superset query_context_processor 源码
superset query_context_processor 代码
文件路径:/superset/common/query_context_processor.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import copy
import logging
import re
from typing import Any, ClassVar, Dict, List, Optional, TYPE_CHECKING, Union
import numpy as np
import pandas as pd
from flask_babel import _
from pandas import DateOffset
from typing_extensions import TypedDict
from superset import app
from superset.annotation_layers.dao import AnnotationLayerDAO
from superset.charts.dao import ChartDAO
from superset.common.chart_data import ChartDataResultFormat
from superset.common.db_query_status import QueryStatus
from superset.common.query_actions import get_query_results
from superset.common.utils import dataframe_utils
from superset.common.utils.query_cache_manager import QueryCacheManager
from superset.connectors.base.models import BaseDatasource
from superset.constants import CacheRegion
from superset.exceptions import (
InvalidPostProcessingError,
QueryObjectValidationError,
SupersetException,
)
from superset.extensions import cache_manager, security_manager
from superset.models.helpers import QueryResult
from superset.models.sql_lab import Query
from superset.utils import csv
from superset.utils.cache import generate_cache_key, set_and_log_cache
from superset.utils.core import (
DatasourceType,
DateColumn,
DTTM_ALIAS,
error_msg_from_exception,
get_base_axis_labels,
get_column_names_from_columns,
get_column_names_from_metrics,
get_metric_names,
normalize_dttm_col,
TIME_COMPARISON,
)
from superset.utils.date_parser import get_past_or_future, normalize_time_delta
from superset.utils.pandas_postprocessing.utils import unescape_separator
from superset.views.utils import get_viz
if TYPE_CHECKING:
from superset.common.query_context import QueryContext
from superset.common.query_object import QueryObject
from superset.stats_logger import BaseStatsLogger
config = app.config
stats_logger: BaseStatsLogger = config["STATS_LOGGER"]
logger = logging.getLogger(__name__)
class CachedTimeOffset(TypedDict):
df: pd.DataFrame
queries: List[str]
cache_keys: List[Optional[str]]
class QueryContextProcessor:
"""
The query context contains the query object and additional fields necessary
to retrieve the data payload for a given viz.
"""
_query_context: QueryContext
_qc_datasource: BaseDatasource
"""
The query context contains the query object and additional fields necessary
to retrieve the data payload for a given viz.
"""
def __init__(self, query_context: QueryContext):
self._query_context = query_context
self._qc_datasource = query_context.datasource
cache_type: ClassVar[str] = "df"
enforce_numerical_metrics: ClassVar[bool] = True
def get_df_payload(
self, query_obj: QueryObject, force_cached: Optional[bool] = False
) -> Dict[str, Any]:
"""Handles caching around the df payload retrieval"""
cache_key = self.query_cache_key(query_obj)
cache = QueryCacheManager.get(
cache_key,
CacheRegion.DATA,
self._query_context.force,
force_cached,
)
if query_obj and cache_key and not cache.is_loaded:
try:
invalid_columns = [
col
for col in get_column_names_from_columns(query_obj.columns)
+ get_column_names_from_metrics(query_obj.metrics or [])
if (
col not in self._qc_datasource.column_names
and col != DTTM_ALIAS
)
]
if invalid_columns:
raise QueryObjectValidationError(
_(
"Columns missing in datasource: %(invalid_columns)s",
invalid_columns=invalid_columns,
)
)
query_result = self.get_query_result(query_obj)
annotation_data = self.get_annotation_data(query_obj)
cache.set_query_result(
key=cache_key,
query_result=query_result,
annotation_data=annotation_data,
force_query=self._query_context.force,
timeout=self.get_cache_timeout(),
datasource_uid=self._qc_datasource.uid,
region=CacheRegion.DATA,
)
except QueryObjectValidationError as ex:
cache.error_message = str(ex)
cache.status = QueryStatus.FAILED
# the N-dimensional DataFrame has converteds into flat DataFrame
# by `flatten operator`, "comma" in the column is escaped by `escape_separator`
# the result DataFrame columns should be unescaped
label_map = {
unescape_separator(col): [
unescape_separator(col) for col in re.split(r"(?<!\\),\s", col)
]
for col in cache.df.columns.values
}
cache.df.columns = [unescape_separator(col) for col in cache.df.columns.values]
return {
"cache_key": cache_key,
"cached_dttm": cache.cache_dttm,
"cache_timeout": self.get_cache_timeout(),
"df": cache.df,
"applied_template_filters": cache.applied_template_filters,
"annotation_data": cache.annotation_data,
"error": cache.error_message,
"is_cached": cache.is_cached,
"query": cache.query,
"status": cache.status,
"stacktrace": cache.stacktrace,
"rowcount": len(cache.df.index),
"from_dttm": query_obj.from_dttm,
"to_dttm": query_obj.to_dttm,
"label_map": label_map,
}
def query_cache_key(self, query_obj: QueryObject, **kwargs: Any) -> Optional[str]:
"""
Returns a QueryObject cache key for objects in self.queries
"""
datasource = self._qc_datasource
extra_cache_keys = datasource.get_extra_cache_keys(query_obj.to_dict())
cache_key = (
query_obj.cache_key(
datasource=datasource.uid,
extra_cache_keys=extra_cache_keys,
rls=security_manager.get_rls_cache_key(datasource),
changed_on=datasource.changed_on,
**kwargs,
)
if query_obj
else None
)
return cache_key
def get_query_result(self, query_object: QueryObject) -> QueryResult:
"""Returns a pandas dataframe based on the query object"""
query_context = self._query_context
# Here, we assume that all the queries will use the same datasource, which is
# a valid assumption for current setting. In the long term, we may
# support multiple queries from different data sources.
query = ""
if isinstance(query_context.datasource, Query):
# todo(hugh): add logic to manage all sip68 models here
result = query_context.datasource.exc_query(query_object.to_dict())
else:
result = query_context.datasource.query(query_object.to_dict())
query = result.query + ";\n\n"
df = result.df
# Transform the timestamp we received from database to pandas supported
# datetime format. If no python_date_format is specified, the pattern will
# be considered as the default ISO date format
# If the datetime format is unix, the parse will use the corresponding
# parsing logic
if not df.empty:
df = self.normalize_df(df, query_object)
if query_object.time_offsets:
time_offsets = self.processing_time_offsets(df, query_object)
df = time_offsets["df"]
queries = time_offsets["queries"]
query += ";\n\n".join(queries)
query += ";\n\n"
# Re-raising QueryObjectValidationError
try:
df = query_object.exec_post_processing(df)
except InvalidPostProcessingError as ex:
raise QueryObjectValidationError from ex
result.df = df
result.query = query
result.from_dttm = query_object.from_dttm
result.to_dttm = query_object.to_dttm
return result
def normalize_df(self, df: pd.DataFrame, query_object: QueryObject) -> pd.DataFrame:
# todo: should support "python_date_format" and "get_column" in each datasource
def _get_timestamp_format(
source: BaseDatasource, column: Optional[str]
) -> Optional[str]:
column_obj = source.get_column(column)
if (
column_obj
# only sqla column was supported
and hasattr(column_obj, "python_date_format")
and (formatter := column_obj.python_date_format)
):
return str(formatter)
return None
datasource = self._qc_datasource
labels = tuple(
label
for label in [
*get_base_axis_labels(query_object.columns),
query_object.granularity,
]
if datasource
# Query datasource didn't support `get_column`
and hasattr(datasource, "get_column")
and (col := datasource.get_column(label))
# todo(hugh) standardize column object in Query datasource
and (col.get("is_dttm") if isinstance(col, dict) else col.is_dttm)
)
dttm_cols = [
DateColumn(
timestamp_format=_get_timestamp_format(datasource, label),
offset=datasource.offset,
time_shift=query_object.time_shift,
col_label=label,
)
for label in labels
if label
]
if DTTM_ALIAS in df:
dttm_cols.append(
DateColumn.get_legacy_time_column(
timestamp_format=_get_timestamp_format(
datasource, query_object.granularity
),
offset=datasource.offset,
time_shift=query_object.time_shift,
)
)
normalize_dttm_col(
df=df,
dttm_cols=tuple(dttm_cols),
)
if self.enforce_numerical_metrics:
dataframe_utils.df_metrics_to_num(df, query_object)
df.replace([np.inf, -np.inf], np.nan, inplace=True)
return df
def processing_time_offsets( # pylint: disable=too-many-locals,too-many-statements
self,
df: pd.DataFrame,
query_object: QueryObject,
) -> CachedTimeOffset:
query_context = self._query_context
# ensure query_object is immutable
query_object_clone = copy.copy(query_object)
queries: List[str] = []
cache_keys: List[Optional[str]] = []
rv_dfs: List[pd.DataFrame] = [df]
time_offsets = query_object.time_offsets
outer_from_dttm = query_object.from_dttm
outer_to_dttm = query_object.to_dttm
for offset in time_offsets:
try:
query_object_clone.from_dttm = get_past_or_future(
offset,
outer_from_dttm,
)
query_object_clone.to_dttm = get_past_or_future(offset, outer_to_dttm)
except ValueError as ex:
raise QueryObjectValidationError(str(ex)) from ex
# make sure subquery use main query where clause
query_object_clone.inner_from_dttm = outer_from_dttm
query_object_clone.inner_to_dttm = outer_to_dttm
query_object_clone.time_offsets = []
query_object_clone.post_processing = []
if not query_object.from_dttm or not query_object.to_dttm:
raise QueryObjectValidationError(
_(
"An enclosed time range (both start and end) must be specified "
"when using a Time Comparison."
)
)
# `offset` is added to the hash function
cache_key = self.query_cache_key(query_object_clone, time_offset=offset)
cache = QueryCacheManager.get(
cache_key, CacheRegion.DATA, query_context.force
)
# whether hit on the cache
if cache.is_loaded:
rv_dfs.append(cache.df)
queries.append(cache.query)
cache_keys.append(cache_key)
continue
query_object_clone_dct = query_object_clone.to_dict()
# rename metrics: SUM(value) => SUM(value) 1 year ago
metrics_mapping = {
metric: TIME_COMPARISON.join([metric, offset])
for metric in get_metric_names(
query_object_clone_dct.get("metrics", [])
)
}
join_keys = [col for col in df.columns if col not in metrics_mapping.keys()]
if isinstance(self._qc_datasource, Query):
result = self._qc_datasource.exc_query(query_object_clone_dct)
else:
result = self._qc_datasource.query(query_object_clone_dct)
queries.append(result.query)
cache_keys.append(None)
offset_metrics_df = result.df
if offset_metrics_df.empty:
offset_metrics_df = pd.DataFrame(
{
col: [np.NaN]
for col in join_keys + list(metrics_mapping.values())
}
)
else:
# 1. normalize df, set dttm column
offset_metrics_df = self.normalize_df(
offset_metrics_df, query_object_clone
)
# 2. rename extra query columns
offset_metrics_df = offset_metrics_df.rename(columns=metrics_mapping)
# 3. set time offset for index
index = (get_base_axis_labels(query_object.columns) or [DTTM_ALIAS])[0]
if not dataframe_utils.is_datetime_series(offset_metrics_df.get(index)):
raise QueryObjectValidationError(
_(
"A time column must be specified "
"when using a Time Comparison."
)
)
offset_metrics_df[index] = offset_metrics_df[index] - DateOffset(
**normalize_time_delta(offset)
)
# df left join `offset_metrics_df`
offset_df = dataframe_utils.left_join_df(
left_df=df,
right_df=offset_metrics_df,
join_keys=join_keys,
)
offset_slice = offset_df[metrics_mapping.values()]
# set offset_slice to cache and stack.
value = {
"df": offset_slice,
"query": result.query,
}
cache.set(
key=cache_key,
value=value,
timeout=self.get_cache_timeout(),
datasource_uid=query_context.datasource.uid,
region=CacheRegion.DATA,
)
rv_dfs.append(offset_slice)
rv_df = pd.concat(rv_dfs, axis=1, copy=False) if time_offsets else df
return CachedTimeOffset(df=rv_df, queries=queries, cache_keys=cache_keys)
def get_data(self, df: pd.DataFrame) -> Union[str, List[Dict[str, Any]]]:
if self._query_context.result_format == ChartDataResultFormat.CSV:
include_index = not isinstance(df.index, pd.RangeIndex)
columns = list(df.columns)
verbose_map = self._qc_datasource.data.get("verbose_map", {})
if verbose_map:
df.columns = [verbose_map.get(column, column) for column in columns]
result = csv.df_to_escaped_csv(
df, index=include_index, **config["CSV_EXPORT"]
)
return result or ""
return df.to_dict(orient="records")
def get_payload(
self,
cache_query_context: Optional[bool] = False,
force_cached: bool = False,
) -> Dict[str, Any]:
"""Returns the query results with both metadata and data"""
# Get all the payloads from the QueryObjects
query_results = [
get_query_results(
query_obj.result_type or self._query_context.result_type,
self._query_context,
query_obj,
force_cached,
)
for query_obj in self._query_context.queries
]
return_value = {"queries": query_results}
if cache_query_context:
cache_key = self.cache_key()
set_and_log_cache(
cache_manager.cache,
cache_key,
{"data": self._query_context.cache_values},
self.get_cache_timeout(),
)
return_value["cache_key"] = cache_key # type: ignore
return return_value
def get_cache_timeout(self) -> int:
cache_timeout_rv = self._query_context.get_cache_timeout()
if cache_timeout_rv:
return cache_timeout_rv
if (
data_cache_timeout := config["DATA_CACHE_CONFIG"].get(
"CACHE_DEFAULT_TIMEOUT"
)
) is not None:
return data_cache_timeout
return config["CACHE_DEFAULT_TIMEOUT"]
def cache_key(self, **extra: Any) -> str:
"""
The QueryContext cache key is made out of the key/values from
self.cached_values, plus any other key/values in `extra`. It includes only data
required to rehydrate a QueryContext object.
"""
key_prefix = "qc-"
cache_dict = self._query_context.cache_values.copy()
cache_dict.update(extra)
return generate_cache_key(cache_dict, key_prefix)
def get_annotation_data(self, query_obj: QueryObject) -> Dict[str, Any]:
"""
:param query_context:
:param query_obj:
:return:
"""
annotation_data: Dict[str, Any] = self.get_native_annotation_data(query_obj)
for annotation_layer in [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] in ("line", "table")
]:
name = annotation_layer["name"]
annotation_data[name] = self.get_viz_annotation_data(
annotation_layer, self._query_context.force
)
return annotation_data
@staticmethod
def get_native_annotation_data(query_obj: QueryObject) -> Dict[str, Any]:
annotation_data = {}
annotation_layers = [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] == "NATIVE"
]
layer_ids = [layer["value"] for layer in annotation_layers]
layer_objects = {
layer_object.id: layer_object
for layer_object in AnnotationLayerDAO.find_by_ids(layer_ids)
}
# annotations
for layer in annotation_layers:
layer_id = layer["value"]
layer_name = layer["name"]
columns = [
"start_dttm",
"end_dttm",
"short_descr",
"long_descr",
"json_metadata",
]
layer_object = layer_objects[layer_id]
records = [
{column: getattr(annotation, column) for column in columns}
for annotation in layer_object.annotation
]
result = {"columns": columns, "records": records}
annotation_data[layer_name] = result
return annotation_data
@staticmethod
def get_viz_annotation_data(
annotation_layer: Dict[str, Any], force: bool
) -> Dict[str, Any]:
chart = ChartDAO.find_by_id(annotation_layer["value"])
if not chart:
raise QueryObjectValidationError(_("The chart does not exist"))
if not chart.datasource:
raise QueryObjectValidationError(_("The chart datasource does not exist"))
form_data = chart.form_data.copy()
try:
viz_obj = get_viz(
datasource_type=chart.datasource.type,
datasource_id=chart.datasource.id,
form_data=form_data,
force=force,
)
payload = viz_obj.get_payload()
return payload["data"]
except SupersetException as ex:
raise QueryObjectValidationError(error_msg_from_exception(ex)) from ex
def raise_for_access(self) -> None:
"""
Raise an exception if the user cannot access the resource.
:raises SupersetSecurityException: If the user cannot access the resource
"""
for query in self._query_context.queries:
query.validate()
if self._qc_datasource.type == DatasourceType.QUERY:
security_manager.raise_for_access(query=self._qc_datasource)
else:
security_manager.raise_for_access(query_context=self._query_context)
相关信息
相关文章
superset not_authrized_object 源码
superset query_context_factory 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦