airflow spark_kubernetes 源码
airflow spark_kubernetes 代码
文件路径:/airflow/providers/cncf/kubernetes/operators/spark_kubernetes.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Sequence
from airflow.models import BaseOperator
from airflow.providers.cncf.kubernetes.hooks.kubernetes import KubernetesHook
if TYPE_CHECKING:
from airflow.utils.context import Context
class SparkKubernetesOperator(BaseOperator):
"""
Creates sparkApplication object in kubernetes cluster:
.. seealso::
For more detail about Spark Application Object have a look at the reference:
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/v1beta2-1.1.0-2.4.5/docs/api-docs.md#sparkapplication
:param application_file: Defines Kubernetes 'custom_resource_definition' of 'sparkApplication' as either a
path to a '.yaml' file, '.json' file, YAML string or JSON string.
:param namespace: kubernetes namespace to put sparkApplication
:param kubernetes_conn_id: The :ref:`kubernetes connection id <howto/connection:kubernetes>`
for the to Kubernetes cluster.
:param api_group: kubernetes api group of sparkApplication
:param api_version: kubernetes api version of sparkApplication
"""
template_fields: Sequence[str] = ('application_file', 'namespace')
template_ext: Sequence[str] = ('.yaml', '.yml', '.json')
ui_color = '#f4a460'
def __init__(
self,
*,
application_file: str,
namespace: str | None = None,
kubernetes_conn_id: str = 'kubernetes_default',
api_group: str = 'sparkoperator.k8s.io',
api_version: str = 'v1beta2',
**kwargs,
) -> None:
super().__init__(**kwargs)
self.application_file = application_file
self.namespace = namespace
self.kubernetes_conn_id = kubernetes_conn_id
self.api_group = api_group
self.api_version = api_version
self.plural = "sparkapplications"
def execute(self, context: Context):
hook = KubernetesHook(conn_id=self.kubernetes_conn_id)
self.log.info("Creating sparkApplication")
response = hook.create_custom_object(
group=self.api_group,
version=self.api_version,
plural=self.plural,
body=self.application_file,
namespace=self.namespace,
)
return response
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦