airflow dataset 源码
airflow dataset 代码
文件路径:/airflow/providers/google/cloud/operators/vertex_ai/dataset.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Google Vertex AI operators."""
from __future__ import annotations
from typing import TYPE_CHECKING, Sequence
from google.api_core.exceptions import NotFound
from google.api_core.gapic_v1.method import DEFAULT, _MethodDefault
from google.api_core.retry import Retry
from google.cloud.aiplatform_v1.types import Dataset, ExportDataConfig, ImportDataConfig
from google.protobuf.field_mask_pb2 import FieldMask
from airflow.models import BaseOperator
from airflow.providers.google.cloud.hooks.vertex_ai.dataset import DatasetHook
from airflow.providers.google.cloud.links.vertex_ai import VertexAIDatasetLink, VertexAIDatasetListLink
if TYPE_CHECKING:
from airflow.utils.context import Context
class CreateDatasetOperator(BaseOperator):
"""
Creates a Dataset.
:param project_id: Required. The ID of the Google Cloud project the cluster belongs to.
:param region: Required. The Cloud Dataproc region in which to handle the request.
:param dataset: Required. The Dataset to create. This corresponds to the ``dataset`` field on the
``request`` instance; if ``request`` is provided, this should not be set.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "project_id", "impersonation_chain")
operator_extra_links = (VertexAIDatasetLink(),)
def __init__(
self,
*,
region: str,
project_id: str,
dataset: Dataset | dict,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.dataset = dataset
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
self.log.info("Creating dataset")
operation = hook.create_dataset(
project_id=self.project_id,
region=self.region,
dataset=self.dataset,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
result = hook.wait_for_operation(timeout=self.timeout, operation=operation)
dataset = Dataset.to_dict(result)
dataset_id = hook.extract_dataset_id(dataset)
self.log.info("Dataset was created. Dataset id: %s", dataset_id)
self.xcom_push(context, key="dataset_id", value=dataset_id)
VertexAIDatasetLink.persist(context=context, task_instance=self, dataset_id=dataset_id)
return dataset
class GetDatasetOperator(BaseOperator):
"""
Get a Dataset.
:param project_id: Required. The ID of the Google Cloud project the cluster belongs to.
:param region: Required. The Cloud Dataproc region in which to handle the request.
:param dataset_id: Required. The ID of the Dataset to get.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "dataset_id", "project_id", "impersonation_chain")
operator_extra_links = (VertexAIDatasetLink(),)
def __init__(
self,
*,
region: str,
project_id: str,
dataset_id: str,
read_mask: str | None = None,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.dataset_id = dataset_id
self.read_mask = read_mask
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
try:
self.log.info("Get dataset: %s", self.dataset_id)
dataset_obj = hook.get_dataset(
project_id=self.project_id,
region=self.region,
dataset=self.dataset_id,
read_mask=self.read_mask,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
VertexAIDatasetLink.persist(context=context, task_instance=self, dataset_id=self.dataset_id)
self.log.info("Dataset was gotten.")
return Dataset.to_dict(dataset_obj)
except NotFound:
self.log.info("The Dataset ID %s does not exist.", self.dataset_id)
class DeleteDatasetOperator(BaseOperator):
"""
Deletes a Dataset.
:param project_id: Required. The ID of the Google Cloud project the cluster belongs to.
:param region: Required. The Cloud Dataproc region in which to handle the request.
:param dataset_id: Required. The ID of the Dataset to delete.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "dataset_id", "project_id", "impersonation_chain")
def __init__(
self,
*,
region: str,
project_id: str,
dataset_id: str,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.dataset_id = dataset_id
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
try:
self.log.info("Deleting dataset: %s", self.dataset_id)
operation = hook.delete_dataset(
project_id=self.project_id,
region=self.region,
dataset=self.dataset_id,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
hook.wait_for_operation(timeout=self.timeout, operation=operation)
self.log.info("Dataset was deleted.")
except NotFound:
self.log.info("The Dataset ID %s does not exist.", self.dataset_id)
class ExportDataOperator(BaseOperator):
"""
Exports data from a Dataset.
:param project_id: Required. The ID of the Google Cloud project the cluster belongs to.
:param region: Required. The Cloud Dataproc region in which to handle the request.
:param dataset_id: Required. The ID of the Dataset to delete.
:param export_config: Required. The desired output location.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "dataset_id", "project_id", "impersonation_chain")
def __init__(
self,
*,
region: str,
project_id: str,
dataset_id: str,
export_config: ExportDataConfig | dict,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.dataset_id = dataset_id
self.export_config = export_config
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
self.log.info("Exporting data: %s", self.dataset_id)
operation = hook.export_data(
project_id=self.project_id,
region=self.region,
dataset=self.dataset_id,
export_config=self.export_config,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
hook.wait_for_operation(timeout=self.timeout, operation=operation)
self.log.info("Export was done successfully")
class ImportDataOperator(BaseOperator):
"""
Imports data into a Dataset.
:param project_id: Required. The ID of the Google Cloud project the cluster belongs to.
:param region: Required. The Cloud Dataproc region in which to handle the request.
:param dataset_id: Required. The ID of the Dataset to delete.
:param import_configs: Required. The desired input locations. The contents of all input locations will be
imported in one batch.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "dataset_id", "project_id", "impersonation_chain")
def __init__(
self,
*,
region: str,
project_id: str,
dataset_id: str,
import_configs: Sequence[ImportDataConfig] | list,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.dataset_id = dataset_id
self.import_configs = import_configs
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
self.log.info("Importing data: %s", self.dataset_id)
operation = hook.import_data(
project_id=self.project_id,
region=self.region,
dataset=self.dataset_id,
import_configs=self.import_configs,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
hook.wait_for_operation(timeout=self.timeout, operation=operation)
self.log.info("Import was done successfully")
class ListDatasetsOperator(BaseOperator):
"""
Lists Datasets in a Location.
:param project_id: Required. The ID of the Google Cloud project that the service belongs to.
:param region: Required. The ID of the Google Cloud region that the service belongs to.
:param filter: The standard list filter.
:param page_size: The standard list page size.
:param page_token: The standard list page token.
:param read_mask: Mask specifying which fields to read.
:param order_by: A comma-separated list of fields to order by, sorted in ascending order. Use "desc"
after a field name for descending.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "project_id", "impersonation_chain")
operator_extra_links = (VertexAIDatasetListLink(),)
def __init__(
self,
*,
region: str,
project_id: str,
filter: str | None = None,
page_size: int | None = None,
page_token: str | None = None,
read_mask: str | None = None,
order_by: str | None = None,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.region = region
self.project_id = project_id
self.filter = filter
self.page_size = page_size
self.page_token = page_token
self.read_mask = read_mask
self.order_by = order_by
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
results = hook.list_datasets(
project_id=self.project_id,
region=self.region,
filter=self.filter,
page_size=self.page_size,
page_token=self.page_token,
read_mask=self.read_mask,
order_by=self.order_by,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
VertexAIDatasetListLink.persist(context=context, task_instance=self)
return [Dataset.to_dict(result) for result in results]
class UpdateDatasetOperator(BaseOperator):
"""
Updates a Dataset.
:param project_id: Required. The ID of the Google Cloud project that the service belongs to.
:param region: Required. The ID of the Google Cloud region that the service belongs to.
:param dataset_id: Required. The ID of the Dataset to update.
:param dataset: Required. The Dataset which replaces the resource on the server.
:param update_mask: Required. The update mask applies to the resource.
:param retry: Designation of what errors, if any, should be retried.
:param timeout: The timeout for this request.
:param metadata: Strings which should be sent along with the request as metadata.
:param gcp_conn_id: The connection ID to use connecting to Google Cloud.
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
"""
template_fields = ("region", "dataset_id", "project_id", "impersonation_chain")
def __init__(
self,
*,
project_id: str,
region: str,
dataset_id: str,
dataset: Dataset | dict,
update_mask: FieldMask | dict,
retry: Retry | _MethodDefault = DEFAULT,
timeout: float | None = None,
metadata: Sequence[tuple[str, str]] = (),
gcp_conn_id: str = "google_cloud_default",
delegate_to: str | None = None,
impersonation_chain: str | Sequence[str] | None = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.project_id = project_id
self.region = region
self.dataset_id = dataset_id
self.dataset = dataset
self.update_mask = update_mask
self.retry = retry
self.timeout = timeout
self.metadata = metadata
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
def execute(self, context: Context):
hook = DatasetHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
self.log.info("Updating dataset: %s", self.dataset_id)
result = hook.update_dataset(
project_id=self.project_id,
region=self.region,
dataset_id=self.dataset_id,
dataset=self.dataset,
update_mask=self.update_mask,
retry=self.retry,
timeout=self.timeout,
metadata=self.metadata,
)
self.log.info("Dataset was updated")
return Dataset.to_dict(result)
相关信息
相关文章
airflow batch_prediction_job 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦