go stencil 源码

  • 2022-07-15
  • 浏览 (1031)

golang stencil 代码

文件路径:/src/cmd/compile/internal/noder/stencil.go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.

package noder

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/objw"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
	"fmt"
	"go/constant"
)

// Enable extra consistency checks.
const doubleCheck = false

func assert(p bool) {
	base.Assert(p)
}

// For outputting debug information on dictionary format and instantiated dictionaries
// (type arg, derived types, sub-dictionary, and itab entries).
var infoPrintMode = false

func infoPrint(format string, a ...interface{}) {
	if infoPrintMode {
		fmt.Printf(format, a...)
	}
}

var geninst genInst

func BuildInstantiations() {
	geninst.instInfoMap = make(map[*types.Sym]*instInfo)
	geninst.buildInstantiations()
	geninst.instInfoMap = nil
}

// buildInstantiations scans functions for generic function calls and methods, and
// creates the required instantiations. It also creates instantiated methods for all
// fully-instantiated generic types that have been encountered already or new ones
// that are encountered during the instantiation process. It scans all declarations
// in typecheck.Target.Decls first, before scanning any new instantiations created.
func (g *genInst) buildInstantiations() {
	// Instantiate the methods of instantiated generic types that we have seen so far.
	g.instantiateMethods()

	// Scan all currentdecls for call to generic functions/methods.
	n := len(typecheck.Target.Decls)
	for i := 0; i < n; i++ {
		g.scanForGenCalls(typecheck.Target.Decls[i])
	}

	// Scan all new instantiations created due to g.instantiateMethods() and the
	// scan of current decls. This loop purposely runs until no new
	// instantiations are created.
	for i := 0; i < len(g.newInsts); i++ {
		g.scanForGenCalls(g.newInsts[i])
	}

	g.finalizeSyms()

	// All the instantiations and dictionaries have been created. Now go through
	// each new instantiation and transform the various operations that need to make
	// use of their dictionary.
	l := len(g.newInsts)
	for _, fun := range g.newInsts {
		info := g.instInfoMap[fun.Sym()]
		g.dictPass(info)
		if doubleCheck {
			ir.Visit(info.fun, func(n ir.Node) {
				if n.Op() != ir.OCONVIFACE {
					return
				}
				c := n.(*ir.ConvExpr)
				if c.X.Type().HasShape() && !c.X.Type().IsInterface() {
					ir.Dump("BAD FUNCTION", info.fun)
					ir.Dump("BAD CONVERSION", c)
					base.Fatalf("converting shape type to interface")
				}
			})
		}
		if base.Flag.W > 1 {
			ir.Dump(fmt.Sprintf("\ndictpass %v", info.fun), info.fun)
		}
	}
	assert(l == len(g.newInsts))
	g.newInsts = nil
}

// scanForGenCalls scans a single function (or global assignment), looking for
// references to generic functions/methods. At each such reference, it creates any
// required instantiation and transforms the reference.
func (g *genInst) scanForGenCalls(decl ir.Node) {
	switch decl.Op() {
	case ir.ODCLFUNC:
		if decl.Type().HasTParam() {
			// Skip any generic functions
			return
		}
		// transformCall() below depends on CurFunc being set.
		ir.CurFunc = decl.(*ir.Func)

	case ir.OAS, ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV, ir.OASOP:
		// These are all the various kinds of global assignments,
		// whose right-hand-sides might contain a function
		// instantiation.

	default:
		// The other possible ops at the top level are ODCLCONST
		// and ODCLTYPE, which don't have any function
		// instantiations.
		return
	}

	// Search for any function references using generic function/methods. Then
	// create the needed instantiated function if it hasn't been created yet, and
	// change to calling that function directly.
	modified := false
	closureRequired := false
	// declInfo will be non-nil exactly if we are scanning an instantiated function
	declInfo := g.instInfoMap[decl.Sym()]

	ir.Visit(decl, func(n ir.Node) {
		if n.Op() == ir.OFUNCINST {
			// generic F, not immediately called
			closureRequired = true
		}
		if (n.Op() == ir.OMETHEXPR || n.Op() == ir.OMETHVALUE) && len(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) > 0 && !types.IsInterfaceMethod(n.(*ir.SelectorExpr).Selection.Type) {
			// T.M or x.M, where T or x is generic, but not immediately
			// called. Not necessary if the method selected is
			// actually for an embedded interface field.
			closureRequired = true
		}
		if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
			// We have found a function call using a generic function
			// instantiation.
			call := n.(*ir.CallExpr)
			inst := call.X.(*ir.InstExpr)
			nameNode, isMeth := g.getInstNameNode(inst)
			targs := typecheck.TypesOf(inst.Targs)
			st := g.getInstantiation(nameNode, targs, isMeth).fun
			dictValue, usingSubdict := g.getDictOrSubdict(declInfo, n, nameNode, targs, isMeth)
			if infoPrintMode {
				dictkind := "Main dictionary"
				if usingSubdict {
					dictkind = "Sub-dictionary"
				}
				if inst.X.Op() == ir.OMETHVALUE {
					fmt.Printf("%s in %v at generic method call: %v - %v\n", dictkind, decl, inst.X, call)
				} else {
					fmt.Printf("%s in %v at generic function call: %v - %v\n", dictkind, decl, inst.X, call)
				}
			}

			// Transform the Call now, which changes OCALL to
			// OCALLFUNC and does typecheckaste/assignconvfn. Do
			// it before installing the instantiation, so we are
			// checking against non-shape param types in
			// typecheckaste.
			transformCall(call)

			// Replace the OFUNCINST with a direct reference to the
			// new stenciled function
			call.X = st.Nname
			if inst.X.Op() == ir.OMETHVALUE {
				// When we create an instantiation of a method
				// call, we make it a function. So, move the
				// receiver to be the first arg of the function
				// call.
				call.Args.Prepend(inst.X.(*ir.SelectorExpr).X)
			}

			// Add dictionary to argument list.
			call.Args.Prepend(dictValue)
			modified = true
		}
		if n.Op() == ir.OCALLMETH && n.(*ir.CallExpr).X.Op() == ir.ODOTMETH && len(deref(n.(*ir.CallExpr).X.Type().Recv().Type).RParams()) > 0 {
			// Method call on a generic type, which was instantiated by stenciling.
			// Method calls on explicitly instantiated types will have an OFUNCINST
			// and are handled above.
			call := n.(*ir.CallExpr)
			meth := call.X.(*ir.SelectorExpr)
			targs := deref(meth.Type().Recv().Type).RParams()

			t := meth.X.Type()
			baseType := deref(t).OrigType()
			var gf *ir.Name
			for _, m := range baseType.Methods().Slice() {
				if meth.Sel == m.Sym {
					gf = m.Nname.(*ir.Name)
					break
				}
			}

			// Transform the Call now, which changes OCALL
			// to OCALLFUNC and does typecheckaste/assignconvfn.
			transformCall(call)

			st := g.getInstantiation(gf, targs, true).fun
			dictValue, usingSubdict := g.getDictOrSubdict(declInfo, n, gf, targs, true)
			if hasShapeTypes(targs) {
				// We have to be using a subdictionary, since this is
				// a generic method call.
				assert(usingSubdict)
			} else {
				// We should use main dictionary, because the receiver is
				// an instantiation already, see issue #53406.
				assert(!usingSubdict)
			}

			// Transform to a function call, by appending the
			// dictionary and the receiver to the args.
			call.SetOp(ir.OCALLFUNC)
			call.X = st.Nname
			call.Args.Prepend(dictValue, meth.X)
			modified = true
		}
	})

	// If we found a reference to a generic instantiation that wasn't an
	// immediate call, then traverse the nodes of decl again (with
	// EditChildren rather than Visit), where we actually change the
	// reference to the instantiation to a closure that captures the
	// dictionary, then does a direct call.
	// EditChildren is more expensive than Visit, so we only do this
	// in the infrequent case of an OFUNCINST without a corresponding
	// call.
	if closureRequired {
		modified = true
		var edit func(ir.Node) ir.Node
		var outer *ir.Func
		if f, ok := decl.(*ir.Func); ok {
			outer = f
		}
		edit = func(x ir.Node) ir.Node {
			if x.Op() == ir.OFUNCINST {
				child := x.(*ir.InstExpr).X
				if child.Op() == ir.OMETHEXPR || child.Op() == ir.OMETHVALUE {
					// Call EditChildren on child (x.X),
					// not x, so that we don't do
					// buildClosure() on the
					// METHEXPR/METHVALUE nodes as well.
					ir.EditChildren(child, edit)
					return g.buildClosure(outer, x)
				}
			}
			ir.EditChildren(x, edit)
			switch {
			case x.Op() == ir.OFUNCINST:
				return g.buildClosure(outer, x)
			case (x.Op() == ir.OMETHEXPR || x.Op() == ir.OMETHVALUE) &&
				len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0 &&
				!types.IsInterfaceMethod(x.(*ir.SelectorExpr).Selection.Type):
				return g.buildClosure(outer, x)
			}
			return x
		}
		edit(decl)
	}
	if base.Flag.W > 1 && modified {
		ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
	}
	ir.CurFunc = nil
	// We may have seen new fully-instantiated generic types while
	// instantiating any needed functions/methods in the above
	// function. If so, instantiate all the methods of those types
	// (which will then lead to more function/methods to scan in the loop).
	g.instantiateMethods()
}

// buildClosure makes a closure to implement x, a OFUNCINST or OMETHEXPR/OMETHVALUE
// of generic type. outer is the containing function (or nil if closure is
// in a global assignment instead of a function).
func (g *genInst) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
	pos := x.Pos()
	var target *ir.Func   // target instantiated function/method
	var dictValue ir.Node // dictionary to use
	var rcvrValue ir.Node // receiver, if a method value
	typ := x.Type()       // type of the closure
	var outerInfo *instInfo
	if outer != nil {
		outerInfo = g.instInfoMap[outer.Sym()]
	}
	usingSubdict := false
	valueMethod := false
	if x.Op() == ir.OFUNCINST {
		inst := x.(*ir.InstExpr)

		// Type arguments we're instantiating with.
		targs := typecheck.TypesOf(inst.Targs)

		// Find the generic function/method.
		var gf *ir.Name
		if inst.X.Op() == ir.ONAME {
			// Instantiating a generic function call.
			gf = inst.X.(*ir.Name)
		} else if inst.X.Op() == ir.OMETHVALUE {
			// Instantiating a method value x.M.
			se := inst.X.(*ir.SelectorExpr)
			rcvrValue = se.X
			gf = se.Selection.Nname.(*ir.Name)
		} else {
			panic("unhandled")
		}

		// target is the instantiated function we're trying to call.
		// For functions, the target expects a dictionary as its first argument.
		// For method values, the target expects a dictionary and the receiver
		// as its first two arguments.
		// dictValue is the value to use for the dictionary argument.
		target = g.getInstantiation(gf, targs, rcvrValue != nil).fun
		dictValue, usingSubdict = g.getDictOrSubdict(outerInfo, x, gf, targs, rcvrValue != nil)
		if infoPrintMode {
			dictkind := "Main dictionary"
			if usingSubdict {
				dictkind = "Sub-dictionary"
			}
			if rcvrValue == nil {
				fmt.Printf("%s in %v for generic function value %v\n", dictkind, outer, inst.X)
			} else {
				fmt.Printf("%s in %v for generic method value %v\n", dictkind, outer, inst.X)
			}
		}
	} else { // ir.OMETHEXPR or ir.METHVALUE
		// Method expression T.M where T is a generic type.
		se := x.(*ir.SelectorExpr)
		targs := deref(se.X.Type()).RParams()
		if len(targs) == 0 {
			panic("bad")
		}
		if x.Op() == ir.OMETHVALUE {
			rcvrValue = se.X
		}

		// se.X.Type() is the top-level type of the method expression. To
		// correctly handle method expressions involving embedded fields,
		// look up the generic method below using the type of the receiver
		// of se.Selection, since that will be the type that actually has
		// the method.
		recv := deref(se.Selection.Type.Recv().Type)
		if len(recv.RParams()) == 0 {
			// The embedded type that actually has the method is not
			// actually generic, so no need to build a closure.
			return x
		}
		baseType := recv.OrigType()
		var gf *ir.Name
		for _, m := range baseType.Methods().Slice() {
			if se.Sel == m.Sym {
				gf = m.Nname.(*ir.Name)
				break
			}
		}
		if !gf.Type().Recv().Type.IsPtr() {
			// Remember if value method, so we can detect (*T).M case.
			valueMethod = true
		}
		target = g.getInstantiation(gf, targs, true).fun
		dictValue, usingSubdict = g.getDictOrSubdict(outerInfo, x, gf, targs, true)
		if infoPrintMode {
			dictkind := "Main dictionary"
			if usingSubdict {
				dictkind = "Sub-dictionary"
			}
			fmt.Printf("%s in %v for method expression %v\n", dictkind, outer, x)
		}
	}

	// Build a closure to implement a function instantiation.
	//
	//   func f[T any] (int, int) (int, int) { ...whatever... }
	//
	// Then any reference to f[int] not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.f[int](.dictN, a0, a1)
	//   }
	//
	// Similarly for method expressions,
	//
	//   type g[T any] ....
	//   func (rcvr g[T]) f(a0, a1 int) (r0, r1 int) { ... }
	//
	// Any reference to g[int].f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(rcvr g[int], a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, rcvr, a0, a1)
	//   }
	//
	// Also method values
	//
	//   var x g[int]
	//
	// Any reference to x.f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   x2 := x
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, x2, a0, a1)
	//   }

	// Make a new internal function.
	fn, formalParams, formalResults := startClosure(pos, outer, typ)
	fn.SetWrapper(true) // See issue 52237

	// This is the dictionary we want to use.
	// It may be a constant, it may be the outer functions's dictionary, or it may be
	// a subdictionary acquired from the outer function's dictionary.
	// For the latter, dictVar is a variable in the outer function's scope, set to the subdictionary
	// read from the outer function's dictionary.
	var dictVar *ir.Name
	var dictAssign *ir.AssignStmt
	if outer != nil {
		dictVar = ir.NewNameAt(pos, closureSym(outer, typecheck.LocalDictName, g.dnum))
		g.dnum++
		dictVar.Class = ir.PAUTO
		typed(types.Types[types.TUINTPTR], dictVar)
		dictVar.Curfn = outer
		dictAssign = ir.NewAssignStmt(pos, dictVar, dictValue)
		dictAssign.SetTypecheck(1)
		dictVar.Defn = dictAssign
		outer.Dcl = append(outer.Dcl, dictVar)
	}
	// assign the receiver to a temporary.
	var rcvrVar *ir.Name
	var rcvrAssign ir.Node
	if rcvrValue != nil {
		rcvrVar = ir.NewNameAt(pos, closureSym(outer, ".rcvr", g.dnum))
		g.dnum++
		typed(rcvrValue.Type(), rcvrVar)
		rcvrAssign = ir.NewAssignStmt(pos, rcvrVar, rcvrValue)
		rcvrAssign.SetTypecheck(1)
		rcvrVar.Defn = rcvrAssign
		if outer == nil {
			rcvrVar.Class = ir.PEXTERN
			typecheck.Target.Decls = append(typecheck.Target.Decls, rcvrAssign)
			typecheck.Target.Externs = append(typecheck.Target.Externs, rcvrVar)
		} else {
			rcvrVar.Class = ir.PAUTO
			rcvrVar.Curfn = outer
			outer.Dcl = append(outer.Dcl, rcvrVar)
		}
	}

	// Build body of closure. This involves just calling the wrapped function directly
	// with the additional dictionary argument.

	// First, figure out the dictionary argument.
	var dict2Var ir.Node
	if usingSubdict {
		// Capture sub-dictionary calculated in the outer function
		dict2Var = ir.CaptureName(pos, fn, dictVar)
		typed(types.Types[types.TUINTPTR], dict2Var)
	} else {
		// Static dictionary, so can be used directly in the closure
		dict2Var = dictValue
	}
	// Also capture the receiver variable.
	var rcvr2Var *ir.Name
	if rcvrValue != nil {
		rcvr2Var = ir.CaptureName(pos, fn, rcvrVar)
	}

	// Build arguments to call inside the closure.
	var args []ir.Node

	// First the dictionary argument.
	args = append(args, dict2Var)
	// Then the receiver.
	if rcvrValue != nil {
		args = append(args, rcvr2Var)
	}
	// Then all the other arguments (including receiver for method expressions).
	for i := 0; i < typ.NumParams(); i++ {
		if x.Op() == ir.OMETHEXPR && i == 0 {
			// If we are doing a method expression, we need to
			// explicitly traverse any embedded fields in the receiver
			// argument in order to call the method instantiation.
			arg0 := formalParams[0].Nname.(ir.Node)
			arg0 = typecheck.AddImplicitDots(ir.NewSelectorExpr(x.Pos(), ir.OXDOT, arg0, x.(*ir.SelectorExpr).Sel)).X
			if valueMethod && arg0.Type().IsPtr() {
				// For handling the (*T).M case: if we have a pointer
				// receiver after following all the embedded fields,
				// but it's a value method, add a star operator.
				arg0 = ir.NewStarExpr(arg0.Pos(), arg0)
			}
			args = append(args, arg0)
		} else {
			args = append(args, formalParams[i].Nname.(*ir.Name))
		}
	}

	// Build call itself.
	var innerCall ir.Node = ir.NewCallExpr(pos, ir.OCALL, target.Nname, args)
	innerCall.(*ir.CallExpr).IsDDD = typ.IsVariadic()
	if len(formalResults) > 0 {
		innerCall = ir.NewReturnStmt(pos, []ir.Node{innerCall})
	}
	// Finish building body of closure.
	ir.CurFunc = fn
	// TODO: set types directly here instead of using typecheck.Stmt
	typecheck.Stmt(innerCall)
	ir.CurFunc = nil
	fn.Body = []ir.Node{innerCall}

	// We're all done with the captured dictionary (and receiver, for method values).
	ir.FinishCaptureNames(pos, outer, fn)

	// Make a closure referencing our new internal function.
	c := ir.UseClosure(fn.OClosure, typecheck.Target)
	var init []ir.Node
	if outer != nil {
		init = append(init, dictAssign)
	}
	if rcvrValue != nil {
		init = append(init, rcvrAssign)
	}
	return ir.InitExpr(init, c)
}

// instantiateMethods instantiates all the methods (and associated dictionaries) of
// all fully-instantiated generic types that have been added to typecheck.instTypeList.
// It continues until no more types are added to typecheck.instTypeList.
func (g *genInst) instantiateMethods() {
	for {
		instTypeList := typecheck.GetInstTypeList()
		if len(instTypeList) == 0 {
			break
		}
		typecheck.ClearInstTypeList()
		for _, typ := range instTypeList {
			assert(!typ.HasShape())
			// Mark runtime type as needed, since this ensures that the
			// compiler puts out the needed DWARF symbols, when this
			// instantiated type has a different package from the local
			// package.
			typecheck.NeedRuntimeType(typ)
			// Lookup the method on the base generic type, since methods may
			// not be set on imported instantiated types.
			baseType := typ.OrigType()
			for j, _ := range typ.Methods().Slice() {
				if baseType.Methods().Slice()[j].Nointerface() {
					typ.Methods().Slice()[j].SetNointerface(true)
				}
				baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
				// Eagerly generate the instantiations and dictionaries that implement these methods.
				// We don't use the instantiations here, just generate them (and any
				// further instantiations those generate, etc.).
				// Note that we don't set the Func for any methods on instantiated
				// types. Their signatures don't match so that would be confusing.
				// Direct method calls go directly to the instantiations, implemented above.
				// Indirect method calls use wrappers generated in reflectcall. Those wrappers
				// will use these instantiations if they are needed (for interface tables or reflection).
				_ = g.getInstantiation(baseNname, typ.RParams(), true)
				_ = g.getDictionarySym(baseNname, typ.RParams(), true)
			}
		}
	}
}

// getInstNameNode returns the name node for the method or function being instantiated, and a bool which is true if a method is being instantiated.
func (g *genInst) getInstNameNode(inst *ir.InstExpr) (*ir.Name, bool) {
	if meth, ok := inst.X.(*ir.SelectorExpr); ok {
		return meth.Selection.Nname.(*ir.Name), true
	} else {
		return inst.X.(*ir.Name), false
	}
}

// getDictOrSubdict returns, for a method/function call or reference (node n) in an
// instantiation (described by instInfo), a node which is accessing a sub-dictionary
// or main/static dictionary, as needed, and also returns a boolean indicating if a
// sub-dictionary was accessed. nameNode is the particular function or method being
// called/referenced, and targs are the type arguments.
func (g *genInst) getDictOrSubdict(declInfo *instInfo, n ir.Node, nameNode *ir.Name, targs []*types.Type, isMeth bool) (ir.Node, bool) {
	var dict ir.Node
	usingSubdict := false
	if declInfo != nil {
		entry := -1
		for i, de := range declInfo.dictInfo.subDictCalls {
			if n == de.callNode {
				entry = declInfo.dictInfo.startSubDict + i
				break
			}
		}
		// If the entry is not found, it may be that this node did not have
		// any type args that depend on type params, so we need a main
		// dictionary, not a sub-dictionary.
		if entry >= 0 {
			dict = getDictionaryEntry(n.Pos(), declInfo.dictParam, entry, declInfo.dictInfo.dictLen)
			usingSubdict = true
		}
	}
	if !usingSubdict {
		dict = g.getDictionaryValue(n.Pos(), nameNode, targs, isMeth)
	}
	return dict, usingSubdict
}

// checkFetchBody checks if a generic body can be fetched, but hasn't been loaded
// yet. If so, it imports the body.
func checkFetchBody(nameNode *ir.Name) {
	if nameNode.Func.Body == nil && nameNode.Func.Inl != nil {
		// If there is no body yet but Func.Inl exists, then we can
		// import the whole generic body.
		assert(nameNode.Func.Inl.Cost == 1 && nameNode.Sym().Pkg != types.LocalPkg)
		typecheck.ImportBody(nameNode.Func)
		assert(nameNode.Func.Inl.Body != nil)
		nameNode.Func.Body = nameNode.Func.Inl.Body
		nameNode.Func.Dcl = nameNode.Func.Inl.Dcl
	}
}

// getInstantiation gets the instantiation and dictionary of the function or method nameNode
// with the type arguments shapes. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *genInst) getInstantiation(nameNode *ir.Name, shapes []*types.Type, isMeth bool) *instInfo {
	if nameNode.Func == nil {
		// If nameNode.Func is nil, this must be a reference to a method of
		// an imported instantiated type. We will have already called
		// g.instantiateMethods() on the fully-instantiated type, so
		// g.instInfoMap[sym] will be non-nil below.
		rcvr := nameNode.Type().Recv()
		if rcvr == nil || !deref(rcvr.Type).IsFullyInstantiated() {
			base.FatalfAt(nameNode.Pos(), "Unexpected function instantiation %v with no body", nameNode)
		}
	} else {
		checkFetchBody(nameNode)
	}

	var tparams []*types.Type
	if isMeth {
		// Get the type params from the method receiver (after skipping
		// over any pointer)
		recvType := nameNode.Type().Recv().Type
		recvType = deref(recvType)
		if recvType.IsFullyInstantiated() {
			// Get the type of the base generic type, so we get
			// its original typeparams.
			recvType = recvType.OrigType()
		}
		tparams = recvType.RParams()
	} else {
		fields := nameNode.Type().TParams().Fields().Slice()
		tparams = make([]*types.Type, len(fields))
		for i, f := range fields {
			tparams[i] = f.Type
		}
	}

	// Convert any non-shape type arguments to their shape, so we can reduce the
	// number of instantiations we have to generate. You can actually have a mix
	// of shape and non-shape arguments, because of inferred or explicitly
	// specified concrete type args.
	s1 := make([]*types.Type, len(shapes))
	for i, t := range shapes {
		var tparam *types.Type
		// Shapes are grouped differently for structural types, so we
		// pass the type param to Shapify(), so we can distinguish.
		tparam = tparams[i]
		if !t.IsShape() {
			s1[i] = typecheck.Shapify(t, i, tparam)
		} else {
			// Already a shape, but make sure it has the correct index.
			s1[i] = typecheck.Shapify(shapes[i].Underlying(), i, tparam)
		}
	}
	shapes = s1

	sym := typecheck.MakeFuncInstSym(nameNode.Sym(), shapes, false, isMeth)
	info := g.instInfoMap[sym]
	if info == nil {
		// If instantiation doesn't exist yet, create it and add
		// to the list of decls.
		info = &instInfo{
			dictInfo: &dictInfo{},
		}
		info.dictInfo.shapeToBound = make(map[*types.Type]*types.Type)

		if sym.Def != nil {
			// This instantiation must have been imported from another
			// package (because it was needed for inlining), so we should
			// not re-generate it and have conflicting definitions for the
			// symbol (issue #50121). It will have already gone through the
			// dictionary transformations of dictPass, so we don't actually
			// need the info.dictParam and info.shapeToBound info filled in
			// below. We just set the imported instantiation as info.fun.
			assert(sym.Pkg != types.LocalPkg)
			info.fun = sym.Def.(*ir.Name).Func
			assert(info.fun != nil)
			g.instInfoMap[sym] = info
			return info
		}

		// genericSubst fills in info.dictParam and info.shapeToBound.
		st := g.genericSubst(sym, nameNode, tparams, shapes, isMeth, info)
		info.fun = st
		g.instInfoMap[sym] = info

		// getInstInfo fills in info.dictInfo.
		g.getInstInfo(st, shapes, info)
		if base.Flag.W > 1 {
			ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
		}

		// This ensures that the linker drops duplicates of this instantiation.
		// All just works!
		st.SetDupok(true)
		typecheck.Target.Decls = append(typecheck.Target.Decls, st)
		g.newInsts = append(g.newInsts, st)
	}
	return info
}

// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
	g           *genInst
	isMethod    bool     // If a method is being instantiated
	newf        *ir.Func // Func node for the new stenciled function
	ts          typecheck.Tsubster
	info        *instInfo // Place to put extra info in the instantiation
	skipClosure bool      // Skip substituting closures

	// Map from non-nil, non-ONAME node n to slice of all m, where m.Defn = n
	defnMap map[ir.Node][]**ir.Name
}

// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args shapes. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. For either a generic
// method or function, a dictionary parameter is the added as the very first
// parameter. genericSubst fills in info.dictParam and info.shapeToBound.
func (g *genInst) genericSubst(newsym *types.Sym, nameNode *ir.Name, tparams []*types.Type, shapes []*types.Type, isMethod bool, info *instInfo) *ir.Func {
	gf := nameNode.Func
	// Pos of the instantiated function is same as the generic function
	newf := ir.NewFunc(gf.Pos())
	newf.Pragma = gf.Pragma // copy over pragmas from generic function to stenciled implementation.
	newf.Endlineno = gf.Endlineno
	newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
	newf.Nname.Func = newf
	newf.Nname.Defn = newf
	newsym.Def = newf.Nname
	savef := ir.CurFunc
	// transformCall/transformReturn (called during stenciling of the body)
	// depend on ir.CurFunc being set.
	ir.CurFunc = newf

	assert(len(tparams) == len(shapes))

	subst := &subster{
		g:        g,
		isMethod: isMethod,
		newf:     newf,
		info:     info,
		ts: typecheck.Tsubster{
			Tparams: tparams,
			Targs:   shapes,
			Vars:    make(map[*ir.Name]*ir.Name),
		},
		defnMap: make(map[ir.Node][]**ir.Name),
	}

	newf.Dcl = make([]*ir.Name, 0, len(gf.Dcl)+1)

	// Create the needed dictionary param
	dictionarySym := newsym.Pkg.Lookup(typecheck.LocalDictName)
	dictionaryType := types.Types[types.TUINTPTR]
	dictionaryName := ir.NewNameAt(gf.Pos(), dictionarySym)
	typed(dictionaryType, dictionaryName)
	dictionaryName.Class = ir.PPARAM
	dictionaryName.Curfn = newf
	newf.Dcl = append(newf.Dcl, dictionaryName)
	for _, n := range gf.Dcl {
		if n.Sym().Name == typecheck.LocalDictName {
			panic("already has dictionary")
		}
		newf.Dcl = append(newf.Dcl, subst.localvar(n))
	}
	dictionaryArg := types.NewField(gf.Pos(), dictionarySym, dictionaryType)
	dictionaryArg.Nname = dictionaryName
	info.dictParam = dictionaryName

	// We add the dictionary as the first parameter in the function signature.
	// We also transform a method type to the corresponding function type
	// (make the receiver be the next parameter after the dictionary).
	oldt := nameNode.Type()
	var args []*types.Field
	args = append(args, dictionaryArg)
	args = append(args, oldt.Recvs().FieldSlice()...)
	args = append(args, oldt.Params().FieldSlice()...)

	// Replace the types in the function signature via subst.fields.
	// Ugly: also, we have to insert the Name nodes of the parameters/results into
	// the function type. The current function type has no Nname fields set,
	// because it came via conversion from the types2 type.
	newt := types.NewSignature(oldt.Pkg(), nil, nil,
		subst.fields(ir.PPARAM, args, newf.Dcl),
		subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))

	typed(newt, newf.Nname)
	ir.MarkFunc(newf.Nname)
	newf.SetTypecheck(1)

	// Make sure name/type of newf is set before substituting the body.
	newf.Body = subst.list(gf.Body)
	if len(newf.Body) == 0 {
		// Ensure the body is nonempty, for issue 49524.
		// TODO: have some other way to detect the difference between
		// a function declared with no body, vs. one with an empty body?
		newf.Body = append(newf.Body, ir.NewBlockStmt(gf.Pos(), nil))
	}

	if len(subst.defnMap) > 0 {
		base.Fatalf("defnMap is not empty")
	}

	for i, tp := range tparams {
		info.dictInfo.shapeToBound[shapes[i]] = subst.ts.Typ(tp.Bound())
	}

	ir.CurFunc = savef

	return subst.newf
}

// localvar creates a new name node for the specified local variable and enters it
// in subst.vars. It substitutes type arguments for type parameters in the type of
// name as needed.
func (subst *subster) localvar(name *ir.Name) *ir.Name {
	m := ir.NewNameAt(name.Pos(), name.Sym())
	if name.IsClosureVar() {
		m.SetIsClosureVar(true)
	}
	m.SetType(subst.ts.Typ(name.Type()))
	m.BuiltinOp = name.BuiltinOp
	m.Curfn = subst.newf
	m.Class = name.Class
	assert(name.Class != ir.PEXTERN && name.Class != ir.PFUNC)
	m.Func = name.Func
	subst.ts.Vars[name] = m
	m.SetTypecheck(1)
	m.DictIndex = name.DictIndex
	if name.Defn != nil {
		if name.Defn.Op() == ir.ONAME {
			// This is a closure variable, so its Defn is the outer
			// captured variable, which has already been substituted.
			m.Defn = subst.node(name.Defn)
		} else {
			// The other values of Defn are nodes in the body of the
			// function, so just remember the mapping so we can set Defn
			// properly in node() when we create the new body node. We
			// always call localvar() on all the local variables before
			// we substitute the body.
			slice := subst.defnMap[name.Defn]
			subst.defnMap[name.Defn] = append(slice, &m)
		}
	}
	if name.Outer != nil {
		m.Outer = subst.node(name.Outer).(*ir.Name)
	}

	return m
}

// getDictionaryEntry gets the i'th entry in the dictionary dict.
func getDictionaryEntry(pos src.XPos, dict *ir.Name, i int, size int) ir.Node {
	// Convert dictionary to *[N]uintptr
	// All entries in the dictionary are pointers. They all point to static data, though, so we
	// treat them as uintptrs so the GC doesn't need to keep track of them.
	d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], dict)
	d.SetTypecheck(1)
	d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(size)).PtrTo(), d)
	d.SetTypecheck(1)
	types.CheckSize(d.Type().Elem())

	// Load entry i out of the dictionary.
	deref := ir.NewStarExpr(pos, d)
	typed(d.Type().Elem(), deref)
	idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), dict) // TODO: what to set orig to?
	typed(types.Types[types.TUINTPTR], idx)
	r := ir.NewIndexExpr(pos, deref, idx)
	typed(types.Types[types.TUINTPTR], r)
	return r
}

// getDictionaryEntryAddr gets the address of the i'th entry in dictionary dict.
func getDictionaryEntryAddr(pos src.XPos, dict *ir.Name, i int, size int) ir.Node {
	a := ir.NewAddrExpr(pos, getDictionaryEntry(pos, dict, i, size))
	typed(types.Types[types.TUINTPTR].PtrTo(), a)
	return a
}

// getDictionaryType returns a *runtime._type from the dictionary entry i (which
// refers to a type param or a derived type that uses type params). It uses the
// specified dictionary dictParam, rather than the one in info.dictParam.
func getDictionaryType(info *instInfo, dictParam *ir.Name, pos src.XPos, i int) ir.Node {
	if i < 0 || i >= info.dictInfo.startSubDict {
		base.Fatalf(fmt.Sprintf("bad dict index %d", i))
	}

	r := getDictionaryEntry(pos, dictParam, i, info.dictInfo.startSubDict)
	// change type of retrieved dictionary entry to *byte, which is the
	// standard typing of a *runtime._type in the compiler
	typed(types.Types[types.TUINT8].PtrTo(), r)
	return r
}

// node is like DeepCopy(), but substitutes ONAME nodes based on subst.ts.vars, and
// also descends into closures. It substitutes type arguments for type parameters in
// all the new nodes and does the transformations that were delayed on the generic
// function.
func (subst *subster) node(n ir.Node) ir.Node {
	// Use closure to capture all state needed by the ir.EditChildren argument.
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		// Analogous to ir.SetPos() at beginning of typecheck.typecheck() -
		// allows using base.Pos during the transform functions, just like
		// the tc*() functions.
		ir.SetPos(x)
		switch x.Op() {
		case ir.OTYPE:
			return ir.TypeNode(subst.ts.Typ(x.Type()))

		case ir.ONAME:
			if v := subst.ts.Vars[x.(*ir.Name)]; v != nil {
				return v
			}
			if ir.IsBlank(x) {
				// Special case, because a blank local variable is
				// not in the fn.Dcl list.
				m := ir.NewNameAt(x.Pos(), ir.BlankNode.Sym())
				return typed(subst.ts.Typ(x.Type()), m)
			}
			return x
		case ir.ONONAME:
			// This handles the identifier in a type switch guard
			fallthrough
		case ir.OLITERAL, ir.ONIL:
			if x.Sym() != nil {
				return x
			}
		}
		m := ir.Copy(x)

		slice, ok := subst.defnMap[x]
		if ok {
			// We just copied a non-ONAME node which was the Defn value
			// of a local variable. Set the Defn value of the copied
			// local variable to this new Defn node.
			for _, ptr := range slice {
				(*ptr).Defn = m
			}
			delete(subst.defnMap, x)
		}

		if _, isExpr := m.(ir.Expr); isExpr {
			t := x.Type()
			if t == nil {
				// Check for known cases where t can be nil (call
				// that has no return values, and key expressions)
				// and otherwise cause a fatal error.
				_, isCallExpr := m.(*ir.CallExpr)
				_, isStructKeyExpr := m.(*ir.StructKeyExpr)
				_, isKeyExpr := m.(*ir.KeyExpr)
				if !isCallExpr && !isStructKeyExpr && !isKeyExpr && x.Op() != ir.OPANIC &&
					x.Op() != ir.OCLOSE {
					base.FatalfAt(m.Pos(), "Nil type for %v", x)
				}
			} else if x.Op() != ir.OCLOSURE {
				m.SetType(subst.ts.Typ(x.Type()))
			}
		}

		old := subst.skipClosure
		// For unsafe.{Alignof,Offsetof,Sizeof}, subster will transform them to OLITERAL nodes,
		// and discard their arguments. However, their children nodes were already process before,
		// thus if they contain any closure, the closure was still be added to package declarations
		// queue for processing later. Thus, genInst will fail to generate instantiation for the
		// closure because of lacking dictionary information, see issue #53390.
		if call, ok := m.(*ir.CallExpr); ok && call.X.Op() == ir.ONAME {
			switch call.X.Name().BuiltinOp {
			case ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
				subst.skipClosure = true
			}
		}
		ir.EditChildren(m, edit)
		subst.skipClosure = old

		m.SetTypecheck(1)

		// Do the transformations that we delayed on the generic function
		// node, now that we have substituted in the type args.
		switch x.Op() {
		case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
			transformCompare(m.(*ir.BinaryExpr))

		case ir.OSLICE, ir.OSLICE3:
			transformSlice(m.(*ir.SliceExpr))

		case ir.OADD:
			m = transformAdd(m.(*ir.BinaryExpr))

		case ir.OINDEX:
			transformIndex(m.(*ir.IndexExpr))

		case ir.OAS2:
			as2 := m.(*ir.AssignListStmt)
			transformAssign(as2, as2.Lhs, as2.Rhs)

		case ir.OAS:
			as := m.(*ir.AssignStmt)
			if as.Y != nil {
				// transformAssign doesn't handle the case
				// of zeroing assignment of a dcl (rhs[0] is nil).
				lhs, rhs := []ir.Node{as.X}, []ir.Node{as.Y}
				transformAssign(as, lhs, rhs)
				as.X, as.Y = lhs[0], rhs[0]
			}

		case ir.OASOP:
			as := m.(*ir.AssignOpStmt)
			transformCheckAssign(as, as.X)

		case ir.ORETURN:
			transformReturn(m.(*ir.ReturnStmt))

		case ir.OSEND:
			transformSend(m.(*ir.SendStmt))

		case ir.OSELECT:
			transformSelect(m.(*ir.SelectStmt))

		case ir.OCOMPLIT:
			transformCompLit(m.(*ir.CompLitExpr))

		case ir.OADDR:
			transformAddr(m.(*ir.AddrExpr))

		case ir.OLITERAL:
			t := m.Type()
			if t != x.Type() {
				// types2 will give us a constant with a type T,
				// if an untyped constant is used with another
				// operand of type T (in a provably correct way).
				// When we substitute in the type args during
				// stenciling, we now know the real type of the
				// constant. We may then need to change the
				// BasicLit.val to be the correct type (e.g.
				// convert an int64Val constant to a floatVal
				// constant).
				m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
				m = typecheck.DefaultLit(m, t)
			}

		case ir.OXDOT:
			// Finish the transformation of an OXDOT, unless this is
			// bound call or field access on a type param. A bound call
			// or field access on a type param will be transformed during
			// the dictPass. Otherwise, m will be transformed to an
			// OMETHVALUE node. It will be transformed to an ODOTMETH or
			// ODOTINTER node if we find in the OCALL case below that the
			// method value is actually called.
			mse := m.(*ir.SelectorExpr)
			if src := mse.X.Type(); !src.IsShape() {
				transformDot(mse, false)
			}

		case ir.OCALL:
			call := m.(*ir.CallExpr)
			switch call.X.Op() {
			case ir.OTYPE:
				// Transform the conversion, now that we know the
				// type argument.
				m = transformConvCall(call)

			case ir.OMETHVALUE, ir.OMETHEXPR:
				// Redo the transformation of OXDOT, now that we
				// know the method value is being called. Then
				// transform the call.
				call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
				transformDot(call.X.(*ir.SelectorExpr), true)
				transformCall(call)

			case ir.ODOT, ir.ODOTPTR:
				// An OXDOT for a generic receiver was resolved to
				// an access to a field which has a function
				// value. Transform the call to that function, now
				// that the OXDOT was resolved.
				transformCall(call)

			case ir.ONAME:
				name := call.X.Name()
				if name.BuiltinOp != ir.OXXX {
					m = transformBuiltin(call)
				} else {
					// This is the case of a function value that was a
					// type parameter (implied to be a function via a
					// structural constraint) which is now resolved.
					transformCall(call)
				}

			case ir.OFUNCINST:
				// A call with an OFUNCINST will get transformed
				// in stencil() once we have created & attached the
				// instantiation to be called.
				// We must transform the arguments of the call now, though,
				// so that any needed CONVIFACE nodes are exposed,
				// so the dictionary format is correct.
				transformEarlyCall(call)

			case ir.OXDOT:
				// This is the case of a bound call or a field access
				// on a typeparam, which will be handled in the
				// dictPass. As with OFUNCINST, we must transform the
				// arguments of the call now, so any needed CONVIFACE
				// nodes are exposed.
				transformEarlyCall(call)

			case ir.ODOTTYPE, ir.ODOTTYPE2:
				// These are DOTTYPEs that could get transformed into
				// ODYNAMIC DOTTYPEs by the dict pass.

			default:
				// Transform a call for all other values of
				// call.X.Op() that don't require any special
				// handling.
				transformCall(call)

			}

		case ir.OCLOSURE:
			if subst.skipClosure {
				break
			}
			// We're going to create a new closure from scratch, so clear m
			// to avoid using the ir.Copy by accident until we reassign it.
			m = nil

			x := x.(*ir.ClosureExpr)
			// Need to duplicate x.Func.Nname, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body.
			oldfn := x.Func
			newfn := ir.NewClosureFunc(oldfn.Pos(), subst.newf != nil)
			ir.NameClosure(newfn.OClosure, subst.newf)

			saveNewf := subst.newf
			ir.CurFunc = newfn
			subst.newf = newfn
			newfn.Dcl = subst.namelist(oldfn.Dcl)

			// Make a closure variable for the dictionary of the
			// containing function.
			cdict := ir.CaptureName(oldfn.Pos(), newfn, subst.info.dictParam)
			typed(types.Types[types.TUINTPTR], cdict)
			ir.FinishCaptureNames(oldfn.Pos(), saveNewf, newfn)
			newfn.ClosureVars = append(newfn.ClosureVars, subst.namelist(oldfn.ClosureVars)...)

			// Copy that closure variable to a local one.
			// Note: this allows the dictionary to be captured by child closures.
			// See issue 47723.
			ldict := ir.NewNameAt(x.Pos(), newfn.Sym().Pkg.Lookup(typecheck.LocalDictName))
			typed(types.Types[types.TUINTPTR], ldict)
			ldict.Class = ir.PAUTO
			ldict.Curfn = newfn
			newfn.Dcl = append(newfn.Dcl, ldict)
			as := ir.NewAssignStmt(x.Pos(), ldict, cdict)
			as.SetTypecheck(1)
			ldict.Defn = as
			newfn.Body.Append(as)

			// Create inst info for the instantiated closure. The dict
			// param is the closure variable for the dictionary of the
			// outer function. Since the dictionary is shared, use the
			// same dictInfo.
			cinfo := &instInfo{
				fun:       newfn,
				dictParam: ldict,
				dictInfo:  subst.info.dictInfo,
			}
			subst.g.instInfoMap[newfn.Nname.Sym()] = cinfo

			typed(subst.ts.Typ(oldfn.Nname.Type()), newfn.Nname)
			typed(newfn.Nname.Type(), newfn.OClosure)
			newfn.SetTypecheck(1)

			outerinfo := subst.info
			subst.info = cinfo
			// Make sure type of closure function is set before doing body.
			newfn.Body.Append(subst.list(oldfn.Body)...)
			subst.info = outerinfo
			subst.newf = saveNewf
			ir.CurFunc = saveNewf

			m = ir.UseClosure(newfn.OClosure, typecheck.Target)
			subst.g.newInsts = append(subst.g.newInsts, m.(*ir.ClosureExpr).Func)
			m.(*ir.ClosureExpr).SetInit(subst.list(x.Init()))

		case ir.OSWITCH:
			m := m.(*ir.SwitchStmt)
			if m.Tag != nil && m.Tag.Op() == ir.OTYPESW {
				break // Nothing to do here for type switches.
			}
			if m.Tag != nil && !types.IsComparable(m.Tag.Type()) {
				break // Nothing to do here for un-comparable types.
			}
			if m.Tag != nil && !m.Tag.Type().IsEmptyInterface() && m.Tag.Type().HasShape() {
				// To implement a switch on a value that is or has a type parameter, we first convert
				// that thing we're switching on to an interface{}.
				m.Tag = assignconvfn(m.Tag, types.Types[types.TINTER])
			}
			for _, c := range m.Cases {
				for i, x := range c.List {
					// If we have a case that is or has a type parameter, convert that case
					// to an interface{}.
					if !x.Type().IsEmptyInterface() && x.Type().HasShape() {
						c.List[i] = assignconvfn(x, types.Types[types.TINTER])
					}
				}
			}

		}
		return m
	}

	return edit(n)
}

// dictPass takes a function instantiation and does the transformations on the
// operations that need to make use of the dictionary param.
func (g *genInst) dictPass(info *instInfo) {
	savef := ir.CurFunc
	ir.CurFunc = info.fun

	callMap := make(map[ir.Node]bool)

	var edit func(ir.Node) ir.Node
	edit = func(m ir.Node) ir.Node {
		if m.Op() == ir.OCALL && m.(*ir.CallExpr).X.Op() == ir.OXDOT {
			callMap[m.(*ir.CallExpr).X] = true
		}

		ir.EditChildren(m, edit)

		switch m.Op() {
		case ir.OCLOSURE:
			newf := m.(*ir.ClosureExpr).Func
			ir.CurFunc = newf
			outerinfo := info
			info = g.instInfoMap[newf.Nname.Sym()]

			body := newf.Body
			for i, n := range body {
				body[i] = edit(n)
			}

			info = outerinfo
			ir.CurFunc = info.fun

		case ir.OXDOT:
			// This is the case of a dot access on a type param. This is
			// typically a bound call on the type param, but could be a
			// field access, if the constraint has a single structural type.
			mse := m.(*ir.SelectorExpr)
			src := mse.X.Type()
			assert(src.IsShape())

			if mse.X.Op() == ir.OTYPE {
				// Method expression T.M
				idx := findMethodExprClosure(info.dictInfo, mse)
				c := getDictionaryEntryAddr(m.Pos(), info.dictParam, info.dictInfo.startMethodExprClosures+idx, info.dictInfo.dictLen)
				m = ir.NewConvExpr(m.Pos(), ir.OCONVNOP, mse.Type(), c)
				m.SetTypecheck(1)
			} else {
				// If we can't find the selected method in the
				// AllMethods of the bound, then this must be an access
				// to a field of a structural type. If so, we skip the
				// dictionary lookups - transformDot() will convert to
				// the desired direct field access.
				if isBoundMethod(info.dictInfo, mse) {
					if callMap[m] {
						// The OCALL surrounding this XDOT will rewrite the call
						// to use the method expression closure directly.
						break
					}
					// Convert this method value to a closure.
					// TODO: use method expression closure.
					dst := info.dictInfo.shapeToBound[mse.X.Type()]
					// Implement x.M as a conversion-to-bound-interface
					//  1) convert x to the bound interface
					//  2) select method value M on that interface
					if src.IsInterface() {
						// If type arg is an interface (unusual case),
						// we do a type assert to the type bound.
						mse.X = assertToBound(info, info.dictParam, m.Pos(), mse.X, dst)
					} else {
						mse.X = convertUsingDictionary(info, info.dictParam, m.Pos(), mse.X, m, dst)
					}
				}
				transformDot(mse, false)
			}
		case ir.OCALL:
			call := m.(*ir.CallExpr)
			op := call.X.Op()
			if op == ir.OXDOT {
				// This is a call of a method value where the value has a type parameter type.
				// We transform to a call of the appropriate method expression closure
				// in the dictionary.
				// So if x has a type parameter type:
				//   _ = x.m(a)
				// Rewrite to:
				//   _ = methexpr<m>(x, a)
				se := call.X.(*ir.SelectorExpr)
				call.SetOp(ir.OCALLFUNC)
				idx := findMethodExprClosure(info.dictInfo, se)
				c := getDictionaryEntryAddr(se.Pos(), info.dictParam, info.dictInfo.startMethodExprClosures+idx, info.dictInfo.dictLen)
				t := typecheck.NewMethodType(se.Type(), se.X.Type())
				call.X = ir.NewConvExpr(se.Pos(), ir.OCONVNOP, t, c)
				typed(t, call.X)
				call.Args.Prepend(se.X)
				break
				// TODO: deref case?
			}
			if op == ir.OMETHVALUE {
				// Redo the transformation of OXDOT, now that we
				// know the method value is being called.
				call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
				transformDot(call.X.(*ir.SelectorExpr), true)
			}
			transformCall(call)

		case ir.OCONVIFACE:
			if m.Type().IsEmptyInterface() && m.(*ir.ConvExpr).X.Type().IsEmptyInterface() {
				// Was T->interface{}, after stenciling it is now interface{}->interface{}.
				// No longer need the conversion. See issue 48276.
				m.(*ir.ConvExpr).SetOp(ir.OCONVNOP)
				break
			}
			mce := m.(*ir.ConvExpr)
			// Note: x's argument is still typed as a type parameter.
			// m's argument now has an instantiated type.
			if mce.X.Type().HasShape() || (m.Type().HasShape() && !m.Type().IsEmptyInterface()) {
				m = convertUsingDictionary(info, info.dictParam, m.Pos(), mce.X, m, m.Type())
			}
		case ir.ODOTTYPE, ir.ODOTTYPE2:
			dt := m.(*ir.TypeAssertExpr)
			if !dt.Type().HasShape() && !(dt.X.Type().HasShape() && !dt.X.Type().IsEmptyInterface()) {
				break
			}
			var rtype, itab ir.Node
			if dt.Type().IsInterface() || dt.X.Type().IsEmptyInterface() {
				// TODO(mdempsky): Investigate executing this block unconditionally.
				ix := findDictType(info, m.Type())
				assert(ix >= 0)
				rtype = getDictionaryType(info, info.dictParam, dt.Pos(), ix)
			} else {
				// nonempty interface to noninterface. Need an itab.
				ix := -1
				for i, ic := range info.dictInfo.itabConvs {
					if ic == m {
						ix = info.dictInfo.startItabConv + i
						break
					}
				}
				assert(ix >= 0)
				itab = getDictionaryEntry(dt.Pos(), info.dictParam, ix, info.dictInfo.dictLen)
			}
			op := ir.ODYNAMICDOTTYPE
			if m.Op() == ir.ODOTTYPE2 {
				op = ir.ODYNAMICDOTTYPE2
			}
			m = ir.NewDynamicTypeAssertExpr(dt.Pos(), op, dt.X, rtype)
			m.(*ir.DynamicTypeAssertExpr).ITab = itab
			m.SetType(dt.Type())
			m.SetTypecheck(1)
		case ir.OCASE:
			if _, ok := m.(*ir.CommClause); ok {
				// This is not a type switch. TODO: Should we use an OSWITCH case here instead of OCASE?
				break
			}
			m := m.(*ir.CaseClause)
			for i, c := range m.List {
				if c.Op() == ir.OTYPE && c.Type().HasShape() {
					// Use a *runtime._type for the dynamic type.
					ix := findDictType(info, m.List[i].Type())
					assert(ix >= 0)
					dt := ir.NewDynamicType(c.Pos(), getDictionaryEntry(c.Pos(), info.dictParam, ix, info.dictInfo.dictLen))

					// For type switch from nonempty interfaces to non-interfaces, we need an itab as well.
					if !m.List[i].Type().IsInterface() {
						if _, ok := info.dictInfo.type2switchType[m.List[i]]; ok {
							// Type switch from nonempty interface. We need a *runtime.itab
							// for the dynamic type.
							ix := -1
							for j, ic := range info.dictInfo.itabConvs {
								if ic == m.List[i] {
									ix = info.dictInfo.startItabConv + j
									break
								}
							}
							assert(ix >= 0)
							dt.ITab = getDictionaryEntry(c.Pos(), info.dictParam, ix, info.dictInfo.dictLen)
						}
					}
					typed(m.List[i].Type(), dt)
					m.List[i] = dt
				}
			}

		}
		return m
	}
	edit(info.fun)
	ir.CurFunc = savef
}

// findDictType looks for type t in the typeparams or derived types in the generic
// function info.gfInfo. This will indicate the dictionary entry with the
// correct concrete type for the associated instantiated function.
func findDictType(info *instInfo, t *types.Type) int {
	for i, dt := range info.dictInfo.shapeParams {
		if dt == t {
			return i
		}
	}
	for i, dt := range info.dictInfo.derivedTypes {
		if types.IdenticalStrict(dt, t) {
			return i + len(info.dictInfo.shapeParams)
		}
	}
	return -1
}

// convertUsingDictionary converts instantiated value v (type v.Type()) to an interface
// type dst, by returning a new set of nodes that make use of a dictionary entry. in is the
// instantiated node of the CONVIFACE node or XDOT node (for a bound method call) that is causing the
// conversion.
func convertUsingDictionary(info *instInfo, dictParam *ir.Name, pos src.XPos, v ir.Node, in ir.Node, dst *types.Type) ir.Node {
	assert(v.Type().HasShape() || (in.Type().HasShape() && !in.Type().IsEmptyInterface()))
	assert(dst.IsInterface())

	if v.Type().IsInterface() {
		// Converting from an interface. The shape-ness of the source doesn't really matter, as
		// we'll be using the concrete type from the first interface word.
		if dst.IsEmptyInterface() {
			// Converting I2E. OCONVIFACE does that for us, and doesn't depend
			// on what the empty interface was instantiated with. No dictionary entry needed.
			v = ir.NewConvExpr(pos, ir.OCONVIFACE, dst, v)
			v.SetTypecheck(1)
			return v
		}
		if !in.Type().HasShape() {
			// Regular OCONVIFACE works if the destination isn't parameterized.
			v = ir.NewConvExpr(pos, ir.OCONVIFACE, dst, v)
			v.SetTypecheck(1)
			return v
		}

		// We get the destination interface type from the dictionary and the concrete
		// type from the argument's itab. Call runtime.convI2I to get the new itab.
		tmp := typecheck.Temp(v.Type())
		as := ir.NewAssignStmt(pos, tmp, v)
		as.SetTypecheck(1)
		itab := ir.NewUnaryExpr(pos, ir.OITAB, tmp)
		typed(types.Types[types.TUINTPTR].PtrTo(), itab)
		idata := ir.NewUnaryExpr(pos, ir.OIDATA, tmp)
		typed(types.Types[types.TUNSAFEPTR], idata)

		fn := typecheck.LookupRuntime("convI2I")
		fn.SetTypecheck(1)
		types.CalcSize(fn.Type())
		call := ir.NewCallExpr(pos, ir.OCALLFUNC, fn, nil)
		typed(types.Types[types.TUINT8].PtrTo(), call)
		ix := findDictType(info, in.Type())
		assert(ix >= 0)
		inter := getDictionaryType(info, dictParam, pos, ix)
		call.Args = []ir.Node{inter, itab}
		i := ir.NewBinaryExpr(pos, ir.OEFACE, call, idata)
		typed(dst, i)
		i.PtrInit().Append(as)
		return i
	}

	var rt ir.Node
	if !dst.IsEmptyInterface() {
		// We should have an itab entry in the dictionary. Using this itab
		// will be more efficient than converting to an empty interface first
		// and then type asserting to dst.
		ix := -1
		for i, ic := range info.dictInfo.itabConvs {
			if ic == in {
				ix = info.dictInfo.startItabConv + i
				break
			}
		}
		assert(ix >= 0)
		rt = getDictionaryEntry(pos, dictParam, ix, info.dictInfo.dictLen)
	} else {
		ix := findDictType(info, v.Type())
		assert(ix >= 0)
		// Load the actual runtime._type of the type parameter from the dictionary.
		rt = getDictionaryType(info, dictParam, pos, ix)
	}

	// Figure out what the data field of the interface will be.
	data := ir.NewConvExpr(pos, ir.OCONVIDATA, nil, v)
	typed(types.Types[types.TUNSAFEPTR], data)

	// Build an interface from the type and data parts.
	var i ir.Node = ir.NewBinaryExpr(pos, ir.OEFACE, rt, data)
	typed(dst, i)
	return i
}

func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
	s := make([]*ir.Name, len(l))
	for i, n := range l {
		s[i] = subst.localvar(n)
	}
	return s
}

func (subst *subster) list(l []ir.Node) []ir.Node {
	s := make([]ir.Node, len(l))
	for i, n := range l {
		s[i] = subst.node(n)
	}
	return s
}

// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
	// Find the starting index in dcl of declarations of the class (either
	// PPARAM or PPARAMOUT).
	var i int
	for i = range dcl {
		if dcl[i].Class == class {
			break
		}
	}

	// Create newfields nodes that are copies of the oldfields nodes, but
	// with substitution for any type params, and with Nname set to be the node in
	// Dcl for the corresponding PPARAM or PPARAMOUT.
	newfields := make([]*types.Field, len(oldfields))
	for j := range oldfields {
		newfields[j] = oldfields[j].Copy()
		newfields[j].Type = subst.ts.Typ(oldfields[j].Type)
		// A PPARAM field will be missing from dcl if its name is
		// unspecified or specified as "_". So, we compare the dcl sym
		// with the field sym (or sym of the field's Nname node). (Unnamed
		// results still have a name like ~r2 in their Nname node.) If
		// they don't match, this dcl (if there is one left) must apply to
		// a later field.
		if i < len(dcl) && (dcl[i].Sym() == oldfields[j].Sym ||
			(oldfields[j].Nname != nil && dcl[i].Sym() == oldfields[j].Nname.Sym())) {
			newfields[j].Nname = dcl[i]
			i++
		}
	}
	return newfields
}

// deref does a single deref of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
	if t.IsPtr() {
		return t.Elem()
	}
	return t
}

// markTypeUsed marks type t as used in order to help avoid dead-code elimination of
// needed methods.
func markTypeUsed(t *types.Type, lsym *obj.LSym) {
	if t.IsInterface() {
		return
	}
	// TODO: This is somewhat overkill, we really only need it
	// for types that are put into interfaces.
	// Note: this relocation is also used in cmd/link/internal/ld/dwarf.go
	reflectdata.MarkTypeUsedInInterface(t, lsym)
}

// getDictionarySym returns the dictionary for the named generic function gf, which
// is instantiated with the type arguments targs.
func (g *genInst) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool) *types.Sym {
	if len(targs) == 0 {
		base.Fatalf("%s should have type arguments", gf.Sym().Name)
	}

	// Enforce that only concrete types can make it to here.
	for _, t := range targs {
		if t.HasShape() {
			panic(fmt.Sprintf("shape %+v in dictionary for %s", t, gf.Sym().Name))
		}
	}

	// Get a symbol representing the dictionary.
	sym := typecheck.MakeDictSym(gf.Sym(), targs, isMeth)

	// Initialize the dictionary, if we haven't yet already.
	lsym := sym.Linksym()
	if len(lsym.P) > 0 {
		// We already started creating this dictionary and its lsym.
		return sym
	}

	infoPrint("=== Creating dictionary %v\n", sym.Name)
	off := 0
	// Emit an entry for each targ (concrete type or gcshape).
	for _, t := range targs {
		infoPrint(" * %v\n", t)
		s := reflectdata.TypeLinksym(t)
		off = objw.SymPtr(lsym, off, s, 0)
		markTypeUsed(t, lsym)
	}

	instInfo := g.getInstantiation(gf, targs, isMeth)
	info := instInfo.dictInfo

	subst := typecheck.Tsubster{
		Tparams: info.shapeParams,
		Targs:   targs,
	}
	// Emit an entry for each derived type (after substituting targs)
	for _, t := range info.derivedTypes {
		ts := subst.Typ(t)
		infoPrint(" - %v\n", ts)
		s := reflectdata.TypeLinksym(ts)
		off = objw.SymPtr(lsym, off, s, 0)
		markTypeUsed(ts, lsym)
	}
	// Emit an entry for each subdictionary (after substituting targs)
	for _, subDictInfo := range info.subDictCalls {
		var sym *types.Sym
		n := subDictInfo.callNode
		switch n.Op() {
		case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH:
			call := n.(*ir.CallExpr)
			if call.X.Op() == ir.OXDOT || call.X.Op() == ir.ODOTMETH {
				var nameNode *ir.Name
				se := call.X.(*ir.SelectorExpr)
				if se.X.Type().IsShape() {
					// This is a method call enabled by a type bound.
					tparam := se.X.Type()
					if call.X.Op() == ir.ODOTMETH {
						// We need this extra check for method expressions,
						// which don't add in the implicit XDOTs.
						tmpse := ir.NewSelectorExpr(src.NoXPos, ir.OXDOT, se.X, se.Sel)
						tmpse = typecheck.AddImplicitDots(tmpse)
						tparam = tmpse.X.Type()
					}
					if !tparam.IsShape() {
						// The method expression is not
						// really on a typeparam.
						break
					}
					ix := -1
					for i, shape := range info.shapeParams {
						if shape == tparam {
							ix = i
							break
						}
					}
					assert(ix >= 0)
					recvType := targs[ix]
					if recvType.IsInterface() || len(recvType.RParams()) == 0 {
						// No sub-dictionary entry is
						// actually needed, since the
						// type arg is not an
						// instantiated type that
						// will have generic methods.
						break
					}
					// This is a method call for an
					// instantiated type, so we need a
					// sub-dictionary.
					targs := recvType.RParams()
					genRecvType := recvType.OrigType()
					nameNode = typecheck.Lookdot1(call.X, se.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
					sym = g.getDictionarySym(nameNode, targs, true)
				} else {
					// This is the case of a normal
					// method call on a generic type.
					assert(subDictInfo.savedXNode == se)
					sym = g.getSymForMethodCall(se, &subst)
				}
			} else {
				inst, ok := call.X.(*ir.InstExpr)
				if ok {
					// Code hasn't been transformed yet
					assert(subDictInfo.savedXNode == inst)
				}
				// If !ok, then the generic method/function call has
				// already been transformed to a shape instantiation
				// call. Either way, use the SelectorExpr/InstExpr
				// node saved in info.
				cex := subDictInfo.savedXNode
				if se, ok := cex.(*ir.SelectorExpr); ok {
					sym = g.getSymForMethodCall(se, &subst)
				} else {
					inst := cex.(*ir.InstExpr)
					nameNode := inst.X.(*ir.Name)
					subtargs := typecheck.TypesOf(inst.Targs)
					for i, t := range subtargs {
						subtargs[i] = subst.Typ(t)
					}
					sym = g.getDictionarySym(nameNode, subtargs, false)
				}
			}

		case ir.OFUNCINST:
			inst := n.(*ir.InstExpr)
			nameNode := inst.X.(*ir.Name)
			subtargs := typecheck.TypesOf(inst.Targs)
			for i, t := range subtargs {
				subtargs[i] = subst.Typ(t)
			}
			sym = g.getDictionarySym(nameNode, subtargs, false)

		case ir.OXDOT, ir.OMETHEXPR, ir.OMETHVALUE:
			sym = g.getSymForMethodCall(n.(*ir.SelectorExpr), &subst)

		default:
			assert(false)
		}

		if sym == nil {
			// Unused sub-dictionary entry, just emit 0.
			off = objw.Uintptr(lsym, off, 0)
			infoPrint(" - Unused subdict entry\n")
		} else {
			off = objw.SymPtr(lsym, off, sym.Linksym(), 0)
			infoPrint(" - Subdict %v\n", sym.Name)
		}
	}

	g.instantiateMethods()
	delay := &delayInfo{
		gf:     gf,
		targs:  targs,
		sym:    sym,
		off:    off,
		isMeth: isMeth,
	}
	g.dictSymsToFinalize = append(g.dictSymsToFinalize, delay)
	return sym
}

// getSymForMethodCall gets the dictionary sym for a method call, method value, or method
// expression that has selector se. subst gives the substitution from shape types to
// concrete types.
func (g *genInst) getSymForMethodCall(se *ir.SelectorExpr, subst *typecheck.Tsubster) *types.Sym {
	// For everything except method expressions, 'recvType = deref(se.X.Type)' would
	// also give the receiver type. For method expressions with embedded types, we
	// need to look at the type of the selection to get the final receiver type.
	recvType := deref(se.Selection.Type.Recv().Type)
	genRecvType := recvType.OrigType()
	nameNode := typecheck.Lookdot1(se, se.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
	subtargs := recvType.RParams()
	s2targs := make([]*types.Type, len(subtargs))
	for i, t := range subtargs {
		s2targs[i] = subst.Typ(t)
	}
	return g.getDictionarySym(nameNode, s2targs, true)
}

// finalizeSyms finishes up all dictionaries on g.dictSymsToFinalize, by writing out
// any needed LSyms for itabs. The itab lsyms create wrappers which need various
// dictionaries and method instantiations to be complete, so, to avoid recursive
// dependencies, we finalize the itab lsyms only after all dictionaries syms and
// instantiations have been created.
// Also handles writing method expression closures into the dictionaries.
func (g *genInst) finalizeSyms() {
	for _, d := range g.dictSymsToFinalize {
		infoPrint("=== Finalizing dictionary %s\n", d.sym.Name)

		lsym := d.sym.Linksym()
		instInfo := g.getInstantiation(d.gf, d.targs, d.isMeth)
		info := instInfo.dictInfo

		subst := typecheck.Tsubster{
			Tparams: info.shapeParams,
			Targs:   d.targs,
		}

		// Emit an entry for each itab
		for _, n := range info.itabConvs {
			var srctype, dsttype *types.Type
			switch n.Op() {
			case ir.OXDOT, ir.OMETHVALUE:
				se := n.(*ir.SelectorExpr)
				srctype = subst.Typ(se.X.Type())
				dsttype = subst.Typ(info.shapeToBound[se.X.Type()])
			case ir.ODOTTYPE, ir.ODOTTYPE2:
				srctype = subst.Typ(n.(*ir.TypeAssertExpr).Type())
				dsttype = subst.Typ(n.(*ir.TypeAssertExpr).X.Type())
			case ir.OCONVIFACE:
				srctype = subst.Typ(n.(*ir.ConvExpr).X.Type())
				dsttype = subst.Typ(n.Type())
			case ir.OTYPE:
				srctype = subst.Typ(n.Type())
				dsttype = subst.Typ(info.type2switchType[n])
			default:
				base.Fatalf("itab entry with unknown op %s", n.Op())
			}
			if srctype.IsInterface() || dsttype.IsEmptyInterface() {
				// No itab is wanted if src type is an interface. We
				// will use a type assert instead.
				d.off = objw.Uintptr(lsym, d.off, 0)
				infoPrint(" + Unused itab entry for %v\n", srctype)
			} else {
				// Make sure all new fully-instantiated types have
				// their methods created before generating any itabs.
				g.instantiateMethods()
				itabLsym := reflectdata.ITabLsym(srctype, dsttype)
				d.off = objw.SymPtr(lsym, d.off, itabLsym, 0)
				markTypeUsed(srctype, lsym)
				infoPrint(" + Itab for (%v,%v)\n", srctype, dsttype)
			}
		}

		// Emit an entry for each method expression closure.
		// Each entry is a (captureless) closure pointing to the method on the instantiating type.
		// In other words, the entry is a runtime.funcval whose fn field is set to the method
		// in question, and has no other fields. The address of this dictionary entry can be
		// cast to a func of the appropriate type.
		// TODO: do these need to be done when finalizing, or can we do them earlier?
		for _, bf := range info.methodExprClosures {
			rcvr := d.targs[bf.idx]
			rcvr2 := deref(rcvr)
			found := false
			typecheck.CalcMethods(rcvr2) // Ensure methods on all instantiating types are computed.
			for _, f := range rcvr2.AllMethods().Slice() {
				if f.Sym.Name == bf.name {
					codePtr := ir.MethodSym(rcvr, f.Sym).Linksym()
					d.off = objw.SymPtr(lsym, d.off, codePtr, 0)
					infoPrint(" + MethodExprClosure for %v.%s\n", rcvr, bf.name)
					found = true
					break
				}
			}
			if !found {
				base.Fatalf("method %s on %v not found", bf.name, rcvr)
			}
		}

		objw.Global(lsym, int32(d.off), obj.DUPOK|obj.RODATA)
		infoPrint("=== Finalized dictionary %s\n", d.sym.Name)
	}
	g.dictSymsToFinalize = nil
}

func (g *genInst) getDictionaryValue(pos src.XPos, gf *ir.Name, targs []*types.Type, isMeth bool) ir.Node {
	sym := g.getDictionarySym(gf, targs, isMeth)

	// Make (or reuse) a node referencing the dictionary symbol.
	var n *ir.Name
	if sym.Def != nil {
		n = sym.Def.(*ir.Name)
	} else {
		// We set the position of a static dictionary to be the position of
		// one of its uses.
		n = ir.NewNameAt(pos, sym)
		n.Curfn = ir.CurFunc
		n.SetType(types.Types[types.TUINTPTR]) // should probably be [...]uintptr, but doesn't really matter
		n.SetTypecheck(1)
		n.Class = ir.PEXTERN
		sym.Def = n
	}

	// Return the address of the dictionary.  Addr node gets position that was passed in.
	np := typecheck.NodAddrAt(pos, n)
	// Note: treat dictionary pointers as uintptrs, so they aren't pointers
	// with respect to GC. That saves on stack scanning work, write barriers, etc.
	// We can get away with it because dictionaries are global variables.
	// TODO: use a cast, or is typing directly ok?
	np.SetType(types.Types[types.TUINTPTR])
	np.SetTypecheck(1)
	return np
}

// hasShapeNodes returns true if the type of any node in targs has a shape.
func hasShapeNodes(targs []ir.Ntype) bool {
	for _, n := range targs {
		if n.Type().HasShape() {
			return true
		}
	}
	return false
}

// hasShapeTypes returns true if any type in targs has a shape.
func hasShapeTypes(targs []*types.Type) bool {
	for _, t := range targs {
		if t.HasShape() {
			return true
		}
	}
	return false
}

// getInstInfo get the dictionary format for a function instantiation- type params, derived
// types, and needed subdictionaries, itabs, and method expression closures.
func (g *genInst) getInstInfo(st *ir.Func, shapes []*types.Type, instInfo *instInfo) {
	info := instInfo.dictInfo
	info.shapeParams = shapes

	for _, t := range info.shapeParams {
		b := info.shapeToBound[t]
		if b.HasShape() {
			// If a type bound is parameterized (unusual case), then we
			// may need its derived type to do a type assert when doing a
			// bound call for a type arg that is an interface.
			addType(info, nil, b)
		}
	}

	for _, n := range st.Dcl {
		addType(info, n, n.Type())
		n.DictIndex = uint16(findDictType(instInfo, n.Type()) + 1)
	}

	if infoPrintMode {
		fmt.Printf(">>> InstInfo for %v\n", st)
		for _, t := range info.shapeParams {
			fmt.Printf("  Typeparam %v\n", t)
		}
	}

	// Map to remember when we have seen an instantiated function value or method
	// expression/value as part of a call, so we can determine when we encounter
	// an uncalled function value or method expression/value.
	callMap := make(map[ir.Node]bool)

	var visitFunc func(ir.Node)
	visitFunc = func(n ir.Node) {
		switch n.Op() {
		case ir.OFUNCINST:
			if !callMap[n] && hasShapeNodes(n.(*ir.InstExpr).Targs) {
				infoPrint("  Closure&subdictionary required at generic function value %v\n", n.(*ir.InstExpr).X)
				info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
			}
		case ir.OMETHEXPR, ir.OMETHVALUE:
			if !callMap[n] && !types.IsInterfaceMethod(n.(*ir.SelectorExpr).Selection.Type) &&
				len(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) > 0 &&
				hasShapeTypes(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) {
				if n.(*ir.SelectorExpr).X.Op() == ir.OTYPE {
					infoPrint("  Closure&subdictionary required at generic meth expr %v\n", n)
				} else {
					infoPrint("  Closure&subdictionary required at generic meth value %v\n", n)
				}
				info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
			}
		case ir.OCALL:
			ce := n.(*ir.CallExpr)
			if ce.X.Op() == ir.OFUNCINST {
				callMap[ce.X] = true
				if hasShapeNodes(ce.X.(*ir.InstExpr).Targs) {
					infoPrint("  Subdictionary at generic function/method call: %v - %v\n", ce.X.(*ir.InstExpr).X, n)
					// Save the instExpr node for the function call,
					// since we will lose this information when the
					// generic function call is transformed to a call
					// on the shape instantiation.
					info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: ce.X})
				}
			}
			// Note: this XDOT code is not actually needed as long as we
			// continue to disable type parameters on RHS of type
			// declarations (#45639).
			if ce.X.Op() == ir.OXDOT {
				callMap[ce.X] = true
				if isBoundMethod(info, ce.X.(*ir.SelectorExpr)) {
					infoPrint("  Optional subdictionary at generic bound call: %v\n", n)
					info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
				}
			}
		case ir.OCALLMETH:
			ce := n.(*ir.CallExpr)
			if ce.X.Op() == ir.ODOTMETH &&
				len(deref(ce.X.(*ir.SelectorExpr).X.Type()).RParams()) > 0 {
				callMap[ce.X] = true
				if hasShapeTypes(deref(ce.X.(*ir.SelectorExpr).X.Type()).RParams()) {
					infoPrint("  Subdictionary at generic method call: %v\n", n)
					// Save the selector for the method call, since we
					// will eventually lose this information when the
					// generic method call is transformed into a
					// function call on the method shape instantiation.
					info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: ce.X})
				}
			}
		case ir.OCONVIFACE:
			if n.Type().IsInterface() && !n.Type().IsEmptyInterface() &&
				(n.Type().HasShape() || n.(*ir.ConvExpr).X.Type().HasShape()) {
				infoPrint("  Itab for interface conv: %v\n", n)
				info.itabConvs = append(info.itabConvs, n)
			}
		case ir.OXDOT:
			se := n.(*ir.SelectorExpr)
			if se.X.Op() == ir.OTYPE && se.X.Type().IsShape() {
				// Method expression.
				addMethodExprClosure(info, se)
				break
			}
			if isBoundMethod(info, se) {
				if callMap[n] {
					// Method value called directly. Use method expression closure.
					addMethodExprClosure(info, se)
					break
				}
				// Method value not called directly. Still doing the old way.
				infoPrint("  Itab for bound call: %v\n", n)
				info.itabConvs = append(info.itabConvs, n)
			}

		case ir.ODOTTYPE, ir.ODOTTYPE2:
			if !n.(*ir.TypeAssertExpr).Type().IsInterface() && !n.(*ir.TypeAssertExpr).X.Type().IsEmptyInterface() {
				infoPrint("  Itab for dot type: %v\n", n)
				info.itabConvs = append(info.itabConvs, n)
			}
		case ir.OCLOSURE:
			// Visit the closure body and add all relevant entries to the
			// dictionary of the outer function (closure will just use
			// the dictionary of the outer function).
			cfunc := n.(*ir.ClosureExpr).Func
			for _, n1 := range cfunc.Body {
				ir.Visit(n1, visitFunc)
			}
			for _, n := range cfunc.Dcl {
				n.DictIndex = uint16(findDictType(instInfo, n.Type()) + 1)
			}
		case ir.OSWITCH:
			ss := n.(*ir.SwitchStmt)
			if ss.Tag != nil && ss.Tag.Op() == ir.OTYPESW &&
				!ss.Tag.(*ir.TypeSwitchGuard).X.Type().IsEmptyInterface() {
				for _, cc := range ss.Cases {
					for _, c := range cc.List {
						if c.Op() == ir.OTYPE && c.Type().HasShape() {
							// Type switch from a non-empty interface - might need an itab.
							infoPrint("  Itab for type switch: %v\n", c)
							info.itabConvs = append(info.itabConvs, c)
							if info.type2switchType == nil {
								info.type2switchType = map[ir.Node]*types.Type{}
							}
							info.type2switchType[c] = ss.Tag.(*ir.TypeSwitchGuard).X.Type()
						}
					}
				}
			}
		}
		addType(info, n, n.Type())
	}

	for _, stmt := range st.Body {
		ir.Visit(stmt, visitFunc)
	}
	if infoPrintMode {
		for _, t := range info.derivedTypes {
			fmt.Printf("  Derived type %v\n", t)
		}
		fmt.Printf(">>> Done Instinfo\n")
	}
	info.startSubDict = len(info.shapeParams) + len(info.derivedTypes)
	info.startItabConv = len(info.shapeParams) + len(info.derivedTypes) + len(info.subDictCalls)
	info.startMethodExprClosures = len(info.shapeParams) + len(info.derivedTypes) + len(info.subDictCalls) + len(info.itabConvs)
	info.dictLen = len(info.shapeParams) + len(info.derivedTypes) + len(info.subDictCalls) + len(info.itabConvs) + len(info.methodExprClosures)
}

// isBoundMethod returns true if the selection indicated by se is a bound method of
// se.X. se.X must be a shape type (i.e. substituted directly from a type param). If
// isBoundMethod returns false, then the selection must be a field access of a
// structural type.
func isBoundMethod(info *dictInfo, se *ir.SelectorExpr) bool {
	bound := info.shapeToBound[se.X.Type()]
	return typecheck.Lookdot1(se, se.Sel, bound, bound.AllMethods(), 1) != nil
}

func shapeIndex(info *dictInfo, t *types.Type) int {
	for i, s := range info.shapeParams {
		if s == t {
			return i
		}
	}
	base.Fatalf("can't find type %v in shape params", t)
	return -1
}

// addMethodExprClosure adds the T.M method expression to the list of bound method expressions
// used in the generic body.
// isBoundMethod must have returned true on the same arguments.
func addMethodExprClosure(info *dictInfo, se *ir.SelectorExpr) {
	idx := shapeIndex(info, se.X.Type())
	name := se.Sel.Name
	for _, b := range info.methodExprClosures {
		if idx == b.idx && name == b.name {
			return
		}
	}
	infoPrint("  Method expression closure for %v.%s\n", info.shapeParams[idx], name)
	info.methodExprClosures = append(info.methodExprClosures, methodExprClosure{idx: idx, name: name})
}

// findMethodExprClosure finds the entry in the dictionary to use for the T.M
// method expression encoded in se.
// isBoundMethod must have returned true on the same arguments.
func findMethodExprClosure(info *dictInfo, se *ir.SelectorExpr) int {
	idx := shapeIndex(info, se.X.Type())
	name := se.Sel.Name
	for i, b := range info.methodExprClosures {
		if idx == b.idx && name == b.name {
			return i
		}
	}
	base.Fatalf("can't find method expression closure for %s %s", se.X.Type(), name)
	return -1
}

// addType adds t to info.derivedTypes if it is parameterized type (which is not
// just a simple shape) that is different from any existing type on
// info.derivedTypes.
func addType(info *dictInfo, n ir.Node, t *types.Type) {
	if t == nil || !t.HasShape() {
		return
	}
	if t.IsShape() {
		return
	}
	if t.Kind() == types.TFUNC && n != nil &&
		(t.Recv() != nil || n.Op() == ir.ONAME && n.Name().Class == ir.PFUNC) {
		// Don't use the type of a named generic function or method,
		// since that is parameterized by other typeparams.
		// (They all come from arguments of a FUNCINST node.)
		return
	}
	if doubleCheck && !parameterizedBy(t, info.shapeParams) {
		base.Fatalf("adding type with invalid parameters %+v", t)
	}
	if t.Kind() == types.TSTRUCT && t.IsFuncArgStruct() {
		// Multiple return values are not a relevant new type (?).
		return
	}
	// Ignore a derived type we've already added.
	for _, et := range info.derivedTypes {
		if types.IdenticalStrict(t, et) {
			return
		}
	}
	info.derivedTypes = append(info.derivedTypes, t)
}

// parameterizedBy returns true if t is parameterized by (at most) params.
func parameterizedBy(t *types.Type, params []*types.Type) bool {
	return parameterizedBy1(t, params, map[*types.Type]bool{})
}
func parameterizedBy1(t *types.Type, params []*types.Type, visited map[*types.Type]bool) bool {
	if visited[t] {
		return true
	}
	visited[t] = true

	if t.Sym() != nil && len(t.RParams()) > 0 {
		// This defined type is instantiated. Check the instantiating types.
		for _, r := range t.RParams() {
			if !parameterizedBy1(r, params, visited) {
				return false
			}
		}
		return true
	}
	if t.IsShape() {
		// Check if t is one of the allowed parameters in scope.
		for _, p := range params {
			if p == t {
				return true
			}
		}
		// Couldn't find t in the list of allowed parameters.
		return false

	}
	switch t.Kind() {
	case types.TARRAY, types.TPTR, types.TSLICE, types.TCHAN:
		return parameterizedBy1(t.Elem(), params, visited)

	case types.TMAP:
		return parameterizedBy1(t.Key(), params, visited) && parameterizedBy1(t.Elem(), params, visited)

	case types.TFUNC:
		return parameterizedBy1(t.TParams(), params, visited) && parameterizedBy1(t.Recvs(), params, visited) && parameterizedBy1(t.Params(), params, visited) && parameterizedBy1(t.Results(), params, visited)

	case types.TSTRUCT:
		for _, f := range t.Fields().Slice() {
			if !parameterizedBy1(f.Type, params, visited) {
				return false
			}
		}
		return true

	case types.TINTER:
		for _, f := range t.Methods().Slice() {
			if !parameterizedBy1(f.Type, params, visited) {
				return false
			}
		}
		return true

	case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64,
		types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64,
		types.TUINTPTR, types.TBOOL, types.TSTRING, types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, types.TUNSAFEPTR:
		return true

	case types.TUNION:
		for i := 0; i < t.NumTerms(); i++ {
			tt, _ := t.Term(i)
			if !parameterizedBy1(tt, params, visited) {
				return false
			}
		}
		return true

	default:
		base.Fatalf("bad type kind %+v", t)
		return true
	}
}

// startClosures starts creation of a closure that has the function type typ. It
// creates all the formal params and results according to the type typ. On return,
// the body and closure variables of the closure must still be filled in, and
// ir.UseClosure() called.
func startClosure(pos src.XPos, outer *ir.Func, typ *types.Type) (*ir.Func, []*types.Field, []*types.Field) {
	// Make a new internal function.
	fn := ir.NewClosureFunc(pos, outer != nil)
	ir.NameClosure(fn.OClosure, outer)

	// Build formal argument and return lists.
	var formalParams []*types.Field  // arguments of closure
	var formalResults []*types.Field // returns of closure
	for i := 0; i < typ.NumParams(); i++ {
		t := typ.Params().Field(i).Type
		arg := ir.NewNameAt(pos, closureSym(outer, "a", i))
		arg.Class = ir.PPARAM
		typed(t, arg)
		arg.Curfn = fn
		fn.Dcl = append(fn.Dcl, arg)
		f := types.NewField(pos, arg.Sym(), t)
		f.Nname = arg
		f.SetIsDDD(typ.Params().Field(i).IsDDD())
		formalParams = append(formalParams, f)
	}
	for i := 0; i < typ.NumResults(); i++ {
		t := typ.Results().Field(i).Type
		result := ir.NewNameAt(pos, closureSym(outer, "r", i)) // TODO: names not needed?
		result.Class = ir.PPARAMOUT
		typed(t, result)
		result.Curfn = fn
		fn.Dcl = append(fn.Dcl, result)
		f := types.NewField(pos, result.Sym(), t)
		f.Nname = result
		formalResults = append(formalResults, f)
	}

	// Build an internal function with the right signature.
	closureType := types.NewSignature(typ.Pkg(), nil, nil, formalParams, formalResults)
	typed(closureType, fn.Nname)
	typed(typ, fn.OClosure)
	fn.SetTypecheck(1)
	return fn, formalParams, formalResults

}

// closureSym returns outer.Sym().Pkg.LookupNum(prefix, n).
// If outer is nil, then types.LocalPkg is used instead.
func closureSym(outer *ir.Func, prefix string, n int) *types.Sym {
	pkg := types.LocalPkg
	if outer != nil {
		pkg = outer.Sym().Pkg
	}
	return pkg.LookupNum(prefix, n)
}

// assertToBound returns a new node that converts a node rcvr with interface type to
// the 'dst' interface type.
func assertToBound(info *instInfo, dictVar *ir.Name, pos src.XPos, rcvr ir.Node, dst *types.Type) ir.Node {
	if !dst.HasShape() {
		return typed(dst, ir.NewTypeAssertExpr(pos, rcvr, nil))
	}

	ix := findDictType(info, dst)
	assert(ix >= 0)
	rt := getDictionaryType(info, dictVar, pos, ix)
	return typed(dst, ir.NewDynamicTypeAssertExpr(pos, ir.ODYNAMICDOTTYPE, rcvr, rt))
}

相关信息

go 源码目录

相关文章

go codes 源码

go decl 源码

go export 源码

go expr 源码

go func 源码

go helpers 源码

go import 源码

go irgen 源码

go lex 源码

go lex_test 源码

0  赞