spark JavaDoubleRDD 源码
spark JavaDoubleRDD 代码
文件路径:/core/src/main/scala/org/apache/spark/api/java/JavaDoubleRDD.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.api.java
import java.lang.{Double => JDouble}
import scala.language.implicitConversions
import scala.reflect.ClassTag
import org.apache.spark.Partitioner
import org.apache.spark.annotation.Since
import org.apache.spark.api.java.function.{Function => JFunction}
import org.apache.spark.partial.{BoundedDouble, PartialResult}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.StatCounter
import org.apache.spark.util.Utils
class JavaDoubleRDD(val srdd: RDD[scala.Double])
extends AbstractJavaRDDLike[JDouble, JavaDoubleRDD] {
override val classTag: ClassTag[JDouble] = implicitly[ClassTag[JDouble]]
override val rdd: RDD[JDouble] = srdd.map(x => JDouble.valueOf(x))
override def wrapRDD(rdd: RDD[JDouble]): JavaDoubleRDD =
new JavaDoubleRDD(rdd.map(_.doubleValue))
// Common RDD functions
import JavaDoubleRDD.fromRDD
/**
* Persist this RDD with the default storage level (`MEMORY_ONLY`).
*/
def cache(): JavaDoubleRDD = fromRDD(srdd.cache())
/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. Can only be called once on each RDD.
*/
def persist(newLevel: StorageLevel): JavaDoubleRDD = fromRDD(srdd.persist(newLevel))
/**
* Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
* This method blocks until all blocks are deleted.
*/
def unpersist(): JavaDoubleRDD = fromRDD(srdd.unpersist())
/**
* Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
*
* @param blocking Whether to block until all blocks are deleted.
*/
def unpersist(blocking: Boolean): JavaDoubleRDD = fromRDD(srdd.unpersist(blocking))
// first() has to be overridden here in order for its return type to be Double instead of Object.
override def first(): JDouble = srdd.first()
// Transformations (return a new RDD)
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(): JavaDoubleRDD = fromRDD(srdd.distinct())
/**
* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(numPartitions: Int): JavaDoubleRDD = fromRDD(srdd.distinct(numPartitions))
/**
* Return a new RDD containing only the elements that satisfy a predicate.
*/
def filter(f: JFunction[JDouble, java.lang.Boolean]): JavaDoubleRDD =
fromRDD(srdd.filter(x => f.call(x).booleanValue()))
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*/
def coalesce(numPartitions: Int): JavaDoubleRDD = fromRDD(srdd.coalesce(numPartitions))
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*/
def coalesce(numPartitions: Int, shuffle: Boolean): JavaDoubleRDD =
fromRDD(srdd.coalesce(numPartitions, shuffle))
/**
* Return a new RDD that has exactly numPartitions partitions.
*
* Can increase or decrease the level of parallelism in this RDD. Internally, this uses
* a shuffle to redistribute data.
*
* If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
* which can avoid performing a shuffle.
*/
def repartition(numPartitions: Int): JavaDoubleRDD = fromRDD(srdd.repartition(numPartitions))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*
* Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
* RDD will be <= us.
*/
def subtract(other: JavaDoubleRDD): JavaDoubleRDD =
fromRDD(srdd.subtract(other))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: JavaDoubleRDD, numPartitions: Int): JavaDoubleRDD =
fromRDD(srdd.subtract(other, numPartitions))
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: JavaDoubleRDD, p: Partitioner): JavaDoubleRDD =
fromRDD(srdd.subtract(other, p))
/**
* Return a sampled subset of this RDD.
*/
def sample(withReplacement: Boolean, fraction: JDouble): JavaDoubleRDD =
sample(withReplacement, fraction, Utils.random.nextLong)
/**
* Return a sampled subset of this RDD.
*/
def sample(withReplacement: Boolean, fraction: JDouble, seed: Long): JavaDoubleRDD =
fromRDD(srdd.sample(withReplacement, fraction, seed))
/**
* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def union(other: JavaDoubleRDD): JavaDoubleRDD = fromRDD(srdd.union(other.srdd))
/**
* Return the intersection of this RDD and another one. The output will not contain any duplicate
* elements, even if the input RDDs did.
*
* @note This method performs a shuffle internally.
*/
def intersection(other: JavaDoubleRDD): JavaDoubleRDD = fromRDD(srdd.intersection(other.srdd))
// Double RDD functions
/** Add up the elements in this RDD. */
def sum(): JDouble = srdd.sum()
/**
* Returns the minimum element from this RDD as defined by
* the default comparator natural order.
* @return the minimum of the RDD
*/
def min(): JDouble = min(com.google.common.collect.Ordering.natural())
/**
* Returns the maximum element from this RDD as defined by
* the default comparator natural order.
* @return the maximum of the RDD
*/
def max(): JDouble = max(com.google.common.collect.Ordering.natural())
/**
* Return a [[org.apache.spark.util.StatCounter]] object that captures the mean, variance and
* count of the RDD's elements in one operation.
*/
def stats(): StatCounter = srdd.stats()
/** Compute the mean of this RDD's elements. */
def mean(): JDouble = srdd.mean()
/** Compute the population variance of this RDD's elements. */
def variance(): JDouble = srdd.variance()
/** Compute the population standard deviation of this RDD's elements. */
def stdev(): JDouble = srdd.stdev()
/**
* Compute the sample standard deviation of this RDD's elements (which corrects for bias in
* estimating the standard deviation by dividing by N-1 instead of N).
*/
def sampleStdev(): JDouble = srdd.sampleStdev()
/**
* Compute the sample variance of this RDD's elements (which corrects for bias in
* estimating the standard variance by dividing by N-1 instead of N).
*/
def sampleVariance(): JDouble = srdd.sampleVariance()
/**
* Compute the population standard deviation of this RDD's elements.
*/
@Since("2.1.0")
def popStdev(): JDouble = srdd.popStdev()
/**
* Compute the population variance of this RDD's elements.
*/
@Since("2.1.0")
def popVariance(): JDouble = srdd.popVariance()
/** Return the approximate mean of the elements in this RDD. */
def meanApprox(timeout: Long, confidence: JDouble): PartialResult[BoundedDouble] =
srdd.meanApprox(timeout, confidence)
/**
* Approximate operation to return the mean within a timeout.
*/
def meanApprox(timeout: Long): PartialResult[BoundedDouble] = srdd.meanApprox(timeout)
/**
* Approximate operation to return the sum within a timeout.
*/
def sumApprox(timeout: Long, confidence: JDouble): PartialResult[BoundedDouble] =
srdd.sumApprox(timeout, confidence)
/**
* Approximate operation to return the sum within a timeout.
*/
def sumApprox(timeout: Long): PartialResult[BoundedDouble] = srdd.sumApprox(timeout)
/**
* Compute a histogram of the data using bucketCount number of buckets evenly
* spaced between the minimum and maximum of the RDD. For example if the min
* value is 0 and the max is 100 and there are two buckets the resulting
* buckets will be [0,50) [50,100]. bucketCount must be at least 1
* If the RDD contains infinity, NaN throws an exception
* If the elements in RDD do not vary (max == min) always returns a single bucket.
*/
def histogram(bucketCount: Int): (Array[scala.Double], Array[Long]) = {
val result = srdd.histogram(bucketCount)
(result._1, result._2)
}
/**
* Compute a histogram using the provided buckets. The buckets are all open
* to the left except for the last which is closed
* e.g. for the array
* [1,10,20,50] the buckets are [1,10) [10,20) [20,50]
* e.g 1<=x<10 , 10<=x<20, 20<=x<50
* And on the input of 1 and 50 we would have a histogram of 1,0,0
*
* @note If your histogram is evenly spaced (e.g. [0, 10, 20, 30]) this can be switched
* from an O(log n) insertion to O(1) per element. (where n = # buckets) if you set evenBuckets
* to true.
* buckets must be sorted and not contain any duplicates.
* buckets array must be at least two elements
* All NaN entries are treated the same. If you have a NaN bucket it must be
* the maximum value of the last position and all NaN entries will be counted
* in that bucket.
*/
def histogram(buckets: Array[scala.Double]): Array[Long] = {
srdd.histogram(buckets, false)
}
def histogram(buckets: Array[JDouble], evenBuckets: Boolean): Array[Long] = {
srdd.histogram(buckets.map(_.toDouble), evenBuckets)
}
/** Assign a name to this RDD */
def setName(name: String): JavaDoubleRDD = {
srdd.setName(name)
this
}
}
object JavaDoubleRDD {
def fromRDD(rdd: RDD[scala.Double]): JavaDoubleRDD = new JavaDoubleRDD(rdd)
implicit def toRDD(rdd: JavaDoubleRDD): RDD[scala.Double] = rdd.srdd
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦