hadoop FieldSelectionMapReduce 源码
haddop FieldSelectionMapReduce 代码
文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapred/lib/FieldSelectionMapReduce.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred.lib;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.fieldsel.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* This class implements a mapper/reducer class that can be used to perform
* field selections in a manner similar to unix cut. The input data is treated
* as fields separated by a user specified separator (the default value is
* "\t"). The user can specify a list of fields that form the map output keys,
* and a list of fields that form the map output values. If the inputformat is
* TextInputFormat, the mapper will ignore the key to the map function. and the
* fields are from the value only. Otherwise, the fields are the union of those
* from the key and those from the value.
*
* The field separator is under attribute "mapreduce.fieldsel.data.field.separator"
*
* The map output field list spec is under attribute
* "mapreduce.fieldsel.map.output.key.value.fields.spec".
* The value is expected to be like "keyFieldsSpec:valueFieldsSpec"
* key/valueFieldsSpec are comma (,) separated field spec: fieldSpec,fieldSpec,fieldSpec ...
* Each field spec can be a simple number (e.g. 5) specifying a specific field, or a range
* (like 2-5) to specify a range of fields, or an open range (like 3-) specifying all
* the fields starting from field 3. The open range field spec applies value fields only.
* They have no effect on the key fields.
*
* Here is an example: "4,3,0,1:6,5,1-3,7-". It specifies to use fields 4,3,0 and 1 for keys,
* and use fields 6,5,1,2,3,7 and above for values.
*
* The reduce output field list spec is under attribute
* "mapreduce.fieldsel.reduce.output.key.value.fields.spec".
*
* The reducer extracts output key/value pairs in a similar manner, except that
* the key is never ignored.
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class FieldSelectionMapReduce<K, V>
implements Mapper<K, V, Text, Text>, Reducer<Text, Text, Text, Text> {
private String mapOutputKeyValueSpec;
private boolean ignoreInputKey;
private String fieldSeparator = "\t";
private List<Integer> mapOutputKeyFieldList = new ArrayList<Integer>();
private List<Integer> mapOutputValueFieldList = new ArrayList<Integer>();
private int allMapValueFieldsFrom = -1;
private String reduceOutputKeyValueSpec;
private List<Integer> reduceOutputKeyFieldList = new ArrayList<Integer>();
private List<Integer> reduceOutputValueFieldList = new ArrayList<Integer>();
private int allReduceValueFieldsFrom = -1;
public static final Logger LOG =
LoggerFactory.getLogger("FieldSelectionMapReduce");
private String specToString() {
StringBuffer sb = new StringBuffer();
sb.append("fieldSeparator: ").append(fieldSeparator).append("\n");
sb.append("mapOutputKeyValueSpec: ").append(mapOutputKeyValueSpec).append(
"\n");
sb.append("reduceOutputKeyValueSpec: ").append(reduceOutputKeyValueSpec)
.append("\n");
sb.append("allMapValueFieldsFrom: ").append(allMapValueFieldsFrom).append(
"\n");
sb.append("allReduceValueFieldsFrom: ").append(allReduceValueFieldsFrom)
.append("\n");
int i = 0;
sb.append("mapOutputKeyFieldList.length: ").append(
mapOutputKeyFieldList.size()).append("\n");
for (i = 0; i < mapOutputKeyFieldList.size(); i++) {
sb.append("\t").append(mapOutputKeyFieldList.get(i)).append("\n");
}
sb.append("mapOutputValueFieldList.length: ").append(
mapOutputValueFieldList.size()).append("\n");
for (i = 0; i < mapOutputValueFieldList.size(); i++) {
sb.append("\t").append(mapOutputValueFieldList.get(i)).append("\n");
}
sb.append("reduceOutputKeyFieldList.length: ").append(
reduceOutputKeyFieldList.size()).append("\n");
for (i = 0; i < reduceOutputKeyFieldList.size(); i++) {
sb.append("\t").append(reduceOutputKeyFieldList.get(i)).append("\n");
}
sb.append("reduceOutputValueFieldList.length: ").append(
reduceOutputValueFieldList.size()).append("\n");
for (i = 0; i < reduceOutputValueFieldList.size(); i++) {
sb.append("\t").append(reduceOutputValueFieldList.get(i)).append("\n");
}
return sb.toString();
}
/**
* The identify function. Input key/value pair is written directly to output.
*/
public void map(K key, V val,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {
FieldSelectionHelper helper = new FieldSelectionHelper(
FieldSelectionHelper.emptyText, FieldSelectionHelper.emptyText);
helper.extractOutputKeyValue(key.toString(), val.toString(),
fieldSeparator, mapOutputKeyFieldList, mapOutputValueFieldList,
allMapValueFieldsFrom, ignoreInputKey, true);
output.collect(helper.getKey(), helper.getValue());
}
private void parseOutputKeyValueSpec() {
allMapValueFieldsFrom = FieldSelectionHelper.parseOutputKeyValueSpec(
mapOutputKeyValueSpec, mapOutputKeyFieldList, mapOutputValueFieldList);
allReduceValueFieldsFrom = FieldSelectionHelper.parseOutputKeyValueSpec(
reduceOutputKeyValueSpec, reduceOutputKeyFieldList,
reduceOutputValueFieldList);
}
public void configure(JobConf job) {
this.fieldSeparator = job.get(FieldSelectionHelper.DATA_FIELD_SEPARATOR,
"\t");
this.mapOutputKeyValueSpec = job.get(
FieldSelectionHelper.MAP_OUTPUT_KEY_VALUE_SPEC, "0-:");
this.ignoreInputKey = TextInputFormat.class.getCanonicalName().equals(
job.getInputFormat().getClass().getCanonicalName());
this.reduceOutputKeyValueSpec = job.get(
FieldSelectionHelper.REDUCE_OUTPUT_KEY_VALUE_SPEC, "0-:");
parseOutputKeyValueSpec();
LOG.info(specToString());
}
public void close() throws IOException {
// TODO Auto-generated method stub
}
public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {
String keyStr = key.toString() + this.fieldSeparator;
while (values.hasNext()) {
FieldSelectionHelper helper = new FieldSelectionHelper();
helper.extractOutputKeyValue(keyStr, values.next().toString(),
fieldSeparator, reduceOutputKeyFieldList,
reduceOutputValueFieldList, allReduceValueFieldsFrom, false, false);
output.collect(helper.getKey(), helper.getValue());
}
}
}
相关信息
相关文章
hadoop CombineFileInputFormat 源码
hadoop CombineFileRecordReader 源码
hadoop CombineFileRecordReaderWrapper 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦