echarts DataStore 源码
echarts DataStore 代码
文件路径:/src/data/DataStore.ts
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
import { assert, clone, createHashMap, isFunction, keys, map, reduce } from 'zrender/src/core/util';
import {
DimensionIndex,
DimensionName,
OptionDataItem,
ParsedValue,
ParsedValueNumeric
} from '../util/types';
import { DataProvider } from './helper/dataProvider';
import { parseDataValue } from './helper/dataValueHelper';
import OrdinalMeta from './OrdinalMeta';
import { shouldRetrieveDataByName, Source } from './Source';
const UNDEFINED = 'undefined';
/* global Float64Array, Int32Array, Uint32Array, Uint16Array */
// Caution: MUST not use `new CtorUint32Array(arr, 0, len)`, because the Ctor of array is
// different from the Ctor of typed array.
export const CtorUint32Array = typeof Uint32Array === UNDEFINED ? Array : Uint32Array;
export const CtorUint16Array = typeof Uint16Array === UNDEFINED ? Array : Uint16Array;
export const CtorInt32Array = typeof Int32Array === UNDEFINED ? Array : Int32Array;
export const CtorFloat64Array = typeof Float64Array === UNDEFINED ? Array : Float64Array;
/**
* Multi dimensional data store
*/
const dataCtors = {
'float': CtorFloat64Array,
'int': CtorInt32Array,
// Ordinal data type can be string or int
'ordinal': Array,
'number': Array,
'time': CtorFloat64Array
} as const;
export type DataStoreDimensionType = keyof typeof dataCtors;
type DataTypedArray = Uint32Array | Int32Array | Uint16Array | Float64Array;
type DataTypedArrayConstructor = typeof Uint32Array | typeof Int32Array | typeof Uint16Array | typeof Float64Array;
type DataArrayLikeConstructor = typeof Array | DataTypedArrayConstructor;
type DataValueChunk = ArrayLike<ParsedValue>;
// If Ctx not specified, use List as Ctx
type EachCb0 = (idx: number) => void;
type EachCb1 = (x: ParsedValue, idx: number) => void;
type EachCb2 = (x: ParsedValue, y: ParsedValue, idx: number) => void;
type EachCb = (...args: any) => void;
type FilterCb0 = (idx: number) => boolean;
type FilterCb1 = (x: ParsedValue, idx: number) => boolean;
type FilterCb = (...args: any) => boolean;
// type MapArrayCb = (...args: any) => any;
type MapCb = (...args: any) => ParsedValue | ParsedValue[];
export type DimValueGetter = (
this: DataStore,
dataItem: any,
property: string,
dataIndex: number,
dimIndex: DimensionIndex
) => ParsedValue;
export interface DataStoreDimensionDefine {
/**
* Default to be float.
*/
type?: DataStoreDimensionType;
/**
* Only used in SOURCE_FORMAT_OBJECT_ROWS and SOURCE_FORMAT_KEYED_COLUMNS to retrieve value
* by "object property".
* For example, in `[{bb: 124, aa: 543}, ...]`, "aa" and "bb" is "object property".
*
* Deliberately name it as "property" rather than "name" to prevent it from been used in
* SOURCE_FORMAT_ARRAY_ROWS, because if it comes from series, it probably
* can not be shared by different series.
*/
property?: string;
/**
* When using category axis.
* Category strings will be collected and stored in ordinalMeta.categories.
* And store will store the index of categories.
*/
ordinalMeta?: OrdinalMeta,
/**
* Offset for ordinal parsing and collect
*/
ordinalOffset?: number
}
let defaultDimValueGetters: {[sourceFormat: string]: DimValueGetter};
function getIndicesCtor(rawCount: number): DataArrayLikeConstructor {
// The possible max value in this._indicies is always this._rawCount despite of filtering.
return rawCount > 65535 ? CtorUint32Array : CtorUint16Array;
};
function getInitialExtent(): [number, number] {
return [Infinity, -Infinity];
};
function cloneChunk(originalChunk: DataValueChunk): DataValueChunk {
const Ctor = originalChunk.constructor;
// Only shallow clone is enough when Array.
return Ctor === Array
? (originalChunk as Array<ParsedValue>).slice()
: new (Ctor as DataTypedArrayConstructor)(originalChunk as DataTypedArray);
}
function prepareStore(
store: DataValueChunk[],
dimIdx: number,
dimType: DataStoreDimensionType,
end: number,
append?: boolean
): void {
const DataCtor = dataCtors[dimType || 'float'];
if (append) {
const oldStore = store[dimIdx];
const oldLen = oldStore && oldStore.length;
if (!(oldLen === end)) {
const newStore = new DataCtor(end);
// The cost of the copy is probably inconsiderable
// within the initial chunkSize.
for (let j = 0; j < oldLen; j++) {
newStore[j] = oldStore[j];
}
store[dimIdx] = newStore;
}
}
else {
store[dimIdx] = new DataCtor(end);
}
};
/**
* Basically, DataStore API keep immutable.
*/
class DataStore {
private _chunks: DataValueChunk[] = [];
private _provider: DataProvider;
// It will not be calculated util needed.
private _rawExtent: [number, number][] = [];
private _extent: [number, number][] = [];
// Indices stores the indices of data subset after filtered.
// This data subset will be used in chart.
private _indices: ArrayLike<any>;
private _count: number = 0;
private _rawCount: number = 0;
private _dimensions: DataStoreDimensionDefine[];
private _dimValueGetter: DimValueGetter;
private _calcDimNameToIdx = createHashMap<DimensionIndex, DimensionName>();
defaultDimValueGetter: DimValueGetter;
/**
* Initialize from data
*/
initData(
provider: DataProvider,
inputDimensions: DataStoreDimensionDefine[],
dimValueGetter?: DimValueGetter
): void {
if (__DEV__) {
assert(
isFunction(provider.getItem) && isFunction(provider.count),
'Invalid data provider.'
);
}
this._provider = provider;
// Clear
this._chunks = [];
this._indices = null;
this.getRawIndex = this._getRawIdxIdentity;
const source = provider.getSource();
const defaultGetter = this.defaultDimValueGetter =
defaultDimValueGetters[source.sourceFormat];
// Default dim value getter
this._dimValueGetter = dimValueGetter || defaultGetter;
// Reset raw extent.
this._rawExtent = [];
const willRetrieveDataByName = shouldRetrieveDataByName(source);
this._dimensions = map(inputDimensions, dim => {
if (__DEV__) {
if (willRetrieveDataByName) {
assert(dim.property != null);
}
}
return {
// Only pick these two props. Not leak other properties like orderMeta.
type: dim.type,
property: dim.property
};
});
this._initDataFromProvider(0, provider.count());
}
getProvider(): DataProvider {
return this._provider;
}
/**
* Caution: even when a `source` instance owned by a series, the created data store
* may still be shared by different sereis (the source hash does not use all `source`
* props, see `sourceManager`). In this case, the `source` props that are not used in
* hash (like `source.dimensionDefine`) probably only belongs to a certain series and
* thus should not be fetch here.
*/
getSource(): Source {
return this._provider.getSource();
}
/**
* @caution Only used in dataStack.
*/
ensureCalculationDimension(dimName: DimensionName, type: DataStoreDimensionType): DimensionIndex {
const calcDimNameToIdx = this._calcDimNameToIdx;
const dimensions = this._dimensions;
let calcDimIdx = calcDimNameToIdx.get(dimName);
if (calcDimIdx != null) {
if (dimensions[calcDimIdx].type === type) {
return calcDimIdx;
}
}
else {
calcDimIdx = dimensions.length;
}
dimensions[calcDimIdx] = { type: type };
calcDimNameToIdx.set(dimName, calcDimIdx);
this._chunks[calcDimIdx] = new dataCtors[type || 'float'](this._rawCount);
this._rawExtent[calcDimIdx] = getInitialExtent();
return calcDimIdx;
}
collectOrdinalMeta(
dimIdx: number,
ordinalMeta: OrdinalMeta
): void {
const chunk = this._chunks[dimIdx];
const dim = this._dimensions[dimIdx];
const rawExtents = this._rawExtent;
const offset = dim.ordinalOffset || 0;
const len = chunk.length;
if (offset === 0) {
// We need to reset the rawExtent if collect is from start.
// Because this dimension may be guessed as number and calcuating a wrong extent.
rawExtents[dimIdx] = getInitialExtent();
}
const dimRawExtent = rawExtents[dimIdx];
// Parse from previous data offset. len may be changed after appendData
for (let i = offset; i < len; i++) {
const val = (chunk as any)[i] = ordinalMeta.parseAndCollect(chunk[i]);
if (!isNaN(val)) {
dimRawExtent[0] = Math.min(val, dimRawExtent[0]);
dimRawExtent[1] = Math.max(val, dimRawExtent[1]);
}
}
dim.ordinalMeta = ordinalMeta;
dim.ordinalOffset = len;
dim.type = 'ordinal'; // Force to be ordinal
}
getOrdinalMeta(dimIdx: number): OrdinalMeta {
const dimInfo = this._dimensions[dimIdx];
const ordinalMeta = dimInfo.ordinalMeta;
return ordinalMeta;
}
getDimensionProperty(dimIndex: DimensionIndex): DataStoreDimensionDefine['property'] {
const item = this._dimensions[dimIndex];
return item && item.property;
}
/**
* Caution: Can be only called on raw data (before `this._indices` created).
*/
appendData(data: ArrayLike<any>): number[] {
if (__DEV__) {
assert(!this._indices, 'appendData can only be called on raw data.');
}
const provider = this._provider;
const start = this.count();
provider.appendData(data);
let end = provider.count();
if (!provider.persistent) {
end += start;
}
if (start < end) {
this._initDataFromProvider(start, end, true);
}
return [start, end];
}
appendValues(values: any[][], minFillLen?: number): { start: number; end: number } {
const chunks = this._chunks;
const dimensions = this._dimensions;
const dimLen = dimensions.length;
const rawExtent = this._rawExtent;
const start = this.count();
const end = start + Math.max(values.length, minFillLen || 0);
for (let i = 0; i < dimLen; i++) {
const dim = dimensions[i];
prepareStore(chunks, i, dim.type, end, true);
}
const emptyDataItem: number[] = [];
for (let idx = start; idx < end; idx++) {
const sourceIdx = idx - start;
// Store the data by dimensions
for (let dimIdx = 0; dimIdx < dimLen; dimIdx++) {
const dim = dimensions[dimIdx];
const val = defaultDimValueGetters.arrayRows.call(
this, values[sourceIdx] || emptyDataItem, dim.property, sourceIdx, dimIdx
) as ParsedValueNumeric;
(chunks[dimIdx] as any)[idx] = val;
const dimRawExtent = rawExtent[dimIdx];
val < dimRawExtent[0] && (dimRawExtent[0] = val);
val > dimRawExtent[1] && (dimRawExtent[1] = val);
}
}
this._rawCount = this._count = end;
return {start, end};
}
private _initDataFromProvider(
start: number,
end: number,
append?: boolean
): void {
const provider = this._provider;
const chunks = this._chunks;
const dimensions = this._dimensions;
const dimLen = dimensions.length;
const rawExtent = this._rawExtent;
const dimNames = map(dimensions, dim => dim.property);
for (let i = 0; i < dimLen; i++) {
const dim = dimensions[i];
if (!rawExtent[i]) {
rawExtent[i] = getInitialExtent();
}
prepareStore(chunks, i, dim.type, end, append);
}
if (provider.fillStorage) {
provider.fillStorage(start, end, chunks, rawExtent);
}
else {
let dataItem = [] as OptionDataItem;
for (let idx = start; idx < end; idx++) {
// NOTICE: Try not to write things into dataItem
dataItem = provider.getItem(idx, dataItem);
// Each data item is value
// [1, 2]
// 2
// Bar chart, line chart which uses category axis
// only gives the 'y' value. 'x' value is the indices of category
// Use a tempValue to normalize the value to be a (x, y) value
// Store the data by dimensions
for (let dimIdx = 0; dimIdx < dimLen; dimIdx++) {
const dimStorage = chunks[dimIdx];
// PENDING NULL is empty or zero
const val = this._dimValueGetter(
dataItem, dimNames[dimIdx], idx, dimIdx
) as ParsedValueNumeric;
(dimStorage as ParsedValue[])[idx] = val;
const dimRawExtent = rawExtent[dimIdx];
val < dimRawExtent[0] && (dimRawExtent[0] = val);
val > dimRawExtent[1] && (dimRawExtent[1] = val);
}
}
}
if (!provider.persistent && provider.clean) {
// Clean unused data if data source is typed array.
provider.clean();
}
this._rawCount = this._count = end;
// Reset data extent
this._extent = [];
}
count(): number {
return this._count;
}
/**
* Get value. Return NaN if idx is out of range.
*/
get(dim: DimensionIndex, idx: number): ParsedValue {
if (!(idx >= 0 && idx < this._count)) {
return NaN;
}
const dimStore = this._chunks[dim];
return dimStore ? dimStore[this.getRawIndex(idx)] : NaN;
}
getValues(idx: number): ParsedValue[];
getValues(dimensions: readonly DimensionIndex[], idx?: number): ParsedValue[];
getValues(dimensions: readonly DimensionIndex[] | number, idx?: number): ParsedValue[] {
const values = [];
let dimArr: DimensionIndex[] = [];
if (idx == null) {
idx = dimensions as number;
// TODO get all from store?
dimensions = [];
// All dimensions
for (let i = 0; i < this._dimensions.length; i++) {
dimArr.push(i);
}
}
else {
dimArr = dimensions as DimensionIndex[];
}
for (let i = 0, len = dimArr.length; i < len; i++) {
values.push(this.get(dimArr[i], idx));
}
return values;
}
/**
* @param dim concrete dim
*/
getByRawIndex(dim: DimensionIndex, rawIdx: number): ParsedValue {
if (!(rawIdx >= 0 && rawIdx < this._rawCount)) {
return NaN;
}
const dimStore = this._chunks[dim];
return dimStore ? dimStore[rawIdx] : NaN;
}
/**
* Get sum of data in one dimension
*/
getSum(dim: DimensionIndex): number {
const dimData = this._chunks[dim];
let sum = 0;
if (dimData) {
for (let i = 0, len = this.count(); i < len; i++) {
const value = this.get(dim, i) as number;
if (!isNaN(value)) {
sum += value;
}
}
}
return sum;
}
/**
* Get median of data in one dimension
*/
getMedian(dim: DimensionIndex): number {
const dimDataArray: ParsedValue[] = [];
// map all data of one dimension
this.each([dim], function (val) {
if (!isNaN(val as number)) {
dimDataArray.push(val);
}
});
// TODO
// Use quick select?
const sortedDimDataArray = dimDataArray.sort(function (a: number, b: number) {
return a - b;
}) as number[];
const len = this.count();
// calculate median
return len === 0
? 0
: len % 2 === 1
? sortedDimDataArray[(len - 1) / 2]
: (sortedDimDataArray[len / 2] + sortedDimDataArray[len / 2 - 1]) / 2;
}
/**
* Retreive the index with given raw data index
*/
indexOfRawIndex(rawIndex: number): number {
if (rawIndex >= this._rawCount || rawIndex < 0) {
return -1;
}
if (!this._indices) {
return rawIndex;
}
// Indices are ascending
const indices = this._indices;
// If rawIndex === dataIndex
const rawDataIndex = indices[rawIndex];
if (rawDataIndex != null && rawDataIndex < this._count && rawDataIndex === rawIndex) {
return rawIndex;
}
let left = 0;
let right = this._count - 1;
while (left <= right) {
const mid = (left + right) / 2 | 0;
if (indices[mid] < rawIndex) {
left = mid + 1;
}
else if (indices[mid] > rawIndex) {
right = mid - 1;
}
else {
return mid;
}
}
return -1;
}
/**
* Retreive the index of nearest value
* @param dim
* @param value
* @param [maxDistance=Infinity]
* @return If and only if multiple indices has
* the same value, they are put to the result.
*/
indicesOfNearest(
dim: DimensionIndex, value: number, maxDistance?: number
): number[] {
const chunks = this._chunks;
const dimData = chunks[dim];
const nearestIndices: number[] = [];
if (!dimData) {
return nearestIndices;
}
if (maxDistance == null) {
maxDistance = Infinity;
}
let minDist = Infinity;
let minDiff = -1;
let nearestIndicesLen = 0;
// Check the test case of `test/ut/spec/data/SeriesData.js`.
for (let i = 0, len = this.count(); i < len; i++) {
const dataIndex = this.getRawIndex(i);
const diff = value - (dimData[dataIndex] as number);
const dist = Math.abs(diff);
if (dist <= maxDistance) {
// When the `value` is at the middle of `this.get(dim, i)` and `this.get(dim, i+1)`,
// we'd better not push both of them to `nearestIndices`, otherwise it is easy to
// get more than one item in `nearestIndices` (more specifically, in `tooltip`).
// So we chose the one that `diff >= 0` in this csae.
// But if `this.get(dim, i)` and `this.get(dim, j)` get the same value, both of them
// should be push to `nearestIndices`.
if (dist < minDist
|| (dist === minDist && diff >= 0 && minDiff < 0)
) {
minDist = dist;
minDiff = diff;
nearestIndicesLen = 0;
}
if (diff === minDiff) {
nearestIndices[nearestIndicesLen++] = i;
}
}
}
nearestIndices.length = nearestIndicesLen;
return nearestIndices;
}
getIndices(): ArrayLike<number> {
let newIndices;
const indices = this._indices;
if (indices) {
const Ctor = indices.constructor as DataArrayLikeConstructor;
const thisCount = this._count;
// `new Array(a, b, c)` is different from `new Uint32Array(a, b, c)`.
if (Ctor === Array) {
newIndices = new Ctor(thisCount);
for (let i = 0; i < thisCount; i++) {
newIndices[i] = indices[i];
}
}
else {
newIndices = new (Ctor as DataTypedArrayConstructor)(
(indices as DataTypedArray).buffer, 0, thisCount
);
}
}
else {
const Ctor = getIndicesCtor(this._rawCount);
newIndices = new Ctor(this.count());
for (let i = 0; i < newIndices.length; i++) {
newIndices[i] = i;
}
}
return newIndices;
}
/**
* Data filter.
*/
filter(
dims: DimensionIndex[],
cb: FilterCb
): DataStore {
if (!this._count) {
return this;
}
const newStore = this.clone();
const count = newStore.count();
const Ctor = getIndicesCtor(newStore._rawCount);
const newIndices = new Ctor(count);
const value = [];
const dimSize = dims.length;
let offset = 0;
const dim0 = dims[0];
const chunks = newStore._chunks;
for (let i = 0; i < count; i++) {
let keep;
const rawIdx = newStore.getRawIndex(i);
// Simple optimization
if (dimSize === 0) {
keep = (cb as FilterCb0)(i);
}
else if (dimSize === 1) {
const val = chunks[dim0][rawIdx];
keep = (cb as FilterCb1)(val, i);
}
else {
let k = 0;
for (; k < dimSize; k++) {
value[k] = chunks[dims[k]][rawIdx];
}
value[k] = i;
keep = (cb as FilterCb).apply(null, value);
}
if (keep) {
newIndices[offset++] = rawIdx;
}
}
// Set indices after filtered.
if (offset < count) {
newStore._indices = newIndices;
}
newStore._count = offset;
// Reset data extent
newStore._extent = [];
newStore._updateGetRawIdx();
return newStore;
}
/**
* Select data in range. (For optimization of filter)
* (Manually inline code, support 5 million data filtering in data zoom.)
*/
selectRange(range: {[dimIdx: number]: [number, number]}): DataStore {
const newStore = this.clone();
const len = newStore._count;
if (!len) {
return this;
}
const dims = keys(range);
const dimSize = dims.length;
if (!dimSize) {
return this;
}
const originalCount = newStore.count();
const Ctor = getIndicesCtor(newStore._rawCount);
const newIndices = new Ctor(originalCount);
let offset = 0;
const dim0 = dims[0];
const min = range[dim0][0];
const max = range[dim0][1];
const storeArr = newStore._chunks;
let quickFinished = false;
if (!newStore._indices) {
// Extreme optimization for common case. About 2x faster in chrome.
let idx = 0;
if (dimSize === 1) {
const dimStorage = storeArr[dims[0]];
for (let i = 0; i < len; i++) {
const val = dimStorage[i];
// NaN will not be filtered. Consider the case, in line chart, empty
// value indicates the line should be broken. But for the case like
// scatter plot, a data item with empty value will not be rendered,
// but the axis extent may be effected if some other dim of the data
// item has value. Fortunately it is not a significant negative effect.
if (
(val >= min && val <= max) || isNaN(val as any)
) {
newIndices[offset++] = idx;
}
idx++;
}
quickFinished = true;
}
else if (dimSize === 2) {
const dimStorage = storeArr[dims[0]];
const dimStorage2 = storeArr[dims[1]];
const min2 = range[dims[1]][0];
const max2 = range[dims[1]][1];
for (let i = 0; i < len; i++) {
const val = dimStorage[i];
const val2 = dimStorage2[i];
// Do not filter NaN, see comment above.
if ((
(val >= min && val <= max) || isNaN(val as any)
)
&& (
(val2 >= min2 && val2 <= max2) || isNaN(val2 as any)
)
) {
newIndices[offset++] = idx;
}
idx++;
}
quickFinished = true;
}
}
if (!quickFinished) {
if (dimSize === 1) {
for (let i = 0; i < originalCount; i++) {
const rawIndex = newStore.getRawIndex(i);
const val = storeArr[dims[0]][rawIndex];
// Do not filter NaN, see comment above.
if (
(val >= min && val <= max) || isNaN(val as any)
) {
newIndices[offset++] = rawIndex;
}
}
}
else {
for (let i = 0; i < originalCount; i++) {
let keep = true;
const rawIndex = newStore.getRawIndex(i);
for (let k = 0; k < dimSize; k++) {
const dimk = dims[k];
const val = storeArr[dimk][rawIndex];
// Do not filter NaN, see comment above.
if (val < range[dimk][0] || val > range[dimk][1]) {
keep = false;
}
}
if (keep) {
newIndices[offset++] = newStore.getRawIndex(i);
}
}
}
}
// Set indices after filtered.
if (offset < originalCount) {
newStore._indices = newIndices;
}
newStore._count = offset;
// Reset data extent
newStore._extent = [];
newStore._updateGetRawIdx();
return newStore;
}
// /**
// * Data mapping to a plain array
// */
// mapArray(dims: DimensionIndex[], cb: MapArrayCb): any[] {
// const result: any[] = [];
// this.each(dims, function () {
// result.push(cb && (cb as MapArrayCb).apply(null, arguments));
// });
// return result;
// }
/**
* Data mapping to a new List with given dimensions
*/
map(dims: DimensionIndex[], cb: MapCb): DataStore {
// TODO only clone picked chunks.
const target = this.clone(dims);
this._updateDims(target, dims, cb);
return target;
}
/**
* @caution Danger!! Only used in dataStack.
*/
modify(dims: DimensionIndex[], cb: MapCb) {
this._updateDims(this, dims, cb);
}
private _updateDims(
target: DataStore,
dims: DimensionIndex[],
cb: MapCb
) {
const targetChunks = target._chunks;
const tmpRetValue = [];
const dimSize = dims.length;
const dataCount = target.count();
const values = [];
const rawExtent = target._rawExtent;
for (let i = 0; i < dims.length; i++) {
rawExtent[dims[i]] = getInitialExtent();
}
for (let dataIndex = 0; dataIndex < dataCount; dataIndex++) {
const rawIndex = target.getRawIndex(dataIndex);
for (let k = 0; k < dimSize; k++) {
values[k] = targetChunks[dims[k]][rawIndex];
}
values[dimSize] = dataIndex;
let retValue = cb && cb.apply(null, values);
if (retValue != null) {
// a number or string (in oridinal dimension)?
if (typeof retValue !== 'object') {
tmpRetValue[0] = retValue;
retValue = tmpRetValue;
}
for (let i = 0; i < retValue.length; i++) {
const dim = dims[i];
const val = retValue[i];
const rawExtentOnDim = rawExtent[dim];
const dimStore = targetChunks[dim];
if (dimStore) {
(dimStore as ParsedValue[])[rawIndex] = val;
}
if (val < rawExtentOnDim[0]) {
rawExtentOnDim[0] = val as number;
}
if (val > rawExtentOnDim[1]) {
rawExtentOnDim[1] = val as number;
}
}
}
}
}
/**
* Large data down sampling using largest-triangle-three-buckets
* @param {string} valueDimension
* @param {number} targetCount
*/
lttbDownSample(
valueDimension: DimensionIndex,
rate: number
): DataStore {
const target = this.clone([valueDimension], true);
const targetStorage = target._chunks;
const dimStore = targetStorage[valueDimension];
const len = this.count();
let sampledIndex = 0;
const frameSize = Math.floor(1 / rate);
let currentRawIndex = this.getRawIndex(0);
let maxArea;
let area;
let nextRawIndex;
const newIndices = new (getIndicesCtor(this._rawCount))(Math.min((Math.ceil(len / frameSize) + 2) * 2, len));
// First frame use the first data.
newIndices[sampledIndex++] = currentRawIndex;
for (let i = 1; i < len - 1; i += frameSize) {
const nextFrameStart = Math.min(i + frameSize, len - 1);
const nextFrameEnd = Math.min(i + frameSize * 2, len);
const avgX = (nextFrameEnd + nextFrameStart) / 2;
let avgY = 0;
for (let idx = nextFrameStart; idx < nextFrameEnd; idx++) {
const rawIndex = this.getRawIndex(idx);
const y = dimStore[rawIndex] as number;
if (isNaN(y)) {
continue;
}
avgY += y as number;
}
avgY /= (nextFrameEnd - nextFrameStart);
const frameStart = i;
const frameEnd = Math.min(i + frameSize, len);
const pointAX = i - 1;
const pointAY = dimStore[currentRawIndex] as number;
maxArea = -1;
nextRawIndex = frameStart;
let firstNaNIndex = -1;
let countNaN = 0;
// Find a point from current frame that construct a triangel with largest area with previous selected point
// And the average of next frame.
for (let idx = frameStart; idx < frameEnd; idx++) {
const rawIndex = this.getRawIndex(idx);
const y = dimStore[rawIndex] as number;
if (isNaN(y)) {
countNaN++;
if (firstNaNIndex < 0) {
firstNaNIndex = rawIndex;
}
continue;
}
// Calculate triangle area over three buckets
area = Math.abs((pointAX - avgX) * (y - pointAY)
- (pointAX - idx) * (avgY - pointAY)
);
if (area > maxArea) {
maxArea = area;
nextRawIndex = rawIndex; // Next a is this b
}
}
if (countNaN > 0 && countNaN < frameEnd - frameStart) {
// Append first NaN point in every bucket.
// It is necessary to ensure the correct order of indices.
newIndices[sampledIndex++] = Math.min(firstNaNIndex, nextRawIndex);
nextRawIndex = Math.max(firstNaNIndex, nextRawIndex);
}
newIndices[sampledIndex++] = nextRawIndex;
currentRawIndex = nextRawIndex; // This a is the next a (chosen b)
}
// First frame use the last data.
newIndices[sampledIndex++] = this.getRawIndex(len - 1);
target._count = sampledIndex;
target._indices = newIndices;
target.getRawIndex = this._getRawIdx;
return target;
}
/**
* Large data down sampling on given dimension
* @param sampleIndex Sample index for name and id
*/
downSample(
dimension: DimensionIndex,
rate: number,
sampleValue: (frameValues: ArrayLike<ParsedValue>) => ParsedValueNumeric,
sampleIndex: (frameValues: ArrayLike<ParsedValue>, value: ParsedValueNumeric) => number
): DataStore {
const target = this.clone([dimension], true);
const targetStorage = target._chunks;
const frameValues = [];
let frameSize = Math.floor(1 / rate);
const dimStore = targetStorage[dimension];
const len = this.count();
const rawExtentOnDim = target._rawExtent[dimension] = getInitialExtent();
const newIndices = new (getIndicesCtor(this._rawCount))(Math.ceil(len / frameSize));
let offset = 0;
for (let i = 0; i < len; i += frameSize) {
// Last frame
if (frameSize > len - i) {
frameSize = len - i;
frameValues.length = frameSize;
}
for (let k = 0; k < frameSize; k++) {
const dataIdx = this.getRawIndex(i + k);
frameValues[k] = dimStore[dataIdx];
}
const value = sampleValue(frameValues);
const sampleFrameIdx = this.getRawIndex(
Math.min(i + sampleIndex(frameValues, value) || 0, len - 1)
);
// Only write value on the filtered data
(dimStore as number[])[sampleFrameIdx] = value;
if (value < rawExtentOnDim[0]) {
rawExtentOnDim[0] = value;
}
if (value > rawExtentOnDim[1]) {
rawExtentOnDim[1] = value;
}
newIndices[offset++] = sampleFrameIdx;
}
target._count = offset;
target._indices = newIndices;
target._updateGetRawIdx();
return target;
}
/**
* Data iteration
* @param ctx default this
* @example
* list.each('x', function (x, idx) {});
* list.each(['x', 'y'], function (x, y, idx) {});
* list.each(function (idx) {})
*/
each(dims: DimensionIndex[], cb: EachCb): void {
if (!this._count) {
return;
}
const dimSize = dims.length;
const chunks = this._chunks;
for (let i = 0, len = this.count(); i < len; i++) {
const rawIdx = this.getRawIndex(i);
// Simple optimization
switch (dimSize) {
case 0:
(cb as EachCb0)(i);
break;
case 1:
(cb as EachCb1)(chunks[dims[0]][rawIdx], i);
break;
case 2:
(cb as EachCb2)(
chunks[dims[0]][rawIdx], chunks[dims[1]][rawIdx], i
);
break;
default:
let k = 0;
const value = [];
for (; k < dimSize; k++) {
value[k] = chunks[dims[k]][rawIdx];
}
// Index
value[k] = i;
(cb as EachCb).apply(null, value);
}
}
}
/**
* Get extent of data in one dimension
*/
getDataExtent(dim: DimensionIndex): [number, number] {
// Make sure use concrete dim as cache name.
const dimData = this._chunks[dim];
const initialExtent = getInitialExtent();
if (!dimData) {
return initialExtent;
}
// Make more strict checkings to ensure hitting cache.
const currEnd = this.count();
// Consider the most cases when using data zoom, `getDataExtent`
// happened before filtering. We cache raw extent, which is not
// necessary to be cleared and recalculated when restore data.
const useRaw = !this._indices;
let dimExtent: [number, number];
if (useRaw) {
return this._rawExtent[dim].slice() as [number, number];
}
dimExtent = this._extent[dim];
if (dimExtent) {
return dimExtent.slice() as [number, number];
}
dimExtent = initialExtent;
let min = dimExtent[0];
let max = dimExtent[1];
for (let i = 0; i < currEnd; i++) {
const rawIdx = this.getRawIndex(i);
const value = dimData[rawIdx] as ParsedValueNumeric;
value < min && (min = value);
value > max && (max = value);
}
dimExtent = [min, max];
this._extent[dim] = dimExtent;
return dimExtent;
}
/**
* Get raw data index.
* Do not initialize.
* Default `getRawIndex`. And it can be changed.
*/
getRawIndex: (idx: number) => number;
/**
* Get raw data item
*/
getRawDataItem(idx: number): OptionDataItem {
const rawIdx = this.getRawIndex(idx);
if (!this._provider.persistent) {
const val = [];
const chunks = this._chunks;
for (let i = 0; i < chunks.length; i++) {
val.push(chunks[i][rawIdx]);
}
return val;
}
else {
return this._provider.getItem(rawIdx);
}
}
/**
* Clone shallow.
*
* @param clonedDims Determine which dims to clone. Will share the data if not specified.
*/
clone(clonedDims?: DimensionIndex[], ignoreIndices?: boolean): DataStore {
const target = new DataStore();
const chunks = this._chunks;
const clonedDimsMap = clonedDims && reduce(clonedDims, (obj, dimIdx) => {
obj[dimIdx] = true;
return obj;
}, {} as Record<DimensionIndex, boolean>);
if (clonedDimsMap) {
for (let i = 0; i < chunks.length; i++) {
// Not clone if dim is not picked.
target._chunks[i] = !clonedDimsMap[i] ? chunks[i] : cloneChunk(chunks[i]);
}
}
else {
target._chunks = chunks;
}
this._copyCommonProps(target);
if (!ignoreIndices) {
target._indices = this._cloneIndices();
}
target._updateGetRawIdx();
return target;
}
private _copyCommonProps(target: DataStore): void {
target._count = this._count;
target._rawCount = this._rawCount;
target._provider = this._provider;
target._dimensions = this._dimensions;
target._extent = clone(this._extent);
target._rawExtent = clone(this._rawExtent);
}
private _cloneIndices(): DataStore['_indices'] {
if (this._indices) {
const Ctor = this._indices.constructor as DataArrayLikeConstructor;
let indices;
if (Ctor === Array) {
const thisCount = this._indices.length;
indices = new Ctor(thisCount);
for (let i = 0; i < thisCount; i++) {
indices[i] = this._indices[i];
}
}
else {
indices = new (Ctor as DataTypedArrayConstructor)(this._indices);
}
return indices;
}
return null;
}
private _getRawIdxIdentity(idx: number): number {
return idx;
}
private _getRawIdx(idx: number): number {
if (idx < this._count && idx >= 0) {
return this._indices[idx];
}
return -1;
}
private _updateGetRawIdx(): void {
this.getRawIndex = this._indices ? this._getRawIdx : this._getRawIdxIdentity;
}
private static internalField = (function () {
function getDimValueSimply(
this: DataStore, dataItem: any, property: string, dataIndex: number, dimIndex: number
): ParsedValue {
return parseDataValue(dataItem[dimIndex], this._dimensions[dimIndex]);
}
defaultDimValueGetters = {
arrayRows: getDimValueSimply,
objectRows(
this: DataStore, dataItem: any, property: string, dataIndex: number, dimIndex: number
): ParsedValue {
return parseDataValue(dataItem[property], this._dimensions[dimIndex]);
},
keyedColumns: getDimValueSimply,
original(
this: DataStore, dataItem: any, property: string, dataIndex: number, dimIndex: number
): ParsedValue {
// Performance sensitive, do not use modelUtil.getDataItemValue.
// If dataItem is an plain object with no value field, the let `value`
// will be assigned with the object, but it will be tread correctly
// in the `convertValue`.
const value = dataItem && (dataItem.value == null ? dataItem : dataItem.value);
return parseDataValue(
(value instanceof Array)
? value[dimIndex]
// If value is a single number or something else not array.
: value,
this._dimensions[dimIndex]
);
},
typedArray: function (
this: DataStore, dataItem: any, property: string, dataIndex: number, dimIndex: number
): ParsedValue {
return dataItem[dimIndex];
}
};
})();
}
export default DataStore;
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦