spark RRDD 源码

  • 2022-10-20
  • 浏览 (320)

spark RRDD 代码

文件路径:/core/src/main/scala/org/apache/spark/api/r/RRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.api.r

import java.io.{File, OutputStream}
import java.net.Socket
import java.util.{Map => JMap}

import scala.collection.JavaConverters._
import scala.reflect.ClassTag

import org.apache.spark._
import org.apache.spark.api.java.{JavaPairRDD, JavaRDD, JavaSparkContext}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.security.SocketAuthServer

private abstract class BaseRRDD[T: ClassTag, U: ClassTag](
    parent: RDD[T],
    numPartitions: Int,
    func: Array[Byte],
    deserializer: String,
    serializer: String,
    packageNames: Array[Byte],
    broadcastVars: Array[Broadcast[Object]])
  extends RDD[U](parent) with Logging {
  override def getPartitions: Array[Partition] = parent.partitions

  override def compute(partition: Partition, context: TaskContext): Iterator[U] = {
    val runner = new RRunner[T, U](
      func, deserializer, serializer, packageNames, broadcastVars, numPartitions)

    // The parent may be also an RRDD, so we should launch it first.
    val parentIterator = firstParent[T].iterator(partition, context)

    runner.compute(parentIterator, partition.index)
  }
}

/**
 * Form an RDD[(Int, Array[Byte])] from key-value pairs returned from R.
 * This is used by SparkR's shuffle operations.
 */
private class PairwiseRRDD[T: ClassTag](
    parent: RDD[T],
    numPartitions: Int,
    hashFunc: Array[Byte],
    deserializer: String,
    packageNames: Array[Byte],
    broadcastVars: Array[Object])
  extends BaseRRDD[T, (Int, Array[Byte])](
    parent, numPartitions, hashFunc, deserializer,
    SerializationFormats.BYTE, packageNames,
    broadcastVars.map(x => x.asInstanceOf[Broadcast[Object]])) {
  lazy val asJavaPairRDD : JavaPairRDD[Int, Array[Byte]] = JavaPairRDD.fromRDD(this)
}

/**
 * An RDD that stores serialized R objects as Array[Byte].
 */
private class RRDD[T: ClassTag](
    parent: RDD[T],
    func: Array[Byte],
    deserializer: String,
    serializer: String,
    packageNames: Array[Byte],
    broadcastVars: Array[Object])
  extends BaseRRDD[T, Array[Byte]](
    parent, -1, func, deserializer, serializer, packageNames,
    broadcastVars.map(x => x.asInstanceOf[Broadcast[Object]])) {
  lazy val asJavaRDD : JavaRDD[Array[Byte]] = JavaRDD.fromRDD(this)
}

/**
 * An RDD that stores R objects as Array[String].
 */
private class StringRRDD[T: ClassTag](
    parent: RDD[T],
    func: Array[Byte],
    deserializer: String,
    packageNames: Array[Byte],
    broadcastVars: Array[Object])
  extends BaseRRDD[T, String](
    parent, -1, func, deserializer, SerializationFormats.STRING, packageNames,
    broadcastVars.map(x => x.asInstanceOf[Broadcast[Object]])) {
  lazy val asJavaRDD : JavaRDD[String] = JavaRDD.fromRDD(this)
}

private[spark] object RRDD {
  def createSparkContext(
      master: String,
      appName: String,
      sparkHome: String,
      jars: Array[String],
      sparkEnvirMap: JMap[Object, Object],
      sparkExecutorEnvMap: JMap[Object, Object]): JavaSparkContext = {
    val sparkConf = new SparkConf().setAppName(appName)
                                   .setSparkHome(sparkHome)

    // Override `master` if we have a user-specified value
    if (master != "") {
      sparkConf.setMaster(master)
    } else {
      // If conf has no master set it to "local" to maintain
      // backwards compatibility
      sparkConf.setIfMissing("spark.master", "local")
    }

    for ((name, value) <- sparkEnvirMap.asScala) {
      sparkConf.set(name.toString, value.toString)
    }
    for ((name, value) <- sparkExecutorEnvMap.asScala) {
      sparkConf.setExecutorEnv(name.toString, value.toString)
    }

    if (sparkEnvirMap.containsKey("spark.r.sql.derby.temp.dir") &&
        System.getProperty("derby.stream.error.file") == null) {
      // This must be set before SparkContext is instantiated.
      System.setProperty("derby.stream.error.file",
                         Seq(sparkEnvirMap.get("spark.r.sql.derby.temp.dir").toString, "derby.log")
                         .mkString(File.separator))
    }

    val jsc = new JavaSparkContext(SparkContext.getOrCreate(sparkConf))
    jars.foreach { jar =>
      jsc.addJar(jar)
    }
    jsc
  }

  /**
   * Create an RRDD given a sequence of byte arrays. Used to create RRDD when `parallelize` is
   * called from R.
   */
  def createRDDFromArray(jsc: JavaSparkContext, arr: Array[Array[Byte]]): JavaRDD[Array[Byte]] = {
    JavaRDD.fromRDD(jsc.sc.parallelize(arr, arr.length))
  }

  /**
   * Create an RRDD given a temporary file name. This is used to create RRDD when parallelize is
   * called on large R objects.
   *
   * @param fileName name of temporary file on driver machine
   * @param parallelism number of slices defaults to 4
   */
  def createRDDFromFile(jsc: JavaSparkContext, fileName: String, parallelism: Int):
  JavaRDD[Array[Byte]] = {
    JavaRDD.readRDDFromFile(jsc, fileName, parallelism)
  }

  private[spark] def serveToStream(
      threadName: String)(writeFunc: OutputStream => Unit): Array[Any] = {
    SocketAuthServer.serveToStream(threadName, new RAuthHelper(SparkEnv.get.conf))(writeFunc)
  }
}

/**
 * Helper for making RDD[Array[Byte]] from some R data, by reading the data from R
 * over a socket. This is used in preference to writing data to a file when encryption is enabled.
 */
private[spark] class RParallelizeServer(sc: JavaSparkContext, parallelism: Int)
    extends SocketAuthServer[JavaRDD[Array[Byte]]](
      new RAuthHelper(SparkEnv.get.conf), "sparkr-parallelize-server") {

  override def handleConnection(sock: Socket): JavaRDD[Array[Byte]] = {
    val in = sock.getInputStream()
    JavaRDD.readRDDFromInputStream(sc.sc, in, parallelism)
  }
}

相关信息

spark 源码目录

相关文章

spark BaseRRunner 源码

spark JVMObjectTracker 源码

spark RAuthHelper 源码

spark RBackend 源码

spark RBackendAuthHandler 源码

spark RBackendHandler 源码

spark RRunner 源码

spark RUtils 源码

spark SerDe 源码

0  赞