.")
      .version("3.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val STORAGE_LOCAL_DISK_BY_EXECUTORS_CACHE_SIZE =
    ConfigBuilder("spark.storage.localDiskByExecutors.cacheSize")
      .doc("The max number of executors for which the local dirs are stored. This size is " +
        "both applied for the driver and both for the executors side to avoid having an " +
        "unbounded store. This cache will be used to avoid the network in case of fetching disk " +
        s"persisted RDD blocks or shuffle blocks " +
        s"(when `${SHUFFLE_HOST_LOCAL_DISK_READING_ENABLED.key}` is set) from the same host.")
      .version("3.0.0")
      .intConf
      .createWithDefault(1000)

  private[spark] val MEMORY_MAP_LIMIT_FOR_TESTS =
    ConfigBuilder("spark.storage.memoryMapLimitForTests")
      .internal()
      .doc("For testing only, controls the size of chunks when memory mapping a file")
      .version("2.3.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefault(ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH)

  private[spark] val BARRIER_SYNC_TIMEOUT =
    ConfigBuilder("spark.barrier.sync.timeout")
      .doc("The timeout in seconds for each barrier() call from a barrier task. If the " +
        "coordinator didn't receive all the sync messages from barrier tasks within the " +
        "configured time, throw a SparkException to fail all the tasks. The default value is set " +
        "to 31536000(3600 * 24 * 365) so the barrier() call shall wait for one year.")
      .version("2.4.0")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(v => v > 0, "The value should be a positive time value.")
      .createWithDefaultString("365d")

  private[spark] val UNSCHEDULABLE_TASKSET_TIMEOUT =
    ConfigBuilder("spark.scheduler.excludeOnFailure.unschedulableTaskSetTimeout")
      .doc("The timeout in seconds to wait to acquire a new executor and schedule a task " +
        "before aborting a TaskSet which is unschedulable because all executors are " +
        "excluded due to failures.")
      .version("3.1.0")
      .withAlternative("spark.scheduler.blacklist.unschedulableTaskSetTimeout")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(v => v >= 0, "The value should be a non negative time value.")
      .createWithDefault(120)

  private[spark] val BARRIER_MAX_CONCURRENT_TASKS_CHECK_INTERVAL =
    ConfigBuilder("spark.scheduler.barrier.maxConcurrentTasksCheck.interval")
      .doc("Time in seconds to wait between a max concurrent tasks check failure and the next " +
        "check. A max concurrent tasks check ensures the cluster can launch more concurrent " +
        "tasks than required by a barrier stage on job submitted. The check can fail in case " +
        "a cluster has just started and not enough executors have registered, so we wait for a " +
        "little while and try to perform the check again. If the check fails more than a " +
        "configured max failure times for a job then fail current job submission. Note this " +
        "config only applies to jobs that contain one or more barrier stages, we won't perform " +
        "the check on non-barrier jobs.")
      .version("2.4.0")
      .timeConf(TimeUnit.SECONDS)
      .createWithDefaultString("15s")

  private[spark] val BARRIER_MAX_CONCURRENT_TASKS_CHECK_MAX_FAILURES =
    ConfigBuilder("spark.scheduler.barrier.maxConcurrentTasksCheck.maxFailures")
      .doc("Number of max concurrent tasks check failures allowed before fail a job submission. " +
        "A max concurrent tasks check ensures the cluster can launch more concurrent tasks than " +
        "required by a barrier stage on job submitted. The check can fail in case a cluster " +
        "has just started and not enough executors have registered, so we wait for a little " +
        "while and try to perform the check again. If the check fails more than a configured " +
        "max failure times for a job then fail current job submission. Note this config only " +
        "applies to jobs that contain one or more barrier stages, we won't perform the check on " +
        "non-barrier jobs.")
      .version("2.4.0")
      .intConf
      .checkValue(v => v > 0, "The max failures should be a positive value.")
      .createWithDefault(40)

  private[spark] val UNSAFE_EXCEPTION_ON_MEMORY_LEAK =
    ConfigBuilder("spark.unsafe.exceptionOnMemoryLeak")
      .internal()
      .version("1.4.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val UNSAFE_SORTER_SPILL_READ_AHEAD_ENABLED =
    ConfigBuilder("spark.unsafe.sorter.spill.read.ahead.enabled")
      .internal()
      .version("2.3.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val UNSAFE_SORTER_SPILL_READER_BUFFER_SIZE =
    ConfigBuilder("spark.unsafe.sorter.spill.reader.buffer.size")
      .internal()
      .version("2.1.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(v => 1024 * 1024 <= v && v <= MAX_BUFFER_SIZE_BYTES,
        s"The value must be in allowed range [1,048,576, ${MAX_BUFFER_SIZE_BYTES}].")
      .createWithDefault(1024 * 1024)

  private[spark] val DEFAULT_PLUGINS_LIST = "spark.plugins.defaultList"

  private[spark] val PLUGINS =
    ConfigBuilder("spark.plugins")
      .withPrepended(DEFAULT_PLUGINS_LIST, separator = ",")
      .doc("Comma-separated list of class names implementing " +
        "org.apache.spark.api.plugin.SparkPlugin to load into the application.")
      .version("3.0.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val CLEANER_PERIODIC_GC_INTERVAL =
    ConfigBuilder("spark.cleaner.periodicGC.interval")
      .version("1.6.0")
      .timeConf(TimeUnit.SECONDS)
      .createWithDefaultString("30min")

  private[spark] val CLEANER_REFERENCE_TRACKING =
    ConfigBuilder("spark.cleaner.referenceTracking")
      .version("1.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val CLEANER_REFERENCE_TRACKING_BLOCKING =
    ConfigBuilder("spark.cleaner.referenceTracking.blocking")
      .version("1.0.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val CLEANER_REFERENCE_TRACKING_BLOCKING_SHUFFLE =
    ConfigBuilder("spark.cleaner.referenceTracking.blocking.shuffle")
      .version("1.1.1")
      .booleanConf
      .createWithDefault(false)

  private[spark] val CLEANER_REFERENCE_TRACKING_CLEAN_CHECKPOINTS =
    ConfigBuilder("spark.cleaner.referenceTracking.cleanCheckpoints")
      .version("1.4.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_LOGS_ROLLING_STRATEGY =
    ConfigBuilder("spark.executor.logs.rolling.strategy")
      .version("1.1.0")
      .stringConf
      .createWithDefault("")

  private[spark] val EXECUTOR_LOGS_ROLLING_TIME_INTERVAL =
    ConfigBuilder("spark.executor.logs.rolling.time.interval")
      .version("1.1.0")
      .stringConf
      .createWithDefault("daily")

  private[spark] val EXECUTOR_LOGS_ROLLING_MAX_SIZE =
    ConfigBuilder("spark.executor.logs.rolling.maxSize")
      .version("1.4.0")
      .stringConf
      .createWithDefault((1024 * 1024).toString)

  private[spark] val EXECUTOR_LOGS_ROLLING_MAX_RETAINED_FILES =
    ConfigBuilder("spark.executor.logs.rolling.maxRetainedFiles")
      .version("1.1.0")
      .intConf
      .createWithDefault(-1)

  private[spark] val EXECUTOR_LOGS_ROLLING_ENABLE_COMPRESSION =
    ConfigBuilder("spark.executor.logs.rolling.enableCompression")
      .version("2.0.2")
      .booleanConf
      .createWithDefault(false)

  private[spark] val MASTER_REST_SERVER_ENABLED = ConfigBuilder("spark.master.rest.enabled")
    .version("1.3.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val MASTER_REST_SERVER_PORT = ConfigBuilder("spark.master.rest.port")
    .version("1.3.0")
    .intConf
    .createWithDefault(6066)

  private[spark] val MASTER_UI_PORT = ConfigBuilder("spark.master.ui.port")
    .version("1.1.0")
    .intConf
    .createWithDefault(8080)

  private[spark] val IO_COMPRESSION_SNAPPY_BLOCKSIZE =
    ConfigBuilder("spark.io.compression.snappy.blockSize")
      .doc("Block size in bytes used in Snappy compression, in the case when " +
        "Snappy compression codec is used. Lowering this block size " +
        "will also lower shuffle memory usage when Snappy is used")
      .version("1.4.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("32k")

  private[spark] val IO_COMPRESSION_LZ4_BLOCKSIZE =
    ConfigBuilder("spark.io.compression.lz4.blockSize")
      .doc("Block size in bytes used in LZ4 compression, in the case when LZ4 compression" +
        "codec is used. Lowering this block size will also lower shuffle memory " +
        "usage when LZ4 is used.")
      .version("1.4.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("32k")

  private[spark] val IO_COMPRESSION_CODEC =
    ConfigBuilder("spark.io.compression.codec")
      .doc("The codec used to compress internal data such as RDD partitions, event log, " +
        "broadcast variables and shuffle outputs. By default, Spark provides four codecs: " +
        "lz4, lzf, snappy, and zstd. You can also use fully qualified class names to specify " +
        "the codec")
      .version("0.8.0")
      .stringConf
      .createWithDefaultString("lz4")

  private[spark] val IO_COMPRESSION_ZSTD_BUFFERSIZE =
    ConfigBuilder("spark.io.compression.zstd.bufferSize")
      .doc("Buffer size in bytes used in Zstd compression, in the case when Zstd " +
        "compression codec is used. Lowering this size will lower the shuffle " +
        "memory usage when Zstd is used, but it might increase the compression " +
        "cost because of excessive JNI call overhead")
      .version("2.3.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("32k")

  private[spark] val IO_COMPRESSION_ZSTD_BUFFERPOOL_ENABLED =
    ConfigBuilder("spark.io.compression.zstd.bufferPool.enabled")
      .doc("If true, enable buffer pool of ZSTD JNI library.")
      .version("3.2.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val IO_COMPRESSION_ZSTD_LEVEL =
    ConfigBuilder("spark.io.compression.zstd.level")
      .doc("Compression level for Zstd compression codec. Increasing the compression " +
        "level will result in better compression at the expense of more CPU and memory")
      .version("2.3.0")
      .intConf
      .createWithDefault(1)

  private[spark] val IO_WARNING_LARGEFILETHRESHOLD =
    ConfigBuilder("spark.io.warning.largeFileThreshold")
      .internal()
      .doc("If the size in bytes of a file loaded by Spark exceeds this threshold, " +
        "a warning is logged with the possible reasons.")
      .version("3.0.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefault(1024 * 1024 * 1024)

  private[spark] val EVENT_LOG_COMPRESSION_CODEC =
    ConfigBuilder("spark.eventLog.compression.codec")
      .doc("The codec used to compress event log. By default, Spark provides four codecs: " +
        "lz4, lzf, snappy, and zstd. You can also use fully qualified class names to specify " +
        "the codec.")
      .version("3.0.0")
      .stringConf
      .createWithDefault("zstd")

  private[spark] val BUFFER_SIZE =
    ConfigBuilder("spark.buffer.size")
      .version("0.5.0")
      .intConf
      .checkValue(_ >= 0, "The buffer size must not be negative")
      .createWithDefault(65536)

  private[spark] val LOCALITY_WAIT_PROCESS = ConfigBuilder("spark.locality.wait.process")
    .version("0.8.0")
    .fallbackConf(LOCALITY_WAIT)

  private[spark] val LOCALITY_WAIT_NODE = ConfigBuilder("spark.locality.wait.node")
    .version("0.8.0")
    .fallbackConf(LOCALITY_WAIT)

  private[spark] val LOCALITY_WAIT_RACK = ConfigBuilder("spark.locality.wait.rack")
    .version("0.8.0")
    .fallbackConf(LOCALITY_WAIT)

  private[spark] val REDUCER_MAX_SIZE_IN_FLIGHT = ConfigBuilder("spark.reducer.maxSizeInFlight")
    .doc("Maximum size of map outputs to fetch simultaneously from each reduce task, " +
      "in MiB unless otherwise specified. Since each output requires us to create a " +
      "buffer to receive it, this represents a fixed memory overhead per reduce task, " +
      "so keep it small unless you have a large amount of memory")
    .version("1.4.0")
    .bytesConf(ByteUnit.MiB)
    .createWithDefaultString("48m")

  private[spark] val REDUCER_MAX_REQS_IN_FLIGHT = ConfigBuilder("spark.reducer.maxReqsInFlight")
    .doc("This configuration limits the number of remote requests to fetch blocks at " +
      "any given point. When the number of hosts in the cluster increase, " +
      "it might lead to very large number of inbound connections to one or more nodes, " +
      "causing the workers to fail under load. By allowing it to limit the number of " +
      "fetch requests, this scenario can be mitigated")
    .version("2.0.0")
    .intConf
    .createWithDefault(Int.MaxValue)

  private[spark] val BROADCAST_COMPRESS = ConfigBuilder("spark.broadcast.compress")
    .doc("Whether to compress broadcast variables before sending them. " +
      "Generally a good idea. Compression will use spark.io.compression.codec")
    .version("0.6.0")
    .booleanConf.createWithDefault(true)

  private[spark] val BROADCAST_BLOCKSIZE = ConfigBuilder("spark.broadcast.blockSize")
    .doc("Size of each piece of a block for TorrentBroadcastFactory, in " +
      "KiB unless otherwise specified. Too large a value decreases " +
      "parallelism during broadcast (makes it slower); however, " +
      "if it is too small, BlockManager might take a performance hit")
    .version("0.5.0")
    .bytesConf(ByteUnit.KiB)
    .createWithDefaultString("4m")

  private[spark] val BROADCAST_CHECKSUM = ConfigBuilder("spark.broadcast.checksum")
    .doc("Whether to enable checksum for broadcast. If enabled, " +
      "broadcasts will include a checksum, which can help detect " +
      "corrupted blocks, at the cost of computing and sending a little " +
      "more data. It's possible to disable it if the network has other " +
      "mechanisms to guarantee data won't be corrupted during broadcast")
    .version("2.1.1")
    .booleanConf
    .createWithDefault(true)

  private[spark] val BROADCAST_FOR_UDF_COMPRESSION_THRESHOLD =
    ConfigBuilder("spark.broadcast.UDFCompressionThreshold")
      .doc("The threshold at which user-defined functions (UDFs) and Python RDD commands " +
        "are compressed by broadcast in bytes unless otherwise specified")
      .version("3.0.0")
      .bytesConf(ByteUnit.BYTE)
      .checkValue(v => v >= 0, "The threshold should be non-negative.")
      .createWithDefault(1L * 1024 * 1024)

  private[spark] val RDD_COMPRESS = ConfigBuilder("spark.rdd.compress")
    .doc("Whether to compress serialized RDD partitions " +
      "(e.g. for StorageLevel.MEMORY_ONLY_SER in Scala " +
      "or StorageLevel.MEMORY_ONLY in Python). Can save substantial " +
      "space at the cost of some extra CPU time. " +
      "Compression will use spark.io.compression.codec")
    .version("0.6.0")
    .booleanConf
    .createWithDefault(false)

  private[spark] val RDD_PARALLEL_LISTING_THRESHOLD =
    ConfigBuilder("spark.rdd.parallelListingThreshold")
      .version("2.0.0")
      .intConf
      .createWithDefault(10)

  private[spark] val RDD_LIMIT_INITIAL_NUM_PARTITIONS =
    ConfigBuilder("spark.rdd.limit.initialNumPartitions")
      .version("3.4.0")
      .intConf
      .checkValue(_ > 0, "value should be positive")
      .createWithDefault(1)

  private[spark] val RDD_LIMIT_SCALE_UP_FACTOR =
    ConfigBuilder("spark.rdd.limit.scaleUpFactor")
      .version("2.1.0")
      .intConf
      .createWithDefault(4)

  private[spark] val SERIALIZER = ConfigBuilder("spark.serializer")
    .version("0.5.0")
    .stringConf
    .createWithDefault("org.apache.spark.serializer.JavaSerializer")

  private[spark] val SERIALIZER_OBJECT_STREAM_RESET =
    ConfigBuilder("spark.serializer.objectStreamReset")
      .version("1.0.0")
      .intConf
      .createWithDefault(100)

  private[spark] val SERIALIZER_EXTRA_DEBUG_INFO = ConfigBuilder("spark.serializer.extraDebugInfo")
    .version("1.3.0")
    .booleanConf
    .createWithDefault(true)

  private[spark] val JARS = ConfigBuilder("spark.jars")
    .version("0.9.0")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val FILES = ConfigBuilder("spark.files")
    .version("1.0.0")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val ARCHIVES = ConfigBuilder("spark.archives")
    .version("3.1.0")
    .doc("Comma-separated list of archives to be extracted into the working directory of each " +
      "executor. .jar, .tar.gz, .tgz and .zip are supported. You can specify the directory " +
      "name to unpack via adding '#' after the file name to unpack, for example, " +
      "'file.zip#directory'. This configuration is experimental.")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val SUBMIT_DEPLOY_MODE = ConfigBuilder("spark.submit.deployMode")
    .version("1.5.0")
    .stringConf
    .createWithDefault("client")

  private[spark] val SUBMIT_PYTHON_FILES = ConfigBuilder("spark.submit.pyFiles")
    .version("1.0.1")
    .stringConf
    .toSequence
    .createWithDefault(Nil)

  private[spark] val SCHEDULER_ALLOCATION_FILE =
    ConfigBuilder("spark.scheduler.allocation.file")
      .version("0.8.1")
      .stringConf
      .createOptional

  private[spark] val SCHEDULER_MIN_REGISTERED_RESOURCES_RATIO =
    ConfigBuilder("spark.scheduler.minRegisteredResourcesRatio")
      .version("1.1.1")
      .doubleConf
      .createOptional

  private[spark] val SCHEDULER_MAX_REGISTERED_RESOURCE_WAITING_TIME =
    ConfigBuilder("spark.scheduler.maxRegisteredResourcesWaitingTime")
      .version("1.1.1")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("30s")

  private[spark] val SCHEDULER_MODE =
    ConfigBuilder("spark.scheduler.mode")
      .version("0.8.0")
      .stringConf
      .transform(_.toUpperCase(Locale.ROOT))
      .createWithDefault(SchedulingMode.FIFO.toString)

  private[spark] val SCHEDULER_REVIVE_INTERVAL =
    ConfigBuilder("spark.scheduler.revive.interval")
      .version("0.8.1")
      .timeConf(TimeUnit.MILLISECONDS)
      .createOptional

  private[spark] val SPECULATION_ENABLED =
    ConfigBuilder("spark.speculation")
      .version("0.6.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val SPECULATION_INTERVAL =
    ConfigBuilder("spark.speculation.interval")
      .version("0.6.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefault(100)

  private[spark] val SPECULATION_MULTIPLIER =
    ConfigBuilder("spark.speculation.multiplier")
      .version("0.6.0")
      .doubleConf
      .createWithDefault(1.5)

  private[spark] val SPECULATION_QUANTILE =
    ConfigBuilder("spark.speculation.quantile")
      .version("0.6.0")
      .doubleConf
      .createWithDefault(0.75)

  private[spark] val SPECULATION_MIN_THRESHOLD =
    ConfigBuilder("spark.speculation.minTaskRuntime")
      .doc("Minimum amount of time a task runs before being considered for speculation. " +
        "This can be used to avoid launching speculative copies of tasks that are very short.")
      .version("3.2.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefault(100)

  private[spark] val SPECULATION_TASK_DURATION_THRESHOLD =
    ConfigBuilder("spark.speculation.task.duration.threshold")
      .doc("Task duration after which scheduler would try to speculative run the task. If " +
        "provided, tasks would be speculatively run if current stage contains less tasks " +
        "than or equal to the number of slots on a single executor and the task is taking " +
        "longer time than the threshold. This config helps speculate stage with very few " +
        "tasks. Regular speculation configs may also apply if the executor slots are " +
        "large enough. E.g. tasks might be re-launched if there are enough successful runs " +
        "even though the threshold hasn't been reached. The number of slots is computed based " +
        "on the conf values of spark.executor.cores and spark.task.cpus minimum 1.")
      .version("3.0.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createOptional

  private[spark] val SPECULATION_EFFICIENCY_TASK_PROCESS_RATE_MULTIPLIER =
    ConfigBuilder("spark.speculation.efficiency.processRateMultiplier")
      .doc("A multiplier that used when evaluating inefficient tasks. The higher the multiplier " +
        "is, the more tasks will be possibly considered as inefficient.")
      .version("3.4.0")
      .doubleConf
      .checkValue(v => v > 0.0 && v <= 1.0, "multiplier must be in (0.0, 1.0]")
      .createWithDefault(0.75)

  private[spark] val SPECULATION_EFFICIENCY_TASK_DURATION_FACTOR =
    ConfigBuilder("spark.speculation.efficiency.longRunTaskFactor")
      .doc(s"A task will be speculated anyway as long as its duration has exceeded the value of " +
        s"multiplying the factor and the time threshold (either be ${SPECULATION_MULTIPLIER.key} " +
        s"* successfulTaskDurations.median or ${SPECULATION_MIN_THRESHOLD.key}) regardless of " +
        s"it's data process rate is good or not. This avoids missing the inefficient tasks when " +
        s"task slow isn't related to data process rate.")
      .version("3.4.0")
      .doubleConf
      .checkValue(_ >= 1.0, "Duration factor must be >= 1.0")
      .createWithDefault(2.0)

  private[spark] val SPECULATION_EFFICIENCY_ENABLE =
    ConfigBuilder("spark.speculation.efficiency.enabled")
      .doc(s"When set to true, spark will evaluate the efficiency of task processing through the " +
        s"stage task metrics or its duration, and only need to speculate the inefficient tasks. " +
        s"A task is inefficient when 1)its data process rate is less than the average data " +
        s"process rate of all successful tasks in the stage multiplied by a multiplier or 2)its " +
        s"duration has exceeded the value of multiplying " +
        s"${SPECULATION_EFFICIENCY_TASK_DURATION_FACTOR.key} and the time threshold (either be " +
        s"${SPECULATION_MULTIPLIER.key} * successfulTaskDurations.median or " +
        s"${SPECULATION_MIN_THRESHOLD.key}).")
      .version("3.4.0")
      .booleanConf
      .createWithDefault(true)

  private[spark] val DECOMMISSION_ENABLED =
    ConfigBuilder("spark.decommission.enabled")
      .doc("When decommission enabled, Spark will try its best to shutdown the executor " +
        s"gracefully. Spark will try to migrate all the RDD blocks (controlled by " +
        s"${STORAGE_DECOMMISSION_RDD_BLOCKS_ENABLED.key}) and shuffle blocks (controlled by " +
        s"${STORAGE_DECOMMISSION_SHUFFLE_BLOCKS_ENABLED.key}) from the decommissioning " +
        s"executor to a remote executor when ${STORAGE_DECOMMISSION_ENABLED.key} is enabled. " +
        s"With decommission enabled, Spark will also decommission an executor instead of " +
        s"killing when ${DYN_ALLOCATION_ENABLED.key} enabled.")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_DECOMMISSION_KILL_INTERVAL =
    ConfigBuilder("spark.executor.decommission.killInterval")
      .doc("Duration after which a decommissioned executor will be killed forcefully " +
        "*by an outside* (e.g. non-spark) service. " +
        "This config is useful for cloud environments where we know in advance when " +
        "an executor is going to go down after decommissioning signal i.e. around 2 mins " +
        "in aws spot nodes, 1/2 hrs in spot block nodes etc. This config is currently " +
        "used to decide what tasks running on decommission executors to speculate.")
      .version("3.1.0")
      .timeConf(TimeUnit.SECONDS)
      .createOptional

  private[spark] val EXECUTOR_DECOMMISSION_FORCE_KILL_TIMEOUT =
    ConfigBuilder("spark.executor.decommission.forceKillTimeout")
      .doc("Duration after which a Spark will force a decommissioning executor to exit." +
        " this should be set to a high value in most situations as low values will prevent " +
        " block migrations from having enough time to complete.")
      .version("3.2.0")
      .timeConf(TimeUnit.SECONDS)
      .createOptional

  private[spark] val EXECUTOR_DECOMMISSION_SIGNAL =
    ConfigBuilder("spark.executor.decommission.signal")
      .doc("The signal that used to trigger the executor to start decommission.")
      .version("3.2.0")
      .stringConf
      .createWithDefaultString("PWR")

  private[spark] val STAGING_DIR = ConfigBuilder("spark.yarn.stagingDir")
    .doc("Staging directory used while submitting applications.")
    .version("2.0.0")
    .stringConf
    .createOptional

  private[spark] val BUFFER_PAGESIZE = ConfigBuilder("spark.buffer.pageSize")
    .doc("The amount of memory used per page in bytes")
    .version("1.5.0")
    .bytesConf(ByteUnit.BYTE)
    .createOptional

  private[spark] val RESOURCE_PROFILE_MERGE_CONFLICTS =
    ConfigBuilder("spark.scheduler.resource.profileMergeConflicts")
      .doc("If set to true, Spark will merge ResourceProfiles when different profiles " +
        "are specified in RDDs that get combined into a single stage. When they are merged, " +
        "Spark chooses the maximum of each resource and creates a new ResourceProfile. The " +
        "default of false results in Spark throwing an exception if multiple different " +
        "ResourceProfiles are found in RDDs going into the same stage.")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val STANDALONE_SUBMIT_WAIT_APP_COMPLETION =
    ConfigBuilder("spark.standalone.submit.waitAppCompletion")
      .doc("In standalone cluster mode, controls whether the client waits to exit until the " +
        "application completes. If set to true, the client process will stay alive polling " +
        "the driver's status. Otherwise, the client process will exit after submission.")
      .version("3.1.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_ALLOW_SPARK_CONTEXT =
    ConfigBuilder("spark.executor.allowSparkContext")
      .doc("If set to true, SparkContext can be created in executors.")
      .version("3.0.1")
      .booleanConf
      .createWithDefault(false)

  private[spark] val EXECUTOR_KILL_ON_FATAL_ERROR_DEPTH =
    ConfigBuilder("spark.executor.killOnFatalError.depth")
      .doc("The max depth of the exception chain in a failed task Spark will search for a fatal " +
        "error to check whether it should kill an executor. 0 means not checking any fatal " +
        "error, 1 means checking only the exception but not the cause, and so on.")
      .internal()
      .version("3.1.0")
      .intConf
      .checkValue(_ >= 0, "needs to be a non-negative value")
      .createWithDefault(5)

  private[spark] val STAGE_IGNORE_DECOMMISSION_FETCH_FAILURE =
    ConfigBuilder("spark.stage.ignoreDecommissionFetchFailure")
      .doc("Whether ignore stage fetch failure caused by executor decommission when " +
        "count spark.stage.maxConsecutiveAttempts")
      .version("3.4.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val PUSH_BASED_SHUFFLE_ENABLED =
    ConfigBuilder("spark.shuffle.push.enabled")
      .doc("Set to true to enable push-based shuffle on the client side and this works in " +
        "conjunction with the server side flag" +
        " spark.shuffle.push.server.mergedShuffleFileManagerImpl which needs to be set with" +
        " the appropriate org.apache.spark.network.shuffle.MergedShuffleFileManager" +
        " implementation for push-based shuffle to be enabled")
      .version("3.2.0")
      .booleanConf
      .createWithDefault(false)

  private[spark] val PUSH_BASED_SHUFFLE_MERGE_RESULTS_TIMEOUT =
    ConfigBuilder("spark.shuffle.push.results.timeout")
      .internal()
      .doc("The maximum amount of time driver waits in seconds for the merge results to be" +
        " received from all remote external shuffle services for a given shuffle. Driver" +
        " submits following stages if not all results are received within the timeout. Setting" +
        " this too long could potentially lead to performance regression")
      .version("3.2.0")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(_ >= 0L, "Timeout must be >= 0.")
      .createWithDefaultString("10s")

  private[spark] val PUSH_BASED_SHUFFLE_MERGE_FINALIZE_TIMEOUT =
    ConfigBuilder("spark.shuffle.push.finalize.timeout")
      .doc("The amount of time driver waits, after all mappers have finished for a given" +
        " shuffle map stage, before it sends merge finalize requests to remote external shuffle" +
        " services. This gives the external shuffle services extra time to merge blocks. Setting" +
        " this too long could potentially lead to performance regression")
      .version("3.2.0")
      .timeConf(TimeUnit.SECONDS)
      .checkValue(_ >= 0L, "Timeout must be >= 0.")
      .createWithDefaultString("10s")

  private[spark] val SHUFFLE_MERGER_MAX_RETAINED_LOCATIONS =
    ConfigBuilder("spark.shuffle.push.maxRetainedMergerLocations")
      .doc("Maximum number of merger locations cached for push-based shuffle. Currently, merger" +
        " locations are hosts of external shuffle services responsible for handling pushed" +
        " blocks, merging them and serving merged blocks for later shuffle fetch.")
      .version("3.2.0")
      .intConf
      .createWithDefault(500)

  private[spark] val SHUFFLE_MERGER_LOCATIONS_MIN_THRESHOLD_RATIO =
    ConfigBuilder("spark.shuffle.push.mergersMinThresholdRatio")
      .doc("Ratio used to compute the minimum number of shuffle merger locations required for" +
        " a stage based on the number of partitions for the reducer stage. For example, a reduce" +
        " stage which has 100 partitions and uses the default value 0.05 requires at least 5" +
        " unique merger locations to enable push-based shuffle. Merger locations are currently" +
        " defined as external shuffle services.")
      .version("3.2.0")
      .doubleConf
      .createWithDefault(0.05)

  private[spark] val SHUFFLE_MERGER_LOCATIONS_MIN_STATIC_THRESHOLD =
    ConfigBuilder("spark.shuffle.push.mergersMinStaticThreshold")
      .doc(s"The static threshold for number of shuffle push merger locations should be " +
        "available in order to enable push-based shuffle for a stage. Note this config " +
        s"works in conjunction with ${SHUFFLE_MERGER_LOCATIONS_MIN_THRESHOLD_RATIO.key}. " +
        "Maximum of spark.shuffle.push.mergersMinStaticThreshold and " +
        s"${SHUFFLE_MERGER_LOCATIONS_MIN_THRESHOLD_RATIO.key} ratio number of mergers needed to " +
        "enable push-based shuffle for a stage. For eg: with 1000 partitions for the child " +
        "stage with spark.shuffle.push.mergersMinStaticThreshold as 5 and " +
        s"${SHUFFLE_MERGER_LOCATIONS_MIN_THRESHOLD_RATIO.key} set to 0.05, we would need " +
        "at least 50 mergers to enable push-based shuffle for that stage.")
      .version("3.2.0")
      .intConf
      .createWithDefault(5)

  private[spark] val SHUFFLE_NUM_PUSH_THREADS =
    ConfigBuilder("spark.shuffle.push.numPushThreads")
      .doc("Specify the number of threads in the block pusher pool. These threads assist " +
        "in creating connections and pushing blocks to remote external shuffle services. By" +
        " default, the threadpool size is equal to the number of spark executor cores.")
      .version("3.2.0")
      .intConf
      .createOptional

  private[spark] val SHUFFLE_MAX_BLOCK_SIZE_TO_PUSH =
    ConfigBuilder("spark.shuffle.push.maxBlockSizeToPush")
      .doc("The max size of an individual block to push to the remote external shuffle services." +
        " Blocks larger than this threshold are not pushed to be merged remotely. These shuffle" +
        " blocks will be fetched by the executors in the original manner.")
      .version("3.2.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("1m")

  private[spark] val SHUFFLE_MAX_BLOCK_BATCH_SIZE_FOR_PUSH =
    ConfigBuilder("spark.shuffle.push.maxBlockBatchSize")
      .doc("The max size of a batch of shuffle blocks to be grouped into a single push request.")
      .version("3.2.0")
      .bytesConf(ByteUnit.BYTE)
      // Default is 3m because it is greater than 2m which is the default value for
      // TransportConf#memoryMapBytes. If this defaults to 2m as well it is very likely that each
      // batch of block will be loaded in memory with memory mapping, which has higher overhead
      // with small MB sized chunk of data.
      .createWithDefaultString("3m")

  private[spark] val PUSH_BASED_SHUFFLE_MERGE_FINALIZE_THREADS =
    ConfigBuilder("spark.shuffle.push.merge.finalizeThreads")
      .doc("Number of threads used by driver to finalize shuffle merge. Since it could" +
        " potentially take seconds for a large shuffle to finalize, having multiple threads helps" +
        " driver to handle concurrent shuffle merge finalize requests when push-based" +
        " shuffle is enabled.")
      .version("3.3.0")
      .intConf
      .createWithDefault(8)

  private[spark] val PUSH_SHUFFLE_FINALIZE_RPC_THREADS =
    ConfigBuilder("spark.shuffle.push.sendFinalizeRPCThreads")
      .internal()
      .doc("Number of threads used by the driver to send finalize shuffle RPC to mergers" +
        " location and then get MergeStatus. The thread will run for up to " +
        " PUSH_BASED_SHUFFLE_MERGE_RESULTS_TIMEOUT. The merger ESS may open too many files" +
        " if the finalize rpc is not received.")
      .version("3.4.0")
      .intConf
      .createWithDefault(8)

  private[spark] val PUSH_BASED_SHUFFLE_SIZE_MIN_SHUFFLE_SIZE_TO_WAIT =
    ConfigBuilder("spark.shuffle.push.minShuffleSizeToWait")
      .doc("Driver will wait for merge finalization to complete only if total shuffle size is" +
        " more than this threshold. If total shuffle size is less, driver will immediately" +
        " finalize the shuffle output")
      .version("3.3.0")
      .bytesConf(ByteUnit.BYTE)
      .createWithDefaultString("500m")

  private[spark] val PUSH_BASED_SHUFFLE_MIN_PUSH_RATIO =
    ConfigBuilder("spark.shuffle.push.minCompletedPushRatio")
      .doc("Fraction of map partitions that should be push complete before driver starts" +
        " shuffle merge finalization during push based shuffle")
      .version("3.3.0")
      .doubleConf
      .createWithDefault(1.0)

  private[spark] val JAR_IVY_REPO_PATH =
    ConfigBuilder("spark.jars.ivy")
      .doc("Path to specify the Ivy user directory, used for the local Ivy cache and " +
        "package files from spark.jars.packages. " +
        "This will override the Ivy property ivy.default.ivy.user.dir " +
        "which defaults to ~/.ivy2.")
      .version("1.3.0")
      .stringConf
      .createOptional

  private[spark] val JAR_IVY_SETTING_PATH =
    ConfigBuilder("spark.jars.ivySettings")
      .doc("Path to an Ivy settings file to customize resolution of jars specified " +
        "using spark.jars.packages instead of the built-in defaults, such as maven central. " +
        "Additional repositories given by the command-line option --repositories " +
        "or spark.jars.repositories will also be included. " +
        "Useful for allowing Spark to resolve artifacts from behind a firewall " +
        "e.g. via an in-house artifact server like Artifactory. " +
        "Details on the settings file format can be found at Settings Files")
      .version("2.2.0")
      .stringConf
      .createOptional

  private[spark] val JAR_PACKAGES =
    ConfigBuilder("spark.jars.packages")
      .doc("Comma-separated list of Maven coordinates of jars to include " +
        "on the driver and executor classpaths. The coordinates should be " +
        "groupId:artifactId:version. If spark.jars.ivySettings is given artifacts " +
        "will be resolved according to the configuration in the file, otherwise artifacts " +
        "will be searched for in the local maven repo, then maven central and finally " +
        "any additional remote repositories given by the command-line option --repositories. " +
        "For more details, see Advanced Dependency Management.")
      .version("1.5.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val JAR_PACKAGES_EXCLUSIONS =
    ConfigBuilder("spark.jars.excludes")
      .doc("Comma-separated list of groupId:artifactId, " +
        "to exclude while resolving the dependencies provided in spark.jars.packages " +
        "to avoid dependency conflicts.")
      .version("1.5.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val JAR_REPOSITORIES =
    ConfigBuilder("spark.jars.repositories")
      .doc("Comma-separated list of additional remote repositories to search " +
        "for the maven coordinates given with --packages or spark.jars.packages.")
      .version("2.3.0")
      .stringConf
      .toSequence
      .createWithDefault(Nil)

  private[spark] val APP_ATTEMPT_ID =
    ConfigBuilder("spark.app.attempt.id")
      .internal()
      .doc("The application attempt Id assigned from Hadoop YARN. " +
        "When the application runs in cluster mode on YARN, there can be " +
        "multiple attempts before failing the application")
      .version("3.2.0")
      .stringConf
      .createOptional

  private[spark] val EXECUTOR_STATE_SYNC_MAX_ATTEMPTS =
    ConfigBuilder("spark.worker.executorStateSync.maxAttempts")
      .internal()
      .doc("The max attempts the worker will try to sync the ExecutorState to the Master, if " +
        "the failed attempts reach the max attempts limit, the worker will give up and exit.")
      .version("3.3.0")
      .intConf
      .createWithDefault(5)

  private[spark] val EXECUTOR_REMOVE_DELAY =
    ConfigBuilder("spark.standalone.executorRemoveDelayOnDisconnection")
      .internal()
      .doc("The timeout duration for a disconnected executor to wait for the specific disconnect" +
        "reason before it gets removed. This is only used for Standalone yet.")
      .version("3.4.0")
      .timeConf(TimeUnit.MILLISECONDS)
      .createWithDefaultString("5s")
}

相关信息

spark 源码目录

相关文章

spark ConfigBuilder 源码

spark ConfigEntry 源码

spark ConfigProvider 源码

spark ConfigReader 源码

spark Deploy 源码

spark History 源码

spark Kryo 源码

spark Network 源码

spark Python 源码

spark R 源码

0  赞