hadoop GaloisField 源码

  • 2022-10-20
  • 浏览 (360)

haddop GaloisField 代码

文件路径:/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/erasurecode/rawcoder/util/GaloisField.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.io.erasurecode.rawcoder.util;

import java.nio.ByteBuffer;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.classification.InterfaceAudience;

/**
 * Implementation of Galois field arithmetic with 2^p elements. The input must
 * be unsigned integers. It's ported from HDFS-RAID, slightly adapted.
 */
@InterfaceAudience.Private
public class GaloisField {

  // Field size 256 is good for byte based system
  private static final int DEFAULT_FIELD_SIZE = 256;
  // primitive polynomial 1 + X^2 + X^3 + X^4 + X^8 (substitute 2)
  private static final int DEFAULT_PRIMITIVE_POLYNOMIAL = 285;
  static private final Map<Integer, GaloisField> instances =
      new HashMap<Integer, GaloisField>();
  private final int[] logTable;
  private final int[] powTable;
  private final int[][] mulTable;
  private final int[][] divTable;
  private final int fieldSize;
  private final int primitivePeriod;
  private final int primitivePolynomial;

  private GaloisField(int fieldSize, int primitivePolynomial) {
    assert fieldSize > 0;
    assert primitivePolynomial > 0;

    this.fieldSize = fieldSize;
    this.primitivePeriod = fieldSize - 1;
    this.primitivePolynomial = primitivePolynomial;
    logTable = new int[fieldSize];
    powTable = new int[fieldSize];
    mulTable = new int[fieldSize][fieldSize];
    divTable = new int[fieldSize][fieldSize];
    int value = 1;
    for (int pow = 0; pow < fieldSize - 1; pow++) {
      powTable[pow] = value;
      logTable[value] = pow;
      value = value * 2;
      if (value >= fieldSize) {
        value = value ^ primitivePolynomial;
      }
    }
    // building multiplication table
    for (int i = 0; i < fieldSize; i++) {
      for (int j = 0; j < fieldSize; j++) {
        if (i == 0 || j == 0) {
          mulTable[i][j] = 0;
          continue;
        }
        int z = logTable[i] + logTable[j];
        z = z >= primitivePeriod ? z - primitivePeriod : z;
        z = powTable[z];
        mulTable[i][j] = z;
      }
    }
    // building division table
    for (int i = 0; i < fieldSize; i++) {
      for (int j = 1; j < fieldSize; j++) {
        if (i == 0) {
          divTable[i][j] = 0;
          continue;
        }
        int z = logTable[i] - logTable[j];
        z = z < 0 ? z + primitivePeriod : z;
        z = powTable[z];
        divTable[i][j] = z;
      }
    }
  }

  /**
   * Get the object performs Galois field arithmetics.
   *
   * @param fieldSize           size of the field
   * @param primitivePolynomial a primitive polynomial corresponds to the size
   * @return GaloisField.
   */
  public static GaloisField getInstance(int fieldSize,
                                        int primitivePolynomial) {
    int key = ((fieldSize << 16) & 0xFFFF0000)
        + (primitivePolynomial & 0x0000FFFF);
    GaloisField gf;
    synchronized (instances) {
      gf = instances.get(key);
      if (gf == null) {
        gf = new GaloisField(fieldSize, primitivePolynomial);
        instances.put(key, gf);
      }
    }
    return gf;
  }

  /**
   * Get the object performs Galois field arithmetic with default setting.
   * @return GaloisField.
   */
  public static GaloisField getInstance() {
    return getInstance(DEFAULT_FIELD_SIZE, DEFAULT_PRIMITIVE_POLYNOMIAL);
  }

  /**
   * Return number of elements in the field
   *
   * @return number of elements in the field
   */
  public int getFieldSize() {
    return fieldSize;
  }

  /**
   * Return the primitive polynomial in GF(2)
   *
   * @return primitive polynomial as a integer
   */
  public int getPrimitivePolynomial() {
    return primitivePolynomial;
  }

  /**
   * Compute the sum of two fields
   *
   * @param x input field
   * @param y input field
   * @return result of addition
   */
  public int add(int x, int y) {
    assert (x >= 0 && x < getFieldSize() && y >= 0 && y < getFieldSize());
    return x ^ y;
  }

  /**
   * Compute the multiplication of two fields
   *
   * @param x input field
   * @param y input field
   * @return result of multiplication
   */
  public int multiply(int x, int y) {
    assert (x >= 0 && x < getFieldSize() && y >= 0 && y < getFieldSize());
    return mulTable[x][y];
  }

  /**
   * Compute the division of two fields
   *
   * @param x input field
   * @param y input field
   * @return x/y
   */
  public int divide(int x, int y) {
    assert (x >= 0 && x < getFieldSize() && y > 0 && y < getFieldSize());
    return divTable[x][y];
  }

  /**
   * Compute power n of a field
   *
   * @param x input field
   * @param n power
   * @return x^n
   */
  public int power(int x, int n) {
    assert (x >= 0 && x < getFieldSize());
    if (n == 0) {
      return 1;
    }
    if (x == 0) {
      return 0;
    }
    x = logTable[x] * n;
    if (x < primitivePeriod) {
      return powTable[x];
    }
    x = x % primitivePeriod;
    return powTable[x];
  }

  /**
   * Given a Vandermonde matrix V[i][j]=x[j]^i and vector y, solve for z such
   * that Vz=y. The output z will be placed in y.
   *
   * @param x the vector which describe the Vandermonde matrix
   * @param y right-hand side of the Vandermonde system equation. will be
   *          replaced the output in this vector
   */
  public void solveVandermondeSystem(int[] x, int[] y) {
    solveVandermondeSystem(x, y, x.length);
  }

  /**
   * Given a Vandermonde matrix V[i][j]=x[j]^i and vector y, solve for z such
   * that Vz=y. The output z will be placed in y.
   *
   * @param x   the vector which describe the Vandermonde matrix
   * @param y   right-hand side of the Vandermonde system equation. will be
   *            replaced the output in this vector
   * @param len consider x and y only from 0...len-1
   */
  public void solveVandermondeSystem(int[] x, int[] y, int len) {
    assert (x.length <= len && y.length <= len);
    for (int i = 0; i < len - 1; i++) {
      for (int j = len - 1; j > i; j--) {
        y[j] = y[j] ^ mulTable[x[i]][y[j - 1]];
      }
    }
    for (int i = len - 1; i >= 0; i--) {
      for (int j = i + 1; j < len; j++) {
        y[j] = divTable[y[j]][x[j] ^ x[j - i - 1]];
      }
      for (int j = i; j < len - 1; j++) {
        y[j] = y[j] ^ y[j + 1];
      }
    }
  }

  /**
   * A "bulk" version to the solving of Vandermonde System.
   *
   * @param x input x.
   * @param y input y.
   * @param outputOffsets input outputOffsets.
   * @param len input len.
   * @param dataLen input dataLen.
   */
  public void solveVandermondeSystem(int[] x, byte[][] y, int[] outputOffsets,
                                     int len, int dataLen) {
    int idx1, idx2;
    for (int i = 0; i < len - 1; i++) {
      for (int j = len - 1; j > i; j--) {
        for (idx2 = outputOffsets[j-1], idx1 = outputOffsets[j];
             idx1 < outputOffsets[j] + dataLen; idx1++, idx2++) {
          y[j][idx1] = (byte) (y[j][idx1] ^ mulTable[x[i]][y[j - 1][idx2] &
              0x000000FF]);
        }
      }
    }
    for (int i = len - 1; i >= 0; i--) {
      for (int j = i + 1; j < len; j++) {
        for (idx1 = outputOffsets[j];
             idx1 < outputOffsets[j] + dataLen; idx1++) {
          y[j][idx1] = (byte) (divTable[y[j][idx1] & 0x000000FF][x[j] ^
              x[j - i - 1]]);
        }
      }
      for (int j = i; j < len - 1; j++) {
        for (idx2 = outputOffsets[j+1], idx1 = outputOffsets[j];
             idx1 < outputOffsets[j] + dataLen; idx1++, idx2++) {
          y[j][idx1] = (byte) (y[j][idx1] ^ y[j + 1][idx2]);
        }
      }
    }
  }

  /**
   * A "bulk" version of the solveVandermondeSystem, using ByteBuffer.
   *
   * @param x input x.
   * @param y input y.
   * @param len input len.
   */
  public void solveVandermondeSystem(int[] x, ByteBuffer[] y, int len) {
    ByteBuffer p;
    int idx1, idx2;
    for (int i = 0; i < len - 1; i++) {
      for (int j = len - 1; j > i; j--) {
        p = y[j];
        for (idx1 = p.position(), idx2 = y[j-1].position();
             idx1 < p.limit(); idx1++, idx2++) {
          p.put(idx1, (byte) (p.get(idx1) ^ mulTable[x[i]][y[j-1].get(idx2) &
              0x000000FF]));
        }
      }
    }

    for (int i = len - 1; i >= 0; i--) {
      for (int j = i + 1; j < len; j++) {
        p = y[j];
        for (idx1 = p.position(); idx1 < p.limit(); idx1++) {
          p.put(idx1, (byte) (divTable[p.get(idx1) &
              0x000000FF][x[j] ^ x[j - i - 1]]));
        }
      }

      for (int j = i; j < len - 1; j++) {
        p = y[j];
        for (idx1 = p.position(), idx2 = y[j+1].position();
             idx1 < p.limit(); idx1++, idx2++) {
          p.put(idx1, (byte) (p.get(idx1) ^ y[j+1].get(idx2)));
        }
      }
    }
  }

  /**
   * Compute the multiplication of two polynomials. The index in the array
   * corresponds to the power of the entry. For example p[0] is the constant
   * term of the polynomial p.
   *
   * @param p input polynomial
   * @param q input polynomial
   * @return polynomial represents p*q
   */
  public int[] multiply(int[] p, int[] q) {
    int len = p.length + q.length - 1;
    int[] result = new int[len];
    for (int i = 0; i < len; i++) {
      result[i] = 0;
    }
    for (int i = 0; i < p.length; i++) {

      for (int j = 0; j < q.length; j++) {
        result[i + j] = add(result[i + j], multiply(p[i], q[j]));
      }
    }
    return result;
  }

  /**
   * Compute the remainder of a dividend and divisor pair. The index in the
   * array corresponds to the power of the entry. For example p[0] is the
   * constant term of the polynomial p.
   *
   * @param dividend dividend polynomial, the remainder will be placed
   *                 here when return
   * @param divisor  divisor polynomial
   */
  public void remainder(int[] dividend, int[] divisor) {
    for (int i = dividend.length - divisor.length; i >= 0; i--) {
      int ratio = divTable[dividend[i +
          divisor.length - 1]][divisor[divisor.length - 1]];
      for (int j = 0; j < divisor.length; j++) {
        int k = j + i;
        dividend[k] = dividend[k] ^ mulTable[ratio][divisor[j]];
      }
    }
  }

  /**
   * Compute the sum of two polynomials. The index in the array corresponds to
   * the power of the entry. For example p[0] is the constant term of the
   * polynomial p.
   *
   * @param p input polynomial
   * @param q input polynomial
   * @return polynomial represents p+q
   */
  public int[] add(int[] p, int[] q) {
    int len = Math.max(p.length, q.length);
    int[] result = new int[len];
    for (int i = 0; i < len; i++) {
      if (i < p.length && i < q.length) {
        result[i] = add(p[i], q[i]);
      } else if (i < p.length) {
        result[i] = p[i];
      } else {
        result[i] = q[i];
      }
    }
    return result;
  }

  /**
   * Substitute x into polynomial p(x).
   *
   * @param p input polynomial
   * @param x input field
   * @return p(x)
   */
  public int substitute(int[] p, int x) {
    int result = 0;
    int y = 1;
    for (int i = 0; i < p.length; i++) {
      result = result ^ mulTable[p[i]][y];
      y = mulTable[x][y];
    }
    return result;
  }

  /**
   * A "bulk" version of the substitute.
   * Tends to be 2X faster than the "int" substitute in a loop.
   *
   * @param p input polynomial
   * @param q store the return result
   * @param x input field
   */
  public void substitute(byte[][] p, byte[] q, int x) {
    int y = 1;
    for (int i = 0; i < p.length; i++) {
      byte[] pi = p[i];
      for (int j = 0; j < pi.length; j++) {
        int pij = pi[j] & 0x000000FF;
        q[j] = (byte) (q[j] ^ mulTable[pij][y]);
      }
      y = mulTable[x][y];
    }
  }

  /**
   * A "bulk" version of the substitute.
   * Tends to be 2X faster than the "int" substitute in a loop.
   *
   * @param p input polynomial
   * @param offsets input offset.
   * @param len input len.
   * @param q store the return result
   * @param offset input offset.
   * @param x input field
   */
  public void substitute(byte[][] p, int[] offsets,
                         int len, byte[] q, int offset, int x) {
    int y = 1, iIdx, oIdx;
    for (int i = 0; i < p.length; i++) {
      byte[] pi = p[i];
      for (iIdx = offsets[i], oIdx = offset;
           iIdx < offsets[i] + len; iIdx++, oIdx++) {
        int pij = pi != null ? pi[iIdx] & 0x000000FF : 0;
        q[oIdx] = (byte) (q[oIdx] ^ mulTable[pij][y]);
      }
      y = mulTable[x][y];
    }
  }

  /**
   * A "bulk" version of the substitute, using ByteBuffer.
   * Tends to be 2X faster than the "int" substitute in a loop.
   *
   * @param p input polynomial
   * @param q store the return result
   * @param x input field
   * @param len input len.
   */
  public void substitute(ByteBuffer[] p, int len, ByteBuffer q, int x) {
    int y = 1, iIdx, oIdx;
    for (int i = 0; i < p.length; i++) {
      ByteBuffer pi = p[i];
      int pos = pi != null ? pi.position() : 0;
      int limit = pi != null ? pi.limit() : len;
      for (oIdx = q.position(), iIdx = pos;
           iIdx < limit; iIdx++, oIdx++) {
        int pij = pi != null ? pi.get(iIdx) & 0x000000FF : 0;
        q.put(oIdx, (byte) (q.get(oIdx) ^ mulTable[pij][y]));
      }
      y = mulTable[x][y];
    }
  }

  /**
   * The "bulk" version of the remainder.
   * Warning: This function will modify the "dividend" inputs.
   *
   * @param divisor divisor.
   * @param dividend dividend.
   */
  public void remainder(byte[][] dividend, int[] divisor) {
    for (int i = dividend.length - divisor.length; i >= 0; i--) {
      for (int j = 0; j < divisor.length; j++) {
        for (int k = 0; k < dividend[i].length; k++) {
          int ratio = divTable[dividend[i + divisor.length - 1][k] &
              0x00FF][divisor[divisor.length - 1]];
          dividend[j + i][k] = (byte) ((dividend[j + i][k] & 0x00FF) ^
              mulTable[ratio][divisor[j]]);
        }
      }
    }
  }

  /**
   * The "bulk" version of the remainder.
   * Warning: This function will modify the "dividend" inputs.
   *
   * @param dividend dividend.
   * @param offsets offsets.
   * @param len len.
   * @param divisor divisor.
   */
  public void remainder(byte[][] dividend, int[] offsets,
                        int len, int[] divisor) {
    int idx1, idx2;
    for (int i = dividend.length - divisor.length; i >= 0; i--) {
      for (int j = 0; j < divisor.length; j++) {
        for (idx2 = offsets[j + i], idx1 = offsets[i + divisor.length - 1];
             idx1 < offsets[i + divisor.length - 1] + len;
             idx1++, idx2++) {
          int ratio = divTable[dividend[i + divisor.length - 1][idx1] &
              0x00FF][divisor[divisor.length - 1]];
          dividend[j + i][idx2] = (byte) ((dividend[j + i][idx2] & 0x00FF) ^
              mulTable[ratio][divisor[j]]);
        }
      }
    }
  }

  /**
   * The "bulk" version of the remainder, using ByteBuffer.
   * Warning: This function will modify the "dividend" inputs.
   *
   * @param dividend dividend.
   * @param divisor divisor.
   */
  public void remainder(ByteBuffer[] dividend, int[] divisor) {
    int idx1, idx2;
    ByteBuffer b1, b2;
    for (int i = dividend.length - divisor.length; i >= 0; i--) {
      for (int j = 0; j < divisor.length; j++) {
        b1 = dividend[i + divisor.length - 1];
        b2 = dividend[j + i];
        for (idx1 = b1.position(), idx2 = b2.position();
             idx1 < b1.limit(); idx1++, idx2++) {
          int ratio = divTable[b1.get(idx1) &
              0x00FF][divisor[divisor.length - 1]];
          b2.put(idx2, (byte) ((b2.get(idx2) & 0x00FF) ^
              mulTable[ratio][divisor[j]]));
        }
      }
    }
  }

  /**
   * Perform Gaussian elimination on the given matrix. This matrix has to be a
   * fat matrix (number of rows &gt; number of columns).
   *
   * @param matrix matrix.
   */
  public void gaussianElimination(int[][] matrix) {
    assert(matrix != null && matrix.length > 0 && matrix[0].length > 0
        && matrix.length < matrix[0].length);
    int height = matrix.length;
    int width = matrix[0].length;
    for (int i = 0; i < height; i++) {
      boolean pivotFound = false;
      // scan the column for a nonzero pivot and swap it to the diagonal
      for (int j = i; j < height; j++) {
        if (matrix[i][j] != 0) {
          int[] tmp = matrix[i];
          matrix[i] = matrix[j];
          matrix[j] = tmp;
          pivotFound = true;
          break;
        }
      }
      if (!pivotFound) {
        continue;
      }
      int pivot = matrix[i][i];
      for (int j = i; j < width; j++) {
        matrix[i][j] = divide(matrix[i][j], pivot);
      }
      for (int j = i + 1; j < height; j++) {
        int lead = matrix[j][i];
        for (int k = i; k < width; k++) {
          matrix[j][k] = add(matrix[j][k], multiply(lead, matrix[i][k]));
        }
      }
    }
    for (int i = height - 1; i >=0; i--) {
      for (int j = 0; j < i; j++) {
        int lead = matrix[j][i];
        for (int k = i; k < width; k++) {
          matrix[j][k] = add(matrix[j][k], multiply(lead, matrix[i][k]));
        }
      }
    }
  }

}

相关信息

hadoop 源码目录

相关文章

hadoop DumpUtil 源码

hadoop GF256 源码

hadoop RSUtil 源码

hadoop package-info 源码

0  赞