airflow mssql_to_hive 源码
airflow mssql_to_hive 代码
文件路径:/airflow/providers/apache/hive/transfers/mssql_to_hive.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains an operator to move data from MSSQL to Hive."""
from __future__ import annotations
from collections import OrderedDict
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Sequence
import pymssql
import unicodecsv as csv
from airflow.models import BaseOperator
from airflow.providers.apache.hive.hooks.hive import HiveCliHook
from airflow.providers.microsoft.mssql.hooks.mssql import MsSqlHook
from airflow.www import utils as wwwutils
if TYPE_CHECKING:
from airflow.utils.context import Context
class MsSqlToHiveOperator(BaseOperator):
"""
Moves data from Microsoft SQL Server to Hive. The operator runs
your query against Microsoft SQL Server, stores the file locally
before loading it into a Hive table. If the ``create`` or
``recreate`` arguments are set to ``True``,
a ``CREATE TABLE`` and ``DROP TABLE`` statements are generated.
Hive data types are inferred from the cursor's metadata.
Note that the table generated in Hive uses ``STORED AS textfile``
which isn't the most efficient serialization format. If a
large amount of data is loaded and/or if the table gets
queried considerably, you may want to use this operator only to
stage the data into a temporary table before loading it into its
final destination using a ``HiveOperator``.
:param sql: SQL query to execute against the Microsoft SQL Server
database. (templated)
:param hive_table: target Hive table, use dot notation to target a specific
database. (templated)
:param create: whether to create the table if it doesn't exist
:param recreate: whether to drop and recreate the table at every execution
:param partition: target partition as a dict of partition columns and
values. (templated)
:param delimiter: field delimiter in the file
:param mssql_conn_id: source Microsoft SQL Server connection
:param hive_cli_conn_id: Reference to the
:ref:`Hive CLI connection id <howto/connection:hive_cli>`.
:param tblproperties: TBLPROPERTIES of the hive table being created
"""
template_fields: Sequence[str] = ('sql', 'partition', 'hive_table')
template_ext: Sequence[str] = ('.sql',)
# TODO: Remove renderer check when the provider has an Airflow 2.3+ requirement.
template_fields_renderers = {'sql': 'tsql' if 'tsql' in wwwutils.get_attr_renderer() else 'sql'}
ui_color = '#a0e08c'
def __init__(
self,
*,
sql: str,
hive_table: str,
create: bool = True,
recreate: bool = False,
partition: dict | None = None,
delimiter: str = chr(1),
mssql_conn_id: str = 'mssql_default',
hive_cli_conn_id: str = 'hive_cli_default',
tblproperties: dict | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.sql = sql
self.hive_table = hive_table
self.partition = partition
self.create = create
self.recreate = recreate
self.delimiter = delimiter
self.mssql_conn_id = mssql_conn_id
self.hive_cli_conn_id = hive_cli_conn_id
self.partition = partition or {}
self.tblproperties = tblproperties
@classmethod
def type_map(cls, mssql_type: int) -> str:
"""Maps MsSQL type to Hive type."""
map_dict = {
pymssql.BINARY.value: 'INT',
pymssql.DECIMAL.value: 'FLOAT',
pymssql.NUMBER.value: 'INT',
}
return map_dict.get(mssql_type, 'STRING')
def execute(self, context: Context):
mssql = MsSqlHook(mssql_conn_id=self.mssql_conn_id)
self.log.info("Dumping Microsoft SQL Server query results to local file")
with mssql.get_conn() as conn:
with conn.cursor() as cursor:
cursor.execute(self.sql)
with NamedTemporaryFile("w") as tmp_file:
csv_writer = csv.writer(tmp_file, delimiter=self.delimiter, encoding='utf-8')
field_dict = OrderedDict()
for col_count, field in enumerate(cursor.description, start=1):
col_position = f"Column{col_count}"
field_dict[col_position if field[0] == '' else field[0]] = self.type_map(field[1])
csv_writer.writerows(cursor)
tmp_file.flush()
hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
self.log.info("Loading file into Hive")
hive.load_file(
tmp_file.name,
self.hive_table,
field_dict=field_dict,
create=self.create,
partition=self.partition,
delimiter=self.delimiter,
recreate=self.recreate,
tblproperties=self.tblproperties,
)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦