spark LocalKMeans 源码

  • 2022-10-20
  • 浏览 (308)

spark LocalKMeans 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/LocalKMeans.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples

import java.util.Random

import scala.collection.mutable.HashMap
import scala.collection.mutable.HashSet

import breeze.linalg.{squaredDistance, DenseVector, Vector}

/**
 * K-means clustering.
 *
 * This is an example implementation for learning how to use Spark. For more conventional use,
 * please refer to org.apache.spark.ml.clustering.KMeans.
 */
object LocalKMeans {
  val N = 1000
  val R = 1000    // Scaling factor
  val D = 10
  val K = 10
  val convergeDist = 0.001
  val rand = new Random(42)

  def generateData: Array[DenseVector[Double]] = {
    def generatePoint(i: Int): DenseVector[Double] = {
      DenseVector.fill(D) {rand.nextDouble * R}
    }
    Array.tabulate(N)(generatePoint)
  }

  def closestPoint(p: Vector[Double], centers: HashMap[Int, Vector[Double]]): Int = {
    var bestIndex = 0
    var closest = Double.PositiveInfinity

    for (i <- 1 to centers.size) {
      val vCurr = centers(i)
      val tempDist = squaredDistance(p, vCurr)
      if (tempDist < closest) {
        closest = tempDist
        bestIndex = i
      }
    }

    bestIndex
  }

  def showWarning(): Unit = {
    System.err.println(
      """WARN: This is a naive implementation of KMeans Clustering and is given as an example!
        |Please use org.apache.spark.ml.clustering.KMeans
        |for more conventional use.
      """.stripMargin)
  }

  def main(args: Array[String]): Unit = {

    showWarning()

    val data = generateData
    val points = new HashSet[Vector[Double]]
    val kPoints = new HashMap[Int, Vector[Double]]
    var tempDist = 1.0

    while (points.size < K) {
      points.add(data(rand.nextInt(N)))
    }

    val iter = points.iterator
    for (i <- 1 to points.size) {
      kPoints.put(i, iter.next())
    }

    println(s"Initial centers: $kPoints")

    while(tempDist > convergeDist) {
      val closest = data.map (p => (closestPoint(p, kPoints), (p, 1)))

      val mappings = closest.groupBy[Int] (x => x._1)

      val pointStats = mappings.map { pair =>
        pair._2.reduceLeft [(Int, (Vector[Double], Int))] {
          case ((id1, (p1, c1)), (id2, (p2, c2))) => (id1, (p1 + p2, c1 + c2))
        }
      }

      val newPoints = pointStats.map { mapping =>
        (mapping._1, mapping._2._1 * (1.0 / mapping._2._2))}

      tempDist = 0.0
      for (mapping <- newPoints) {
        tempDist += squaredDistance(kPoints(mapping._1), mapping._2)
      }

      for (newP <- newPoints) {
        kPoints.put(newP._1, newP._2)
      }
    }

    println(s"Final centers: $kPoints")
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AccumulatorMetricsTest 源码

spark BroadcastTest 源码

spark DFSReadWriteTest 源码

spark DriverSubmissionTest 源码

spark ExceptionHandlingTest 源码

spark GroupByTest 源码

spark HdfsTest 源码

spark LocalALS 源码

spark LocalFileLR 源码

spark LocalLR 源码

0  赞