spark CoarseGrainedSchedulerBackend 源码
spark CoarseGrainedSchedulerBackend 代码
文件路径:/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.scheduler.cluster
import java.util.concurrent.{ScheduledExecutorService, TimeUnit}
import java.util.concurrent.atomic.{AtomicInteger, AtomicReference}
import javax.annotation.concurrent.GuardedBy
import scala.collection.mutable.{HashMap, HashSet, Queue}
import scala.concurrent.Future
import org.apache.hadoop.security.UserGroupInformation
import org.apache.spark.{ExecutorAllocationClient, SparkEnv, TaskState}
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.deploy.security.HadoopDelegationTokenManager
import org.apache.spark.errors.SparkCoreErrors
import org.apache.spark.executor.ExecutorLogUrlHandler
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.internal.config.Network._
import org.apache.spark.resource.ResourceProfile
import org.apache.spark.rpc._
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._
import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.ENDPOINT_NAME
import org.apache.spark.util.{RpcUtils, SerializableBuffer, ThreadUtils, Utils}
/**
* A scheduler backend that waits for coarse-grained executors to connect.
* This backend holds onto each executor for the duration of the Spark job rather than relinquishing
* executors whenever a task is done and asking the scheduler to launch a new executor for
* each new task. Executors may be launched in a variety of ways, such as Mesos tasks for the
* coarse-grained Mesos mode or standalone processes for Spark's standalone deploy mode
* (spark.deploy.*).
*/
private[spark]
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: RpcEnv)
extends ExecutorAllocationClient with SchedulerBackend with Logging {
// Use an atomic variable to track total number of cores in the cluster for simplicity and speed
protected val totalCoreCount = new AtomicInteger(0)
// Total number of executors that are currently registered
protected val totalRegisteredExecutors = new AtomicInteger(0)
protected val conf = scheduler.sc.conf
private val maxRpcMessageSize = RpcUtils.maxMessageSizeBytes(conf)
private val defaultAskTimeout = RpcUtils.askRpcTimeout(conf)
// Submit tasks only after (registered resources / total expected resources)
// is equal to at least this value, that is double between 0 and 1.
private val _minRegisteredRatio =
math.min(1, conf.get(SCHEDULER_MIN_REGISTERED_RESOURCES_RATIO).getOrElse(0.0))
// Submit tasks after maxRegisteredWaitingTime milliseconds
// if minRegisteredRatio has not yet been reached
private val maxRegisteredWaitingTimeNs = TimeUnit.MILLISECONDS.toNanos(
conf.get(SCHEDULER_MAX_REGISTERED_RESOURCE_WAITING_TIME))
private val createTimeNs = System.nanoTime()
// Accessing `executorDataMap` in the inherited methods from ThreadSafeRpcEndpoint doesn't need
// any protection. But accessing `executorDataMap` out of the inherited methods must be
// protected by `CoarseGrainedSchedulerBackend.this`. Besides, `executorDataMap` should only
// be modified in the inherited methods from ThreadSafeRpcEndpoint with protection by
// `CoarseGrainedSchedulerBackend.this`.
private val executorDataMap = new HashMap[String, ExecutorData]
// Number of executors for each ResourceProfile requested by the cluster
// manager, [[ExecutorAllocationManager]]
@GuardedBy("CoarseGrainedSchedulerBackend.this")
private val requestedTotalExecutorsPerResourceProfile = new HashMap[ResourceProfile, Int]
// Profile IDs to the times that executors were requested for.
// The operations we do on queue are all amortized constant cost
// see https://www.scala-lang.org/api/2.13.x/scala/collection/mutable/ArrayDeque.html
@GuardedBy("CoarseGrainedSchedulerBackend.this")
private val execRequestTimes = new HashMap[Int, Queue[(Int, Long)]]
private val listenerBus = scheduler.sc.listenerBus
// Executors we have requested the cluster manager to kill that have not died yet; maps
// the executor ID to whether it was explicitly killed by the driver (and thus shouldn't
// be considered an app-related failure). Visible for testing only.
@GuardedBy("CoarseGrainedSchedulerBackend.this")
private[scheduler] val executorsPendingToRemove = new HashMap[String, Boolean]
// Executors that have been lost, but for which we don't yet know the real exit reason.
protected val executorsPendingLossReason = new HashSet[String]
// Executors which are being decommissioned. Maps from executorId to ExecutorDecommissionInfo.
protected val executorsPendingDecommission = new HashMap[String, ExecutorDecommissionInfo]
// A map of ResourceProfile id to map of hostname with its possible task number running on it
@GuardedBy("CoarseGrainedSchedulerBackend.this")
protected var rpHostToLocalTaskCount: Map[Int, Map[String, Int]] = Map.empty
// The number of pending tasks per ResourceProfile id which is locality required
@GuardedBy("CoarseGrainedSchedulerBackend.this")
protected var numLocalityAwareTasksPerResourceProfileId = Map.empty[Int, Int]
// The num of current max ExecutorId used to re-register appMaster
@volatile protected var currentExecutorIdCounter = 0
// Current set of delegation tokens to send to executors.
private val delegationTokens = new AtomicReference[Array[Byte]]()
// The token manager used to create security tokens.
private var delegationTokenManager: Option[HadoopDelegationTokenManager] = None
private val reviveThread =
ThreadUtils.newDaemonSingleThreadScheduledExecutor("driver-revive-thread")
private val cleanupService: Option[ScheduledExecutorService] =
conf.get(EXECUTOR_DECOMMISSION_FORCE_KILL_TIMEOUT).map { _ =>
ThreadUtils.newDaemonSingleThreadScheduledExecutor("cleanup-decommission-execs")
}
class DriverEndpoint extends IsolatedRpcEndpoint with Logging {
override val rpcEnv: RpcEnv = CoarseGrainedSchedulerBackend.this.rpcEnv
protected val addressToExecutorId = new HashMap[RpcAddress, String]
// Spark configuration sent to executors. This is a lazy val so that subclasses of the
// scheduler can modify the SparkConf object before this view is created.
private lazy val sparkProperties = scheduler.sc.conf.getAll
.filter { case (k, _) => k.startsWith("spark.") }
.toSeq
private val logUrlHandler: ExecutorLogUrlHandler = new ExecutorLogUrlHandler(
conf.get(UI.CUSTOM_EXECUTOR_LOG_URL))
override def onStart(): Unit = {
// Periodically revive offers to allow delay scheduling to work
val reviveIntervalMs = conf.get(SCHEDULER_REVIVE_INTERVAL).getOrElse(1000L)
reviveThread.scheduleAtFixedRate(() => Utils.tryLogNonFatalError {
Option(self).foreach(_.send(ReviveOffers))
}, 0, reviveIntervalMs, TimeUnit.MILLISECONDS)
}
override def receive: PartialFunction[Any, Unit] = {
case StatusUpdate(executorId, taskId, state, data, resources) =>
scheduler.statusUpdate(taskId, state, data.value)
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
val rpId = executorInfo.resourceProfileId
val prof = scheduler.sc.resourceProfileManager.resourceProfileFromId(rpId)
val taskCpus = ResourceProfile.getTaskCpusOrDefaultForProfile(prof, conf)
executorInfo.freeCores += taskCpus
resources.foreach { case (k, v) =>
executorInfo.resourcesInfo.get(k).foreach { r =>
r.release(v.addresses)
}
}
makeOffers(executorId)
case None =>
// Ignoring the update since we don't know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
s"from unknown executor with ID $executorId")
}
}
case ShufflePushCompletion(shuffleId, shuffleMergeId, mapIndex) =>
scheduler.dagScheduler.shufflePushCompleted(shuffleId, shuffleMergeId, mapIndex)
case ReviveOffers =>
makeOffers()
case KillTask(taskId, executorId, interruptThread, reason) =>
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.executorEndpoint.send(
KillTask(taskId, executorId, interruptThread, reason))
case None =>
// Ignoring the task kill since the executor is not registered.
logWarning(s"Attempted to kill task $taskId for unknown executor $executorId.")
}
case KillExecutorsOnHost(host) =>
scheduler.getExecutorsAliveOnHost(host).foreach { execs =>
killExecutors(execs.toSeq, adjustTargetNumExecutors = false, countFailures = false,
force = true)
}
case DecommissionExecutorsOnHost(host) =>
val reason = ExecutorDecommissionInfo(s"Decommissioning all executors on $host.")
scheduler.getExecutorsAliveOnHost(host).foreach { execs =>
val execsWithReasons = execs.map(exec => (exec, reason)).toArray
decommissionExecutors(execsWithReasons, adjustTargetNumExecutors = false,
triggeredByExecutor = false)
}
case UpdateDelegationTokens(newDelegationTokens) =>
updateDelegationTokens(newDelegationTokens)
case RemoveExecutor(executorId, reason) =>
// We will remove the executor's state and cannot restore it. However, the connection
// between the driver and the executor may be still alive so that the executor won't exit
// automatically, so try to tell the executor to stop itself. See SPARK-13519.
executorDataMap.get(executorId).foreach(_.executorEndpoint.send(StopExecutor))
removeExecutor(executorId, reason)
case RemoveWorker(workerId, host, message) =>
removeWorker(workerId, host, message)
case LaunchedExecutor(executorId) =>
executorDataMap.get(executorId).foreach { data =>
data.freeCores = data.totalCores
}
makeOffers(executorId)
case MiscellaneousProcessAdded(time: Long,
processId: String, info: MiscellaneousProcessDetails) =>
listenerBus.post(SparkListenerMiscellaneousProcessAdded(time, processId, info))
case e =>
logError(s"Received unexpected message. ${e}")
}
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls,
attributes, resources, resourceProfileId) =>
if (executorDataMap.contains(executorId)) {
context.sendFailure(new IllegalStateException(s"Duplicate executor ID: $executorId"))
} else if (scheduler.excludedNodes.contains(hostname) ||
isExecutorExcluded(executorId, hostname)) {
// If the cluster manager gives us an executor on an excluded node (because it
// already started allocating those resources before we informed it of our exclusion,
// or if it ignored our exclusion), then we reject that executor immediately.
logInfo(s"Rejecting $executorId as it has been excluded.")
context.sendFailure(
new IllegalStateException(s"Executor is excluded due to failures: $executorId"))
} else {
// If the executor's rpc env is not listening for incoming connections, `hostPort`
// will be null, and the client connection should be used to contact the executor.
val executorAddress = if (executorRef.address != null) {
executorRef.address
} else {
context.senderAddress
}
logInfo(s"Registered executor $executorRef ($executorAddress) with ID $executorId, " +
s" ResourceProfileId $resourceProfileId")
addressToExecutorId(executorAddress) = executorId
totalCoreCount.addAndGet(cores)
totalRegisteredExecutors.addAndGet(1)
val resourcesInfo = resources.map { case (rName, info) =>
// tell the executor it can schedule resources up to numSlotsPerAddress times,
// as configured by the user, or set to 1 as that is the default (1 task/resource)
val numParts = scheduler.sc.resourceProfileManager
.resourceProfileFromId(resourceProfileId).getNumSlotsPerAddress(rName, conf)
(info.name, new ExecutorResourceInfo(info.name, info.addresses, numParts))
}
// If we've requested the executor figure out when we did.
val reqTs: Option[Long] = CoarseGrainedSchedulerBackend.this.synchronized {
execRequestTimes.get(resourceProfileId).flatMap {
times =>
times.headOption.map {
h =>
// Take off the top element
times.dequeue()
// If we requested more than one exec reduce the req count by 1 and prepend it back
if (h._1 > 1) {
((h._1 - 1, h._2)) +=: times
}
h._2
}
}
}
val data = new ExecutorData(executorRef, executorAddress, hostname,
0, cores, logUrlHandler.applyPattern(logUrls, attributes), attributes,
resourcesInfo, resourceProfileId, registrationTs = System.currentTimeMillis(),
requestTs = reqTs)
// This must be synchronized because variables mutated
// in this block are read when requesting executors
CoarseGrainedSchedulerBackend.this.synchronized {
executorDataMap.put(executorId, data)
if (currentExecutorIdCounter < executorId.toInt) {
currentExecutorIdCounter = executorId.toInt
}
}
listenerBus.post(
SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))
// Note: some tests expect the reply to come after we put the executor in the map
context.reply(true)
}
case StopDriver =>
context.reply(true)
stop()
case StopExecutors =>
logInfo("Asking each executor to shut down")
for ((_, executorData) <- executorDataMap) {
executorData.executorEndpoint.send(StopExecutor)
}
context.reply(true)
case RemoveWorker(workerId, host, message) =>
removeWorker(workerId, host, message)
context.reply(true)
// Do not change this code without running the K8s integration suites
case ExecutorDecommissioning(executorId) =>
logWarning(s"Received executor $executorId decommissioned message")
context.reply(
decommissionExecutor(
executorId,
ExecutorDecommissionInfo(s"Executor $executorId is decommissioned."),
adjustTargetNumExecutors = false,
triggeredByExecutor = true))
case RetrieveSparkAppConfig(resourceProfileId) =>
val rp = scheduler.sc.resourceProfileManager.resourceProfileFromId(resourceProfileId)
val reply = SparkAppConfig(
sparkProperties,
SparkEnv.get.securityManager.getIOEncryptionKey(),
Option(delegationTokens.get()),
rp)
context.reply(reply)
case IsExecutorAlive(executorId) => context.reply(isExecutorActive(executorId))
case e =>
logError(s"Received unexpected ask ${e}")
}
// Make fake resource offers on all executors
private def makeOffers(): Unit = {
// Make sure no executor is killed while some task is launching on it
val taskDescs = withLock {
// Filter out executors under killing
val activeExecutors = executorDataMap.filterKeys(isExecutorActive)
val workOffers = activeExecutors.map {
case (id, executorData) => buildWorkerOffer(id, executorData)
}.toIndexedSeq
scheduler.resourceOffers(workOffers, true)
}
if (taskDescs.nonEmpty) {
launchTasks(taskDescs)
}
}
private def buildWorkerOffer(executorId: String, executorData: ExecutorData) = {
val resources = executorData.resourcesInfo.map { case (rName, rInfo) =>
(rName, rInfo.availableAddrs.toBuffer)
}
WorkerOffer(
executorId,
executorData.executorHost,
executorData.freeCores,
Some(executorData.executorAddress.hostPort),
resources,
executorData.resourceProfileId)
}
override def onDisconnected(remoteAddress: RpcAddress): Unit = {
addressToExecutorId
.get(remoteAddress)
.foreach(removeExecutor(_,
ExecutorProcessLost("Remote RPC client disassociated. Likely due to " +
"containers exceeding thresholds, or network issues. Check driver logs for WARN " +
"messages.")))
}
// Make fake resource offers on just one executor
private def makeOffers(executorId: String): Unit = {
// Make sure no executor is killed while some task is launching on it
val taskDescs = withLock {
// Filter out executors under killing
if (isExecutorActive(executorId)) {
val executorData = executorDataMap(executorId)
val workOffers = IndexedSeq(buildWorkerOffer(executorId, executorData))
scheduler.resourceOffers(workOffers, false)
} else {
Seq.empty
}
}
if (taskDescs.nonEmpty) {
launchTasks(taskDescs)
}
}
// Launch tasks returned by a set of resource offers
private def launchTasks(tasks: Seq[Seq[TaskDescription]]): Unit = {
for (task <- tasks.flatten) {
val serializedTask = TaskDescription.encode(task)
if (serializedTask.limit() >= maxRpcMessageSize) {
Option(scheduler.taskIdToTaskSetManager.get(task.taskId)).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
s"${RPC_MESSAGE_MAX_SIZE.key} (%d bytes). Consider increasing " +
s"${RPC_MESSAGE_MAX_SIZE.key} or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
// Do resources allocation here. The allocated resources will get released after the task
// finishes.
val rpId = executorData.resourceProfileId
val prof = scheduler.sc.resourceProfileManager.resourceProfileFromId(rpId)
val taskCpus = ResourceProfile.getTaskCpusOrDefaultForProfile(prof, conf)
executorData.freeCores -= taskCpus
task.resources.foreach { case (rName, rInfo) =>
assert(executorData.resourcesInfo.contains(rName))
executorData.resourcesInfo(rName).acquire(rInfo.addresses)
}
logDebug(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
s"${executorData.executorHost}.")
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}
// Remove a disconnected executor from the cluster
private def removeExecutor(executorId: String, reason: ExecutorLossReason): Unit = {
logDebug(s"Asked to remove executor $executorId with reason $reason")
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
// This must be synchronized because variables mutated
// in this block are read when requesting executors
val lossReason = CoarseGrainedSchedulerBackend.this.synchronized {
addressToExecutorId -= executorInfo.executorAddress
executorDataMap -= executorId
executorsPendingLossReason -= executorId
val killedByDriver = executorsPendingToRemove.remove(executorId).getOrElse(false)
val decommissionInfoOpt = executorsPendingDecommission.remove(executorId)
if (killedByDriver) {
ExecutorKilled
} else if (decommissionInfoOpt.isDefined) {
val decommissionInfo = decommissionInfoOpt.get
ExecutorDecommission(decommissionInfo.workerHost, decommissionInfo.message)
} else {
reason
}
}
totalCoreCount.addAndGet(-executorInfo.totalCores)
totalRegisteredExecutors.addAndGet(-1)
scheduler.executorLost(executorId, lossReason)
listenerBus.post(SparkListenerExecutorRemoved(
System.currentTimeMillis(), executorId, lossReason.toString))
case None =>
// SPARK-15262: If an executor is still alive even after the scheduler has removed
// its metadata, we may receive a heartbeat from that executor and tell its block
// manager to reregister itself. If that happens, the block manager master will know
// about the executor, but the scheduler will not. Therefore, we should remove the
// executor from the block manager when we hit this case.
scheduler.sc.env.blockManager.master.removeExecutorAsync(executorId)
// SPARK-35011: If we reach this code path, which means the executor has been
// already removed from the scheduler backend but the block manager master may
// still know it. In this case, removing the executor from block manager master
// would only post the event `SparkListenerBlockManagerRemoved`, which is unfortunately
// ignored by `AppStatusListener`. As a result, the executor would be shown on the UI
// forever. Therefore, we should also post `SparkListenerExecutorRemoved` here.
listenerBus.post(SparkListenerExecutorRemoved(
System.currentTimeMillis(), executorId, reason.toString))
logInfo(s"Asked to remove non-existent executor $executorId")
}
}
// Remove a lost worker from the cluster
private def removeWorker(workerId: String, host: String, message: String): Unit = {
logDebug(s"Asked to remove worker $workerId with reason $message")
scheduler.workerRemoved(workerId, host, message)
}
/**
* Stop making resource offers for the given executor. The executor is marked as lost with
* the loss reason still pending.
*
* @return Whether executor should be disabled
*/
protected def disableExecutor(executorId: String): Boolean = {
val shouldDisable = CoarseGrainedSchedulerBackend.this.synchronized {
if (isExecutorActive(executorId)) {
executorsPendingLossReason += executorId
true
} else {
// Returns true for explicitly killed executors, we also need to get pending loss reasons;
// For others return false.
executorsPendingToRemove.contains(executorId)
}
}
if (shouldDisable) {
logInfo(s"Disabling executor $executorId.")
scheduler.executorLost(executorId, LossReasonPending)
}
shouldDisable
}
}
val driverEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint())
protected def minRegisteredRatio: Double = _minRegisteredRatio
/**
* Request that the cluster manager decommission the specified executors.
*
* @param executorsAndDecomInfo Identifiers of executors & decommission info.
* @param adjustTargetNumExecutors whether the target number of executors will be adjusted down
* after these executors have been decommissioned.
* @param triggeredByExecutor whether the decommission is triggered at executor.
* @return the ids of the executors acknowledged by the cluster manager to be removed.
*/
override def decommissionExecutors(
executorsAndDecomInfo: Array[(String, ExecutorDecommissionInfo)],
adjustTargetNumExecutors: Boolean,
triggeredByExecutor: Boolean): Seq[String] = withLock {
// Do not change this code without running the K8s integration suites
val executorsToDecommission = executorsAndDecomInfo.flatMap { case (executorId, decomInfo) =>
// Only bother decommissioning executors which are alive.
if (isExecutorActive(executorId)) {
scheduler.executorDecommission(executorId, decomInfo)
executorsPendingDecommission(executorId) = decomInfo
Some(executorId)
} else {
None
}
}
logInfo(s"Decommission executors: ${executorsToDecommission.mkString(", ")}")
// If we don't want to replace the executors we are decommissioning
if (adjustTargetNumExecutors) {
adjustExecutors(executorsToDecommission)
}
// Mark those corresponding BlockManagers as decommissioned first before we sending
// decommission notification to executors. So, it's less likely to lead to the race
// condition where `getPeer` request from the decommissioned executor comes first
// before the BlockManagers are marked as decommissioned.
// Note that marking BlockManager as decommissioned doesn't need depend on
// `spark.storage.decommission.enabled`. Because it's meaningless to save more blocks
// for the BlockManager since the executor will be shutdown soon.
scheduler.sc.env.blockManager.master.decommissionBlockManagers(executorsToDecommission)
if (!triggeredByExecutor) {
executorsToDecommission.foreach { executorId =>
logInfo(s"Notify executor $executorId to decommissioning.")
executorDataMap(executorId).executorEndpoint.send(DecommissionExecutor)
}
}
conf.get(EXECUTOR_DECOMMISSION_FORCE_KILL_TIMEOUT).map { cleanupInterval =>
val cleanupTask = new Runnable() {
override def run(): Unit = Utils.tryLogNonFatalError {
val stragglers = CoarseGrainedSchedulerBackend.this.synchronized {
executorsToDecommission.filter(executorsPendingDecommission.contains)
}
if (stragglers.nonEmpty) {
logInfo(s"${stragglers.toList} failed to decommission in ${cleanupInterval}, killing.")
killExecutors(stragglers, false, false, true)
}
}
}
cleanupService.map(_.schedule(cleanupTask, cleanupInterval, TimeUnit.SECONDS))
}
executorsToDecommission
}
override def start(): Unit = {
if (UserGroupInformation.isSecurityEnabled()) {
delegationTokenManager = createTokenManager()
delegationTokenManager.foreach { dtm =>
val ugi = UserGroupInformation.getCurrentUser()
val tokens = if (dtm.renewalEnabled) {
dtm.start()
} else {
val creds = ugi.getCredentials()
dtm.obtainDelegationTokens(creds)
if (creds.numberOfTokens() > 0 || creds.numberOfSecretKeys() > 0) {
SparkHadoopUtil.get.serialize(creds)
} else {
null
}
}
if (tokens != null) {
updateDelegationTokens(tokens)
}
}
}
}
protected def createDriverEndpoint(): DriverEndpoint = new DriverEndpoint()
def stopExecutors(): Unit = {
try {
if (driverEndpoint != null) {
logInfo("Shutting down all executors")
driverEndpoint.askSync[Boolean](StopExecutors)
}
} catch {
case e: Exception =>
throw SparkCoreErrors.askStandaloneSchedulerToShutDownExecutorsError(e)
}
}
override def stop(): Unit = {
reviveThread.shutdownNow()
cleanupService.foreach(_.shutdownNow())
stopExecutors()
delegationTokenManager.foreach(_.stop())
try {
if (driverEndpoint != null) {
driverEndpoint.askSync[Boolean](StopDriver)
}
} catch {
case e: Exception =>
throw SparkCoreErrors.stopStandaloneSchedulerDriverEndpointError(e)
}
}
/**
* Reset the state of CoarseGrainedSchedulerBackend to the initial state. Currently it will only
* be called in the yarn-client mode when AM re-registers after a failure.
* Visible for testing only.
* */
protected[scheduler] def reset(): Unit = {
val executors: Set[String] = synchronized {
requestedTotalExecutorsPerResourceProfile.clear()
executorDataMap.keys.toSet
}
// Remove all the lingering executors that should be removed but not yet. The reason might be
// because (1) disconnected event is not yet received; (2) executors die silently.
executors.foreach { eid =>
removeExecutor(eid,
ExecutorProcessLost("Stale executor after cluster manager re-registered."))
}
}
override def reviveOffers(): Unit = Utils.tryLogNonFatalError {
driverEndpoint.send(ReviveOffers)
}
override def killTask(
taskId: Long, executorId: String, interruptThread: Boolean, reason: String): Unit = {
driverEndpoint.send(KillTask(taskId, executorId, interruptThread, reason))
}
override def defaultParallelism(): Int = {
conf.getInt("spark.default.parallelism", math.max(totalCoreCount.get(), 2))
}
/**
* Called by subclasses when notified of a lost worker. It just fires the message and returns
* at once.
*/
protected def removeExecutor(executorId: String, reason: ExecutorLossReason): Unit = {
driverEndpoint.send(RemoveExecutor(executorId, reason))
}
protected def removeWorker(workerId: String, host: String, message: String): Unit = {
driverEndpoint.send(RemoveWorker(workerId, host, message))
}
def sufficientResourcesRegistered(): Boolean = true
override def isReady(): Boolean = {
if (sufficientResourcesRegistered) {
logInfo("SchedulerBackend is ready for scheduling beginning after " +
s"reached minRegisteredResourcesRatio: $minRegisteredRatio")
return true
}
if ((System.nanoTime() - createTimeNs) >= maxRegisteredWaitingTimeNs) {
logInfo("SchedulerBackend is ready for scheduling beginning after waiting " +
s"maxRegisteredResourcesWaitingTime: $maxRegisteredWaitingTimeNs(ns)")
return true
}
false
}
/**
* Return the number of executors currently registered with this backend.
*/
private def numExistingExecutors: Int = synchronized { executorDataMap.size }
override def getExecutorIds(): Seq[String] = synchronized {
executorDataMap.keySet.toSeq
}
def getExecutorsWithRegistrationTs(): Map[String, Long] = synchronized {
executorDataMap.mapValues(v => v.registrationTs).toMap
}
override def isExecutorActive(id: String): Boolean = synchronized {
executorDataMap.contains(id) &&
!executorsPendingToRemove.contains(id) &&
!executorsPendingLossReason.contains(id) &&
!executorsPendingDecommission.contains(id)
}
/**
* Get the max number of tasks that can be concurrent launched based on the ResourceProfile
* could be used, even if some of them are being used at the moment.
* Note that please don't cache the value returned by this method, because the number can change
* due to add/remove executors.
*
* @param rp ResourceProfile which to use to calculate max concurrent tasks.
* @return The max number of tasks that can be concurrent launched currently.
*/
override def maxNumConcurrentTasks(rp: ResourceProfile): Int = synchronized {
val (rpIds, cpus, resources) = {
executorDataMap
.filter { case (id, _) => isExecutorActive(id) }
.values.toArray.map { executor =>
(
executor.resourceProfileId,
executor.totalCores,
executor.resourcesInfo.map { case (name, rInfo) => (name, rInfo.totalAddressAmount) }
)
}.unzip3
}
TaskSchedulerImpl.calculateAvailableSlots(scheduler, conf, rp.id, rpIds, cpus, resources)
}
// this function is for testing only
def getExecutorAvailableResources(
executorId: String): Map[String, ExecutorResourceInfo] = synchronized {
executorDataMap.get(executorId).map(_.resourcesInfo).getOrElse(Map.empty)
}
// this function is for testing only
def getExecutorResourceProfileId(executorId: String): Int = synchronized {
val execDataOption = executorDataMap.get(executorId)
execDataOption.map(_.resourceProfileId).getOrElse(ResourceProfile.UNKNOWN_RESOURCE_PROFILE_ID)
}
/**
* Request an additional number of executors from the cluster manager. This is
* requesting against the default ResourceProfile, we will need an API change to
* allow against other profiles.
* @return whether the request is acknowledged.
*/
final override def requestExecutors(numAdditionalExecutors: Int): Boolean = {
if (numAdditionalExecutors < 0) {
throw new IllegalArgumentException(
"Attempted to request a negative number of additional executor(s) " +
s"$numAdditionalExecutors from the cluster manager. Please specify a positive number!")
}
logInfo(s"Requesting $numAdditionalExecutors additional executor(s) from the cluster manager")
val response = synchronized {
val defaultProf = scheduler.sc.resourceProfileManager.defaultResourceProfile
val numExisting = requestedTotalExecutorsPerResourceProfile.getOrElse(defaultProf, 0)
requestedTotalExecutorsPerResourceProfile(defaultProf) = numExisting + numAdditionalExecutors
// Account for executors pending to be added or removed
updateExecRequestTime(defaultProf.id, numAdditionalExecutors)
doRequestTotalExecutors(requestedTotalExecutorsPerResourceProfile.toMap)
}
defaultAskTimeout.awaitResult(response)
}
/**
* Update the cluster manager on our scheduling needs. Three bits of information are included
* to help it make decisions.
* @param resourceProfileIdToNumExecutors The total number of executors we'd like to have per
* ResourceProfile. The cluster manager shouldn't kill any
* running executor to reach this number, but, if all
* existing executors were to die, this is the number
* of executors we'd want to be allocated.
* @param numLocalityAwareTasksPerResourceProfileId The number of tasks in all active stages that
* have a locality preferences per
* ResourceProfile. This includes running,
* pending, and completed tasks.
* @param hostToLocalTaskCount A map of hosts to the number of tasks from all active stages
* that would like to like to run on that host.
* This includes running, pending, and completed tasks.
* @return whether the request is acknowledged by the cluster manager.
*/
final override def requestTotalExecutors(
resourceProfileIdToNumExecutors: Map[Int, Int],
numLocalityAwareTasksPerResourceProfileId: Map[Int, Int],
hostToLocalTaskCount: Map[Int, Map[String, Int]]
): Boolean = {
val totalExecs = resourceProfileIdToNumExecutors.values.sum
if (totalExecs < 0) {
throw new IllegalArgumentException(
"Attempted to request a negative number of executor(s) " +
s"$totalExecs from the cluster manager. Please specify a positive number!")
}
val resourceProfileToNumExecutors = resourceProfileIdToNumExecutors.map { case (rpid, num) =>
(scheduler.sc.resourceProfileManager.resourceProfileFromId(rpid), num)
}
val response = synchronized {
val oldResourceProfileToNumExecutors = requestedTotalExecutorsPerResourceProfile.map {
case (rp, num) =>
(rp.id, num)
}.toMap
this.requestedTotalExecutorsPerResourceProfile.clear()
this.requestedTotalExecutorsPerResourceProfile ++= resourceProfileToNumExecutors
this.numLocalityAwareTasksPerResourceProfileId = numLocalityAwareTasksPerResourceProfileId
this.rpHostToLocalTaskCount = hostToLocalTaskCount
updateExecRequestTimes(oldResourceProfileToNumExecutors, resourceProfileIdToNumExecutors)
doRequestTotalExecutors(requestedTotalExecutorsPerResourceProfile.toMap)
}
defaultAskTimeout.awaitResult(response)
}
private def updateExecRequestTimes(oldProfile: Map[Int, Int], newProfile: Map[Int, Int]): Unit = {
newProfile.map {
case (k, v) =>
val delta = v - oldProfile.getOrElse(k, 0)
if (delta != 0) {
updateExecRequestTime(k, delta)
}
}
}
private def updateExecRequestTime(profileId: Int, delta: Int) = {
val times = execRequestTimes.getOrElseUpdate(profileId, Queue[(Int, Long)]())
if (delta > 0) {
// Add the request to the end, constant time op
times += ((delta, System.currentTimeMillis()))
} else if (delta < 0) {
// Consume as if |delta| had been allocated
var toConsume = -delta
// Note: it's possible that something else allocated an executor and we have
// a negative delta, we can just avoid mutating the queue.
while (toConsume > 0 && times.nonEmpty) {
val h = times.dequeue
if (h._1 > toConsume) {
// Prepend updated first req to times, constant time op
((h._1 - toConsume, h._2)) +=: times
toConsume = 0
} else {
toConsume = toConsume - h._1
}
}
}
}
/**
* Request executors from the cluster manager by specifying the total number desired,
* including existing pending and running executors.
*
* The semantics here guarantee that we do not over-allocate executors for this application,
* since a later request overrides the value of any prior request. The alternative interface
* of requesting a delta of executors risks double counting new executors when there are
* insufficient resources to satisfy the first request. We make the assumption here that the
* cluster manager will eventually fulfill all requests when resources free up.
*
* @return a future whose evaluation indicates whether the request is acknowledged.
*/
protected def doRequestTotalExecutors(
resourceProfileToTotalExecs: Map[ResourceProfile, Int]): Future[Boolean] =
Future.successful(false)
/**
* Adjust the number of executors being requested to no longer include the provided executors.
*/
private def adjustExecutors(executorIds: Seq[String]) = {
if (executorIds.nonEmpty) {
executorIds.foreach { exec =>
withLock {
val rpId = executorDataMap(exec).resourceProfileId
val rp = scheduler.sc.resourceProfileManager.resourceProfileFromId(rpId)
if (requestedTotalExecutorsPerResourceProfile.isEmpty) {
// Assume that we are killing an executor that was started by default and
// not through the request api
requestedTotalExecutorsPerResourceProfile(rp) = 0
} else {
val requestedTotalForRp = requestedTotalExecutorsPerResourceProfile(rp)
requestedTotalExecutorsPerResourceProfile(rp) = math.max(requestedTotalForRp - 1, 0)
}
}
}
doRequestTotalExecutors(requestedTotalExecutorsPerResourceProfile.toMap)
} else {
Future.successful(true)
}
}
/**
* Request that the cluster manager kill the specified executors.
*
* @param executorIds identifiers of executors to kill
* @param adjustTargetNumExecutors whether the target number of executors be adjusted down
* after these executors have been killed
* @param countFailures if there are tasks running on the executors when they are killed, whether
* those failures be counted to task failure limits?
* @param force whether to force kill busy executors, default false
* @return the ids of the executors acknowledged by the cluster manager to be removed.
*/
final override def killExecutors(
executorIds: Seq[String],
adjustTargetNumExecutors: Boolean,
countFailures: Boolean,
force: Boolean): Seq[String] = {
logInfo(s"Requesting to kill executor(s) ${executorIds.mkString(", ")}")
val response = withLock {
val (knownExecutors, unknownExecutors) = executorIds.partition(executorDataMap.contains)
unknownExecutors.foreach { id =>
logWarning(s"Executor to kill $id does not exist!")
}
// If an executor is already pending to be removed, do not kill it again (SPARK-9795)
// If this executor is busy, do not kill it unless we are told to force kill it (SPARK-9552)
val executorsToKill = knownExecutors
.filter { id => !executorsPendingToRemove.contains(id) }
.filter { id => force || !scheduler.isExecutorBusy(id) }
executorsToKill.foreach { id => executorsPendingToRemove(id) = !countFailures }
logInfo(s"Actual list of executor(s) to be killed is ${executorsToKill.mkString(", ")}")
// If we do not wish to replace the executors we kill, sync the target number of executors
// with the cluster manager to avoid allocating new ones. When computing the new target,
// take into account executors that are pending to be added or removed.
val adjustTotalExecutors =
if (adjustTargetNumExecutors) {
adjustExecutors(executorsToKill)
} else {
Future.successful(true)
}
val killExecutors: Boolean => Future[Boolean] =
if (executorsToKill.nonEmpty) {
_ => doKillExecutors(executorsToKill)
} else {
_ => Future.successful(false)
}
val killResponse = adjustTotalExecutors.flatMap(killExecutors)(ThreadUtils.sameThread)
killResponse.flatMap(killSuccessful =>
Future.successful (if (killSuccessful) executorsToKill else Seq.empty[String])
)(ThreadUtils.sameThread)
}
defaultAskTimeout.awaitResult(response)
}
/**
* Kill the given list of executors through the cluster manager.
* @return whether the kill request is acknowledged.
*/
protected def doKillExecutors(executorIds: Seq[String]): Future[Boolean] =
Future.successful(false)
/**
* Request that the cluster manager decommissions all executors on a given host.
* @return whether the decommission request is acknowledged.
*/
final override def decommissionExecutorsOnHost(host: String): Boolean = {
logInfo(s"Requesting to kill any and all executors on host $host")
// A potential race exists if a new executor attempts to register on a host
// that is on the exclude list and is no longer valid. To avoid this race,
// all executor registration and decommissioning happens in the event loop. This way, either
// an executor will fail to register, or will be decommed when all executors on a host
// are decommed.
// Decommission all the executors on this host in an event loop to ensure serialization.
driverEndpoint.send(DecommissionExecutorsOnHost(host))
true
}
/**
* Request that the cluster manager kill all executors on a given host.
* @return whether the kill request is acknowledged.
*/
final override def killExecutorsOnHost(host: String): Boolean = {
logInfo(s"Requesting to kill any and all executors on host $host")
// A potential race exists if a new executor attempts to register on a host
// that is on the exclude list and is no longer valid. To avoid this race,
// all executor registration and killing happens in the event loop. This way, either
// an executor will fail to register, or will be killed when all executors on a host
// are killed.
// Kill all the executors on this host in an event loop to ensure serialization.
driverEndpoint.send(KillExecutorsOnHost(host))
true
}
/**
* Create the delegation token manager to be used for the application. This method is called
* once during the start of the scheduler backend (so after the object has already been
* fully constructed), only if security is enabled in the Hadoop configuration.
*/
protected def createTokenManager(): Option[HadoopDelegationTokenManager] = None
/**
* Called when a new set of delegation tokens is sent to the driver. Child classes can override
* this method but should always call this implementation, which handles token distribution to
* executors.
*/
protected def updateDelegationTokens(tokens: Array[Byte]): Unit = {
SparkHadoopUtil.get.addDelegationTokens(tokens, conf)
delegationTokens.set(tokens)
executorDataMap.values.foreach { ed =>
ed.executorEndpoint.send(UpdateDelegationTokens(tokens))
}
}
protected def currentDelegationTokens: Array[Byte] = delegationTokens.get()
/**
* Checks whether the executor is excluded due to failure(s). This is called when the executor
* tries to register with the scheduler, and will deny registration if this method returns true.
*
* This is in addition to the exclude list kept by the task scheduler, so custom implementations
* don't need to check there.
*/
protected def isExecutorExcluded(executorId: String, hostname: String): Boolean = false
// SPARK-27112: We need to ensure that there is ordering of lock acquisition
// between TaskSchedulerImpl and CoarseGrainedSchedulerBackend objects in order to fix
// the deadlock issue exposed in SPARK-27112
private def withLock[T](fn: => T): T = scheduler.synchronized {
CoarseGrainedSchedulerBackend.this.synchronized { fn }
}
}
private[spark] object CoarseGrainedSchedulerBackend {
val ENDPOINT_NAME = "CoarseGrainedScheduler"
}
相关信息
相关文章
spark CoarseGrainedClusterMessage 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦