go solve 源码

  • 2022-07-15
  • 浏览 (1246)

golang solve 代码

文件路径:/src/cmd/compile/internal/escape/solve.go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package escape

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/logopt"
	"cmd/internal/src"
	"fmt"
	"strings"
)

// walkAll computes the minimal dereferences between all pairs of
// locations.
func (b *batch) walkAll() {
	// We use a work queue to keep track of locations that we need
	// to visit, and repeatedly walk until we reach a fixed point.
	//
	// We walk once from each location (including the heap), and
	// then re-enqueue each location on its transition from
	// transient->!transient and !escapes->escapes, which can each
	// happen at most once. So we take Θ(len(e.allLocs)) walks.

	// LIFO queue, has enough room for e.allLocs and e.heapLoc.
	todo := make([]*location, 0, len(b.allLocs)+1)
	enqueue := func(loc *location) {
		if !loc.queued {
			todo = append(todo, loc)
			loc.queued = true
		}
	}

	for _, loc := range b.allLocs {
		enqueue(loc)
	}
	enqueue(&b.heapLoc)

	var walkgen uint32
	for len(todo) > 0 {
		root := todo[len(todo)-1]
		todo = todo[:len(todo)-1]
		root.queued = false

		walkgen++
		b.walkOne(root, walkgen, enqueue)
	}
}

// walkOne computes the minimal number of dereferences from root to
// all other locations.
func (b *batch) walkOne(root *location, walkgen uint32, enqueue func(*location)) {
	// The data flow graph has negative edges (from addressing
	// operations), so we use the Bellman-Ford algorithm. However,
	// we don't have to worry about infinite negative cycles since
	// we bound intermediate dereference counts to 0.

	root.walkgen = walkgen
	root.derefs = 0
	root.dst = nil

	todo := []*location{root} // LIFO queue
	for len(todo) > 0 {
		l := todo[len(todo)-1]
		todo = todo[:len(todo)-1]

		derefs := l.derefs

		// If l.derefs < 0, then l's address flows to root.
		addressOf := derefs < 0
		if addressOf {
			// For a flow path like "root = &l; l = x",
			// l's address flows to root, but x's does
			// not. We recognize this by lower bounding
			// derefs at 0.
			derefs = 0

			// If l's address flows to a non-transient
			// location, then l can't be transiently
			// allocated.
			if !root.transient && l.transient {
				l.transient = false
				enqueue(l)
			}
		}

		if b.outlives(root, l) {
			// l's value flows to root. If l is a function
			// parameter and root is the heap or a
			// corresponding result parameter, then record
			// that value flow for tagging the function
			// later.
			if l.isName(ir.PPARAM) {
				if (logopt.Enabled() || base.Flag.LowerM >= 2) && !l.escapes {
					if base.Flag.LowerM >= 2 {
						fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", base.FmtPos(l.n.Pos()), l.n, b.explainLoc(root), derefs)
					}
					explanation := b.explainPath(root, l)
					if logopt.Enabled() {
						var e_curfn *ir.Func // TODO(mdempsky): Fix.
						logopt.LogOpt(l.n.Pos(), "leak", "escape", ir.FuncName(e_curfn),
							fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, b.explainLoc(root), derefs), explanation)
					}
				}
				l.leakTo(root, derefs)
			}

			// If l's address flows somewhere that
			// outlives it, then l needs to be heap
			// allocated.
			if addressOf && !l.escapes {
				if logopt.Enabled() || base.Flag.LowerM >= 2 {
					if base.Flag.LowerM >= 2 {
						fmt.Printf("%s: %v escapes to heap:\n", base.FmtPos(l.n.Pos()), l.n)
					}
					explanation := b.explainPath(root, l)
					if logopt.Enabled() {
						var e_curfn *ir.Func // TODO(mdempsky): Fix.
						logopt.LogOpt(l.n.Pos(), "escape", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", l.n), explanation)
					}
				}
				l.escapes = true
				enqueue(l)
				continue
			}
		}

		for i, edge := range l.edges {
			if edge.src.escapes {
				continue
			}
			d := derefs + edge.derefs
			if edge.src.walkgen != walkgen || edge.src.derefs > d {
				edge.src.walkgen = walkgen
				edge.src.derefs = d
				edge.src.dst = l
				edge.src.dstEdgeIdx = i
				todo = append(todo, edge.src)
			}
		}
	}
}

// explainPath prints an explanation of how src flows to the walk root.
func (b *batch) explainPath(root, src *location) []*logopt.LoggedOpt {
	visited := make(map[*location]bool)
	pos := base.FmtPos(src.n.Pos())
	var explanation []*logopt.LoggedOpt
	for {
		// Prevent infinite loop.
		if visited[src] {
			if base.Flag.LowerM >= 2 {
				fmt.Printf("%s:   warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos)
			}
			break
		}
		visited[src] = true
		dst := src.dst
		edge := &dst.edges[src.dstEdgeIdx]
		if edge.src != src {
			base.Fatalf("path inconsistency: %v != %v", edge.src, src)
		}

		explanation = b.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation)

		if dst == root {
			break
		}
		src = dst
	}

	return explanation
}

func (b *batch) explainFlow(pos string, dst, srcloc *location, derefs int, notes *note, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt {
	ops := "&"
	if derefs >= 0 {
		ops = strings.Repeat("*", derefs)
	}
	print := base.Flag.LowerM >= 2

	flow := fmt.Sprintf("   flow: %s = %s%v:", b.explainLoc(dst), ops, b.explainLoc(srcloc))
	if print {
		fmt.Printf("%s:%s\n", pos, flow)
	}
	if logopt.Enabled() {
		var epos src.XPos
		if notes != nil {
			epos = notes.where.Pos()
		} else if srcloc != nil && srcloc.n != nil {
			epos = srcloc.n.Pos()
		}
		var e_curfn *ir.Func // TODO(mdempsky): Fix.
		explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", ir.FuncName(e_curfn), flow))
	}

	for note := notes; note != nil; note = note.next {
		if print {
			fmt.Printf("%s:     from %v (%v) at %s\n", pos, note.where, note.why, base.FmtPos(note.where.Pos()))
		}
		if logopt.Enabled() {
			var e_curfn *ir.Func // TODO(mdempsky): Fix.
			explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos(), "escflow", "escape", ir.FuncName(e_curfn),
				fmt.Sprintf("     from %v (%v)", note.where, note.why)))
		}
	}
	return explanation
}

func (b *batch) explainLoc(l *location) string {
	if l == &b.heapLoc {
		return "{heap}"
	}
	if l.n == nil {
		// TODO(mdempsky): Omit entirely.
		return "{temp}"
	}
	if l.n.Op() == ir.ONAME {
		return fmt.Sprintf("%v", l.n)
	}
	return fmt.Sprintf("{storage for %v}", l.n)
}

// outlives reports whether values stored in l may survive beyond
// other's lifetime if stack allocated.
func (b *batch) outlives(l, other *location) bool {
	// The heap outlives everything.
	if l.escapes {
		return true
	}

	// We don't know what callers do with returned values, so
	// pessimistically we need to assume they flow to the heap and
	// outlive everything too.
	if l.isName(ir.PPARAMOUT) {
		// Exception: Directly called closures can return
		// locations allocated outside of them without forcing
		// them to the heap. For example:
		//
		//    var u int  // okay to stack allocate
		//    *(func() *int { return &u }()) = 42
		if containsClosure(other.curfn, l.curfn) && l.curfn.ClosureCalled() {
			return false
		}

		return true
	}

	// If l and other are within the same function, then l
	// outlives other if it was declared outside other's loop
	// scope. For example:
	//
	//    var l *int
	//    for {
	//        l = new(int)
	//    }
	if l.curfn == other.curfn && l.loopDepth < other.loopDepth {
		return true
	}

	// If other is declared within a child closure of where l is
	// declared, then l outlives it. For example:
	//
	//    var l *int
	//    func() {
	//        l = new(int)
	//    }
	if containsClosure(l.curfn, other.curfn) {
		return true
	}

	return false
}

// containsClosure reports whether c is a closure contained within f.
func containsClosure(f, c *ir.Func) bool {
	// Common case.
	if f == c {
		return false
	}

	// Closures within function Foo are named like "Foo.funcN..."
	// TODO(mdempsky): Better way to recognize this.
	fn := f.Sym().Name
	cn := c.Sym().Name
	return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
}

相关信息

go 源码目录

相关文章

go assign 源码

go call 源码

go desugar 源码

go escape 源码

go expr 源码

go graph 源码

go leaks 源码

go stmt 源码

go utils 源码

0  赞