superset 2022-04-01_14-38_a9422eeaae74_new_dataset_models_take_2 源码

  • 2022-10-20
  • 浏览 (357)

superset 2022-04-01_14-38_a9422eeaae74_new_dataset_models_take_2 代码

文件路径:/superset/migrations/versions/2022-04-01_14-38_a9422eeaae74_new_dataset_models_take_2.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""new_dataset_models_take_2

Revision ID: a9422eeaae74
Revises: ad07e4fdbaba
Create Date: 2022-04-01 14:38:09.499483

"""

# revision identifiers, used by Alembic.
revision = "a9422eeaae74"
down_revision = "ad07e4fdbaba"

import json
import os
from datetime import datetime
from typing import List, Optional, Set, Type, Union
from uuid import uuid4

import sqlalchemy as sa
from alembic import op
from sqlalchemy import select
from sqlalchemy.ext.declarative import declarative_base, declared_attr
from sqlalchemy.orm import backref, relationship, Session
from sqlalchemy.schema import UniqueConstraint
from sqlalchemy.sql import functions as func
from sqlalchemy.sql.expression import and_, or_
from sqlalchemy_utils import UUIDType

from superset.connectors.sqla.models import ADDITIVE_METRIC_TYPES_LOWER
from superset.connectors.sqla.utils import get_dialect_name, get_identifier_quoter
from superset.extensions import encrypted_field_factory
from superset.migrations.shared.utils import assign_uuids
from superset.sql_parse import extract_table_references, Table
from superset.utils.core import MediumText

Base = declarative_base()
SHOW_PROGRESS = os.environ.get("SHOW_PROGRESS") == "1"
UNKNOWN_TYPE = "UNKNOWN"


user_table = sa.Table(
    "ab_user", Base.metadata, sa.Column("id", sa.Integer(), primary_key=True)
)


class UUIDMixin:
    uuid = sa.Column(
        UUIDType(binary=True), primary_key=False, unique=True, default=uuid4
    )


class AuxiliaryColumnsMixin(UUIDMixin):
    """
    Auxiliary columns, a combination of columns added by
       AuditMixinNullable + ImportExportMixin
    """

    created_on = sa.Column(sa.DateTime, default=datetime.now, nullable=True)
    changed_on = sa.Column(
        sa.DateTime, default=datetime.now, onupdate=datetime.now, nullable=True
    )

    @declared_attr
    def created_by_fk(cls):
        return sa.Column(sa.Integer, sa.ForeignKey("ab_user.id"), nullable=True)

    @declared_attr
    def changed_by_fk(cls):
        return sa.Column(sa.Integer, sa.ForeignKey("ab_user.id"), nullable=True)


def insert_from_select(
    target: Union[str, sa.Table, Type[Base]], source: sa.sql.expression.Select
) -> None:
    """
    Execute INSERT FROM SELECT to copy data from a SELECT query to the target table.
    """
    if isinstance(target, sa.Table):
        target_table = target
    elif hasattr(target, "__tablename__"):
        target_table: sa.Table = Base.metadata.tables[target.__tablename__]
    else:
        target_table: sa.Table = Base.metadata.tables[target]
    cols = [col.name for col in source.columns if col.name in target_table.columns]
    query = target_table.insert().from_select(cols, source)
    return op.execute(query)


class Database(Base):

    __tablename__ = "dbs"
    __table_args__ = (UniqueConstraint("database_name"),)

    id = sa.Column(sa.Integer, primary_key=True)
    database_name = sa.Column(sa.String(250), unique=True, nullable=False)
    sqlalchemy_uri = sa.Column(sa.String(1024), nullable=False)
    password = sa.Column(encrypted_field_factory.create(sa.String(1024)))
    impersonate_user = sa.Column(sa.Boolean, default=False)
    encrypted_extra = sa.Column(encrypted_field_factory.create(sa.Text), nullable=True)
    extra = sa.Column(sa.Text)
    server_cert = sa.Column(encrypted_field_factory.create(sa.Text), nullable=True)


class TableColumn(AuxiliaryColumnsMixin, Base):

    __tablename__ = "table_columns"
    __table_args__ = (UniqueConstraint("table_id", "column_name"),)

    id = sa.Column(sa.Integer, primary_key=True)
    table_id = sa.Column(sa.Integer, sa.ForeignKey("tables.id"))
    is_active = sa.Column(sa.Boolean, default=True)
    extra = sa.Column(sa.Text)
    column_name = sa.Column(sa.String(255), nullable=False)
    type = sa.Column(sa.String(32))
    expression = sa.Column(MediumText())
    description = sa.Column(MediumText())
    is_dttm = sa.Column(sa.Boolean, default=False)
    filterable = sa.Column(sa.Boolean, default=True)
    groupby = sa.Column(sa.Boolean, default=True)
    verbose_name = sa.Column(sa.String(1024))
    python_date_format = sa.Column(sa.String(255))


class SqlMetric(AuxiliaryColumnsMixin, Base):

    __tablename__ = "sql_metrics"
    __table_args__ = (UniqueConstraint("table_id", "metric_name"),)

    id = sa.Column(sa.Integer, primary_key=True)
    table_id = sa.Column(sa.Integer, sa.ForeignKey("tables.id"))
    extra = sa.Column(sa.Text)
    metric_type = sa.Column(sa.String(32))
    metric_name = sa.Column(sa.String(255), nullable=False)
    expression = sa.Column(MediumText(), nullable=False)
    warning_text = sa.Column(MediumText())
    description = sa.Column(MediumText())
    d3format = sa.Column(sa.String(128))
    verbose_name = sa.Column(sa.String(1024))


sqlatable_user_table = sa.Table(
    "sqlatable_user",
    Base.metadata,
    sa.Column("id", sa.Integer, primary_key=True),
    sa.Column("user_id", sa.Integer, sa.ForeignKey("ab_user.id")),
    sa.Column("table_id", sa.Integer, sa.ForeignKey("tables.id")),
)


class SqlaTable(AuxiliaryColumnsMixin, Base):

    __tablename__ = "tables"
    __table_args__ = (UniqueConstraint("database_id", "schema", "table_name"),)

    id = sa.Column(sa.Integer, primary_key=True)
    extra = sa.Column(sa.Text)
    database_id = sa.Column(sa.Integer, sa.ForeignKey("dbs.id"), nullable=False)
    database: Database = relationship(
        "Database",
        backref=backref("tables", cascade="all, delete-orphan"),
        foreign_keys=[database_id],
    )
    schema = sa.Column(sa.String(255))
    table_name = sa.Column(sa.String(250), nullable=False)
    sql = sa.Column(MediumText())
    is_managed_externally = sa.Column(sa.Boolean, nullable=False, default=False)
    external_url = sa.Column(sa.Text, nullable=True)


table_column_association_table = sa.Table(
    "sl_table_columns",
    Base.metadata,
    sa.Column("table_id", sa.ForeignKey("sl_tables.id"), primary_key=True),
    sa.Column("column_id", sa.ForeignKey("sl_columns.id"), primary_key=True),
)

dataset_column_association_table = sa.Table(
    "sl_dataset_columns",
    Base.metadata,
    sa.Column("dataset_id", sa.ForeignKey("sl_datasets.id"), primary_key=True),
    sa.Column("column_id", sa.ForeignKey("sl_columns.id"), primary_key=True),
)

dataset_table_association_table = sa.Table(
    "sl_dataset_tables",
    Base.metadata,
    sa.Column("dataset_id", sa.ForeignKey("sl_datasets.id"), primary_key=True),
    sa.Column("table_id", sa.ForeignKey("sl_tables.id"), primary_key=True),
)

dataset_user_association_table = sa.Table(
    "sl_dataset_users",
    Base.metadata,
    sa.Column("dataset_id", sa.ForeignKey("sl_datasets.id"), primary_key=True),
    sa.Column("user_id", sa.ForeignKey("ab_user.id"), primary_key=True),
)


class NewColumn(AuxiliaryColumnsMixin, Base):

    __tablename__ = "sl_columns"

    id = sa.Column(sa.Integer, primary_key=True)
    # A temporary column to link physical columns with tables so we don't
    # have to insert a record in the relationship table while creating new columns.
    table_id = sa.Column(sa.Integer, nullable=True)

    is_aggregation = sa.Column(sa.Boolean, nullable=False, default=False)
    is_additive = sa.Column(sa.Boolean, nullable=False, default=False)
    is_dimensional = sa.Column(sa.Boolean, nullable=False, default=False)
    is_filterable = sa.Column(sa.Boolean, nullable=False, default=True)
    is_increase_desired = sa.Column(sa.Boolean, nullable=False, default=True)
    is_managed_externally = sa.Column(sa.Boolean, nullable=False, default=False)
    is_partition = sa.Column(sa.Boolean, nullable=False, default=False)
    is_physical = sa.Column(sa.Boolean, nullable=False, default=False)
    is_temporal = sa.Column(sa.Boolean, nullable=False, default=False)
    is_spatial = sa.Column(sa.Boolean, nullable=False, default=False)

    name = sa.Column(sa.Text)
    type = sa.Column(sa.Text)
    unit = sa.Column(sa.Text)
    expression = sa.Column(MediumText())
    description = sa.Column(MediumText())
    warning_text = sa.Column(MediumText())
    external_url = sa.Column(sa.Text, nullable=True)
    extra_json = sa.Column(MediumText(), default="{}")


class NewTable(AuxiliaryColumnsMixin, Base):

    __tablename__ = "sl_tables"

    id = sa.Column(sa.Integer, primary_key=True)
    # A temporary column to keep the link between NewTable to SqlaTable
    sqlatable_id = sa.Column(sa.Integer, primary_key=False, nullable=True, unique=True)
    database_id = sa.Column(sa.Integer, sa.ForeignKey("dbs.id"), nullable=False)
    is_managed_externally = sa.Column(sa.Boolean, nullable=False, default=False)
    catalog = sa.Column(sa.Text)
    schema = sa.Column(sa.Text)
    name = sa.Column(sa.Text)
    external_url = sa.Column(sa.Text, nullable=True)
    extra_json = sa.Column(MediumText(), default="{}")
    database: Database = relationship(
        "Database",
        backref=backref("new_tables", cascade="all, delete-orphan"),
        foreign_keys=[database_id],
    )


class NewDataset(Base, AuxiliaryColumnsMixin):

    __tablename__ = "sl_datasets"

    id = sa.Column(sa.Integer, primary_key=True)
    database_id = sa.Column(sa.Integer, sa.ForeignKey("dbs.id"), nullable=False)
    is_physical = sa.Column(sa.Boolean, default=False)
    is_managed_externally = sa.Column(sa.Boolean, nullable=False, default=False)
    name = sa.Column(sa.Text)
    expression = sa.Column(MediumText())
    external_url = sa.Column(sa.Text, nullable=True)
    extra_json = sa.Column(MediumText(), default="{}")


def find_tables(
    session: Session,
    database_id: int,
    default_schema: Optional[str],
    tables: Set[Table],
) -> List[int]:
    """
    Look for NewTable's of from a specific database
    """
    if not tables:
        return []

    predicate = or_(
        *[
            and_(
                NewTable.database_id == database_id,
                NewTable.schema == (table.schema or default_schema),
                NewTable.name == table.table,
            )
            for table in tables
        ]
    )
    return session.query(NewTable.id).filter(predicate).all()


# helper SQLA elements for easier querying
is_physical_table = or_(SqlaTable.sql.is_(None), SqlaTable.sql == "")
is_physical_column = or_(TableColumn.expression.is_(None), TableColumn.expression == "")

# filtering out table columns with valid associated SqlTable
active_table_columns = sa.join(
    TableColumn,
    SqlaTable,
    TableColumn.table_id == SqlaTable.id,
)
active_metrics = sa.join(SqlMetric, SqlaTable, SqlMetric.table_id == SqlaTable.id)


def copy_tables(session: Session) -> None:
    """Copy Physical tables"""
    count = session.query(SqlaTable).filter(is_physical_table).count()
    if not count:
        return
    print(f">> Copy {count:,} physical tables to sl_tables...")
    insert_from_select(
        NewTable,
        select(
            [
                # Tables need different uuid than datasets, since they are different
                # entities. When INSERT FROM SELECT, we must provide a value for `uuid`,
                # otherwise it'd use the default generated on Python side, which
                # will cause duplicate values. They will be replaced by `assign_uuids` later.
                SqlaTable.uuid,
                SqlaTable.id.label("sqlatable_id"),
                SqlaTable.created_on,
                SqlaTable.changed_on,
                SqlaTable.created_by_fk,
                SqlaTable.changed_by_fk,
                SqlaTable.table_name.label("name"),
                SqlaTable.schema,
                SqlaTable.database_id,
                SqlaTable.is_managed_externally,
                SqlaTable.external_url,
            ]
        )
        # use an inner join to filter out only tables with valid database ids
        .select_from(
            sa.join(SqlaTable, Database, SqlaTable.database_id == Database.id)
        ).where(is_physical_table),
    )


def copy_datasets(session: Session) -> None:
    """Copy all datasets"""
    count = session.query(SqlaTable).count()
    if not count:
        return
    print(f">> Copy {count:,} SqlaTable to sl_datasets...")
    insert_from_select(
        NewDataset,
        select(
            [
                SqlaTable.uuid,
                SqlaTable.created_on,
                SqlaTable.changed_on,
                SqlaTable.created_by_fk,
                SqlaTable.changed_by_fk,
                SqlaTable.database_id,
                SqlaTable.table_name.label("name"),
                func.coalesce(SqlaTable.sql, SqlaTable.table_name).label("expression"),
                is_physical_table.label("is_physical"),
                SqlaTable.is_managed_externally,
                SqlaTable.external_url,
                SqlaTable.extra.label("extra_json"),
            ]
        ),
    )

    print("   Copy dataset owners...")
    insert_from_select(
        dataset_user_association_table,
        select(
            [NewDataset.id.label("dataset_id"), sqlatable_user_table.c.user_id]
        ).select_from(
            sqlatable_user_table.join(
                SqlaTable, SqlaTable.id == sqlatable_user_table.c.table_id
            ).join(NewDataset, NewDataset.uuid == SqlaTable.uuid)
        ),
    )

    print("   Link physical datasets with tables...")
    insert_from_select(
        dataset_table_association_table,
        select(
            [
                NewDataset.id.label("dataset_id"),
                NewTable.id.label("table_id"),
            ]
        ).select_from(
            sa.join(SqlaTable, NewTable, NewTable.sqlatable_id == SqlaTable.id).join(
                NewDataset, NewDataset.uuid == SqlaTable.uuid
            )
        ),
    )


def copy_columns(session: Session) -> None:
    """Copy columns with active associated SqlTable"""
    count = session.query(TableColumn).select_from(active_table_columns).count()
    if not count:
        return
    print(f">> Copy {count:,} table columns to sl_columns...")
    insert_from_select(
        NewColumn,
        select(
            [
                TableColumn.uuid,
                TableColumn.created_on,
                TableColumn.changed_on,
                TableColumn.created_by_fk,
                TableColumn.changed_by_fk,
                TableColumn.groupby.label("is_dimensional"),
                TableColumn.filterable.label("is_filterable"),
                TableColumn.column_name.label("name"),
                TableColumn.description,
                func.coalesce(TableColumn.expression, TableColumn.column_name).label(
                    "expression"
                ),
                sa.literal(False).label("is_aggregation"),
                is_physical_column.label("is_physical"),
                func.coalesce(TableColumn.is_dttm, False).label("is_temporal"),
                func.coalesce(TableColumn.type, UNKNOWN_TYPE).label("type"),
                TableColumn.extra.label("extra_json"),
            ]
        ).select_from(active_table_columns),
    )

    joined_columns_table = active_table_columns.join(
        NewColumn, TableColumn.uuid == NewColumn.uuid
    )
    print("   Link all columns to sl_datasets...")
    insert_from_select(
        dataset_column_association_table,
        select(
            [
                NewDataset.id.label("dataset_id"),
                NewColumn.id.label("column_id"),
            ],
        ).select_from(
            joined_columns_table.join(NewDataset, NewDataset.uuid == SqlaTable.uuid)
        ),
    )


def copy_metrics(session: Session) -> None:
    """Copy metrics as virtual columns"""
    metrics_count = session.query(SqlMetric).select_from(active_metrics).count()
    if not metrics_count:
        return

    print(f">> Copy {metrics_count:,} metrics to sl_columns...")
    insert_from_select(
        NewColumn,
        select(
            [
                SqlMetric.uuid,
                SqlMetric.created_on,
                SqlMetric.changed_on,
                SqlMetric.created_by_fk,
                SqlMetric.changed_by_fk,
                SqlMetric.metric_name.label("name"),
                SqlMetric.expression,
                SqlMetric.description,
                sa.literal(UNKNOWN_TYPE).label("type"),
                (
                    func.coalesce(
                        sa.func.lower(SqlMetric.metric_type).in_(
                            ADDITIVE_METRIC_TYPES_LOWER
                        ),
                        sa.literal(False),
                    ).label("is_additive")
                ),
                sa.literal(True).label("is_aggregation"),
                # metrics are by default not filterable
                sa.literal(False).label("is_filterable"),
                sa.literal(False).label("is_dimensional"),
                sa.literal(False).label("is_physical"),
                sa.literal(False).label("is_temporal"),
                SqlMetric.extra.label("extra_json"),
                SqlMetric.warning_text,
            ]
        ).select_from(active_metrics),
    )

    print("   Link metric columns to datasets...")
    insert_from_select(
        dataset_column_association_table,
        select(
            [
                NewDataset.id.label("dataset_id"),
                NewColumn.id.label("column_id"),
            ],
        ).select_from(
            active_metrics.join(NewDataset, NewDataset.uuid == SqlaTable.uuid).join(
                NewColumn, NewColumn.uuid == SqlMetric.uuid
            )
        ),
    )


def postprocess_datasets(session: Session) -> None:
    """
    Postprocess datasets after insertion to
      - Quote table names for physical datasets (if needed)
      - Link referenced tables to virtual datasets
    """
    total = session.query(SqlaTable).count()
    if not total:
        return

    offset = 0
    limit = 10000

    joined_tables = sa.join(
        NewDataset,
        SqlaTable,
        NewDataset.uuid == SqlaTable.uuid,
    ).join(
        Database,
        Database.id == SqlaTable.database_id,
        isouter=True,
    )
    assert session.query(func.count()).select_from(joined_tables).scalar() == total

    print(f">> Run postprocessing on {total} datasets")

    update_count = 0

    def print_update_count():
        if SHOW_PROGRESS:
            print(
                f"   Will update {update_count} datasets" + " " * 20,
                end="\r",
            )

    while offset < total:
        print(
            f"   Process dataset {offset + 1}~{min(total, offset + limit)}..."
            + " " * 30
        )
        for (
            database_id,
            dataset_id,
            expression,
            extra,
            is_physical,
            schema,
            sqlalchemy_uri,
        ) in session.execute(
            select(
                [
                    NewDataset.database_id,
                    NewDataset.id.label("dataset_id"),
                    NewDataset.expression,
                    SqlaTable.extra,
                    NewDataset.is_physical,
                    SqlaTable.schema,
                    Database.sqlalchemy_uri,
                ]
            )
            .select_from(joined_tables)
            .offset(offset)
            .limit(limit)
        ):
            drivername = (sqlalchemy_uri or "").split("://")[0]
            updates = {}
            updated = False
            if is_physical and drivername and expression:
                quoted_expression = get_identifier_quoter(drivername)(expression)
                if quoted_expression != expression:
                    updates["expression"] = quoted_expression

            # add schema name to `dataset.extra_json` so we don't have to join
            # tables in order to use datasets
            if schema:
                try:
                    extra_json = json.loads(extra) if extra else {}
                except json.decoder.JSONDecodeError:
                    extra_json = {}
                extra_json["schema"] = schema
                updates["extra_json"] = json.dumps(extra_json)

            if updates:
                session.execute(
                    sa.update(NewDataset)
                    .where(NewDataset.id == dataset_id)
                    .values(**updates)
                )
                updated = True

            if not is_physical and drivername and expression:
                table_refrences = extract_table_references(
                    expression, get_dialect_name(drivername), show_warning=False
                )
                found_tables = find_tables(
                    session, database_id, schema, table_refrences
                )
                if found_tables:
                    op.bulk_insert(
                        dataset_table_association_table,
                        [
                            {"dataset_id": dataset_id, "table_id": table.id}
                            for table in found_tables
                        ],
                    )
                    updated = True

            if updated:
                update_count += 1
                print_update_count()

        session.flush()
        offset += limit

    if SHOW_PROGRESS:
        print("")


def postprocess_columns(session: Session) -> None:
    """
    At this step, we will
      - Add engine specific quotes to `expression` of physical columns
      - Tuck some extra metadata to `extra_json`
    """
    total = session.query(NewColumn).count()
    if not total:
        return

    def get_joined_tables(offset, limit):
        return (
            sa.join(
                session.query(NewColumn)
                .offset(offset)
                .limit(limit)
                .subquery("sl_columns"),
                dataset_column_association_table,
                dataset_column_association_table.c.column_id == NewColumn.id,
            )
            .join(
                NewDataset,
                NewDataset.id == dataset_column_association_table.c.dataset_id,
            )
            .join(
                dataset_table_association_table,
                # Join tables with physical datasets
                and_(
                    NewDataset.is_physical,
                    dataset_table_association_table.c.dataset_id == NewDataset.id,
                ),
                isouter=True,
            )
            .join(Database, Database.id == NewDataset.database_id)
            .join(
                TableColumn,
                TableColumn.uuid == NewColumn.uuid,
                isouter=True,
            )
            .join(
                SqlMetric,
                SqlMetric.uuid == NewColumn.uuid,
                isouter=True,
            )
        )

    offset = 0
    limit = 100000

    print(f">> Run postprocessing on {total:,} columns")

    update_count = 0

    def print_update_count():
        if SHOW_PROGRESS:
            print(
                f"   Will update {update_count} columns" + " " * 20,
                end="\r",
            )

    while offset < total:
        query = (
            select(
                # sorted alphabetically
                [
                    NewColumn.id.label("column_id"),
                    TableColumn.column_name,
                    NewColumn.changed_by_fk,
                    NewColumn.changed_on,
                    NewColumn.created_on,
                    NewColumn.description,
                    SqlMetric.d3format,
                    NewDataset.external_url,
                    NewColumn.extra_json,
                    NewColumn.is_dimensional,
                    NewColumn.is_filterable,
                    NewDataset.is_managed_externally,
                    NewColumn.is_physical,
                    SqlMetric.metric_type,
                    TableColumn.python_date_format,
                    Database.sqlalchemy_uri,
                    dataset_table_association_table.c.table_id,
                    func.coalesce(
                        TableColumn.verbose_name, SqlMetric.verbose_name
                    ).label("verbose_name"),
                    NewColumn.warning_text,
                ]
            )
            .select_from(get_joined_tables(offset, limit))
            .where(
                # pre-filter to columns with potential updates
                or_(
                    NewColumn.is_physical,
                    TableColumn.verbose_name.isnot(None),
                    TableColumn.verbose_name.isnot(None),
                    SqlMetric.verbose_name.isnot(None),
                    SqlMetric.d3format.isnot(None),
                    SqlMetric.metric_type.isnot(None),
                )
            )
        )

        start = offset + 1
        end = min(total, offset + limit)
        count = session.query(func.count()).select_from(query).scalar()
        print(f"   [Column {start:,} to {end:,}] {count:,} may be updated")

        physical_columns = []

        for (
            # sorted alphabetically
            column_id,
            column_name,
            changed_by_fk,
            changed_on,
            created_on,
            description,
            d3format,
            external_url,
            extra_json,
            is_dimensional,
            is_filterable,
            is_managed_externally,
            is_physical,
            metric_type,
            python_date_format,
            sqlalchemy_uri,
            table_id,
            verbose_name,
            warning_text,
        ) in session.execute(query):
            try:
                extra = json.loads(extra_json) if extra_json else {}
            except json.decoder.JSONDecodeError:
                extra = {}
            updated_extra = {**extra}
            updates = {}

            if is_managed_externally:
                updates["is_managed_externally"] = True
            if external_url:
                updates["external_url"] = external_url

            # update extra json
            for (key, val) in (
                {
                    "verbose_name": verbose_name,
                    "python_date_format": python_date_format,
                    "d3format": d3format,
                    "metric_type": metric_type,
                }
            ).items():
                # save the original val, including if it's `false`
                if val is not None:
                    updated_extra[key] = val

            if updated_extra != extra:
                updates["extra_json"] = json.dumps(updated_extra)

            # update expression for physical table columns
            if is_physical:
                if column_name and sqlalchemy_uri:
                    drivername = sqlalchemy_uri.split("://")[0]
                    if is_physical and drivername:
                        quoted_expression = get_identifier_quoter(drivername)(
                            column_name
                        )
                        if quoted_expression != column_name:
                            updates["expression"] = quoted_expression
                # duplicate physical columns for tables
                physical_columns.append(
                    dict(
                        created_on=created_on,
                        changed_on=changed_on,
                        changed_by_fk=changed_by_fk,
                        description=description,
                        expression=updates.get("expression", column_name),
                        external_url=external_url,
                        extra_json=updates.get("extra_json", extra_json),
                        is_aggregation=False,
                        is_dimensional=is_dimensional,
                        is_filterable=is_filterable,
                        is_managed_externally=is_managed_externally,
                        is_physical=True,
                        name=column_name,
                        table_id=table_id,
                        warning_text=warning_text,
                    )
                )

            if updates:
                session.execute(
                    sa.update(NewColumn)
                    .where(NewColumn.id == column_id)
                    .values(**updates)
                )
                update_count += 1
                print_update_count()

        if physical_columns:
            op.bulk_insert(NewColumn.__table__, physical_columns)

        session.flush()
        offset += limit

    if SHOW_PROGRESS:
        print("")

    print("   Assign table column relations...")
    insert_from_select(
        table_column_association_table,
        select([NewColumn.table_id, NewColumn.id.label("column_id")])
        .select_from(NewColumn)
        .where(and_(NewColumn.is_physical, NewColumn.table_id.isnot(None))),
    )


new_tables: sa.Table = [
    NewTable.__table__,
    NewDataset.__table__,
    NewColumn.__table__,
    table_column_association_table,
    dataset_column_association_table,
    dataset_table_association_table,
    dataset_user_association_table,
]


def reset_postgres_id_sequence(table: str) -> None:
    op.execute(
        f"""
        SELECT setval(
            pg_get_serial_sequence('{table}', 'id'),
            COALESCE(max(id) + 1, 1),
            false
        )
        FROM {table};
    """
    )


def upgrade() -> None:
    bind = op.get_bind()
    session: Session = Session(bind=bind)
    Base.metadata.drop_all(bind=bind, tables=new_tables)
    Base.metadata.create_all(bind=bind, tables=new_tables)

    copy_tables(session)
    copy_datasets(session)
    copy_columns(session)
    copy_metrics(session)
    session.commit()

    postprocess_columns(session)
    session.commit()

    postprocess_datasets(session)
    session.commit()

    # Table were created with the same uuids are datasets. They should
    # have different uuids as they are different entities.
    print(">> Assign new UUIDs to tables...")
    assign_uuids(NewTable, session)

    print(">> Drop intermediate columns...")
    # These columns are are used during migration, as datasets are independent of tables once created,
    # dataset columns also the same to table columns.
    with op.batch_alter_table(NewTable.__tablename__) as batch_op:
        batch_op.drop_column("sqlatable_id")
    with op.batch_alter_table(NewColumn.__tablename__) as batch_op:
        batch_op.drop_column("table_id")


def downgrade():
    Base.metadata.drop_all(bind=op.get_bind(), tables=new_tables)

相关信息

superset 源码目录

相关文章

superset 2015-09-21_17-30_4e6a06bad7a8_init 源码

superset 2015-10-05_10-325a7bad26f2a7 源码

superset 2015-10-05_22-111e2841a4128 源码

superset 2015-10-19_20-54_2929af7925ed_tz_offsets_in_data_sources 源码

superset 2015-11-21_11-18_289ce07647b_add_encrypted_password_field 源码

superset 2015-12-04_09-42_1a48a5411020_adding_slug_to_dash 源码

superset 2015-12-04_11-16_315b3f4da9b0_adding_log_model 源码

superset 2015-12-13_08-38_55179c7f25c7_sqla_descr 源码

superset 2015-12-14_13-37_12d55656cbca_is_featured 源码

superset 2015-12-15_17-02_2591d77e9831_user_id 源码

0  赞