go parser 源码
golang parser 代码
文件路径:/src/go/printer/testdata/parser.go
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package parser implements a parser for Go source files. Input may be
// provided in a variety of forms (see the various Parse* functions); the
// output is an abstract syntax tree (AST) representing the Go source. The
// parser is invoked through one of the Parse* functions.
package parser
import (
"fmt"
"go/ast"
"go/scanner"
"go/token"
)
// The mode parameter to the Parse* functions is a set of flags (or 0).
// They control the amount of source code parsed and other optional
// parser functionality.
const (
PackageClauseOnly uint = 1 << iota // parsing stops after package clause
ImportsOnly // parsing stops after import declarations
ParseComments // parse comments and add them to AST
Trace // print a trace of parsed productions
DeclarationErrors // report declaration errors
)
// The parser structure holds the parser's internal state.
type parser struct {
file *token.File
scanner.ErrorVector
scanner scanner.Scanner
// Tracing/debugging
mode uint // parsing mode
trace bool // == (mode & Trace != 0)
indent uint // indentation used for tracing output
// Comments
comments []*ast.CommentGroup
leadComment *ast.CommentGroup // last lead comment
lineComment *ast.CommentGroup // last line comment
// Next token
pos token.Pos // token position
tok token.Token // one token look-ahead
lit string // token literal
// Non-syntactic parser control
exprLev int // < 0: in control clause, >= 0: in expression
// Ordinary identifier scopes
pkgScope *ast.Scope // pkgScope.Outer == nil
topScope *ast.Scope // top-most scope; may be pkgScope
unresolved []*ast.Ident // unresolved identifiers
imports []*ast.ImportSpec // list of imports
// Label scope
// (maintained by open/close LabelScope)
labelScope *ast.Scope // label scope for current function
targetStack [][]*ast.Ident // stack of unresolved labels
}
// scannerMode returns the scanner mode bits given the parser's mode bits.
func scannerMode(mode uint) uint {
var m uint = scanner.InsertSemis
if mode&ParseComments != 0 {
m |= scanner.ScanComments
}
return m
}
func (p *parser) init(fset *token.FileSet, filename string, src []byte, mode uint) {
p.file = fset.AddFile(filename, fset.Base(), len(src))
p.scanner.Init(p.file, src, p, scannerMode(mode))
p.mode = mode
p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently)
p.next()
// set up the pkgScope here (as opposed to in parseFile) because
// there are other parser entry points (ParseExpr, etc.)
p.openScope()
p.pkgScope = p.topScope
// for the same reason, set up a label scope
p.openLabelScope()
}
// ----------------------------------------------------------------------------
// Scoping support
func (p *parser) openScope() {
p.topScope = ast.NewScope(p.topScope)
}
func (p *parser) closeScope() {
p.topScope = p.topScope.Outer
}
func (p *parser) openLabelScope() {
p.labelScope = ast.NewScope(p.labelScope)
p.targetStack = append(p.targetStack, nil)
}
func (p *parser) closeLabelScope() {
// resolve labels
n := len(p.targetStack) - 1
scope := p.labelScope
for _, ident := range p.targetStack[n] {
ident.Obj = scope.Lookup(ident.Name)
if ident.Obj == nil && p.mode&DeclarationErrors != 0 {
p.error(ident.Pos(), fmt.Sprintf("label %s undefined", ident.Name))
}
}
// pop label scope
p.targetStack = p.targetStack[0:n]
p.labelScope = p.labelScope.Outer
}
func (p *parser) declare(decl any, scope *ast.Scope, kind ast.ObjKind, idents ...*ast.Ident) {
for _, ident := range idents {
assert(ident.Obj == nil, "identifier already declared or resolved")
if ident.Name != "_" {
obj := ast.NewObj(kind, ident.Name)
// remember the corresponding declaration for redeclaration
// errors and global variable resolution/typechecking phase
obj.Decl = decl
if alt := scope.Insert(obj); alt != nil && p.mode&DeclarationErrors != 0 {
prevDecl := ""
if pos := alt.Pos(); pos.IsValid() {
prevDecl = fmt.Sprintf("\n\tprevious declaration at %s", p.file.Position(pos))
}
p.error(ident.Pos(), fmt.Sprintf("%s redeclared in this block%s", ident.Name, prevDecl))
}
ident.Obj = obj
}
}
}
func (p *parser) shortVarDecl(idents []*ast.Ident) {
// Go spec: A short variable declaration may redeclare variables
// provided they were originally declared in the same block with
// the same type, and at least one of the non-blank variables is new.
n := 0 // number of new variables
for _, ident := range idents {
assert(ident.Obj == nil, "identifier already declared or resolved")
if ident.Name != "_" {
obj := ast.NewObj(ast.Var, ident.Name)
// short var declarations cannot have redeclaration errors
// and are not global => no need to remember the respective
// declaration
alt := p.topScope.Insert(obj)
if alt == nil {
n++ // new declaration
alt = obj
}
ident.Obj = alt
}
}
if n == 0 && p.mode&DeclarationErrors != 0 {
p.error(idents[0].Pos(), "no new variables on left side of :=")
}
}
// The unresolved object is a sentinel to mark identifiers that have been added
// to the list of unresolved identifiers. The sentinel is only used for verifying
// internal consistency.
var unresolved = new(ast.Object)
func (p *parser) resolve(x ast.Expr) {
// nothing to do if x is not an identifier or the blank identifier
ident, _ := x.(*ast.Ident)
if ident == nil {
return
}
assert(ident.Obj == nil, "identifier already declared or resolved")
if ident.Name == "_" {
return
}
// try to resolve the identifier
for s := p.topScope; s != nil; s = s.Outer {
if obj := s.Lookup(ident.Name); obj != nil {
ident.Obj = obj
return
}
}
// all local scopes are known, so any unresolved identifier
// must be found either in the file scope, package scope
// (perhaps in another file), or universe scope --- collect
// them so that they can be resolved later
ident.Obj = unresolved
p.unresolved = append(p.unresolved, ident)
}
// ----------------------------------------------------------------------------
// Parsing support
func (p *parser) printTrace(a ...any) {
const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " +
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
const n = uint(len(dots))
pos := p.file.Position(p.pos)
fmt.Printf("%5d:%3d: ", pos.Line, pos.Column)
i := 2 * p.indent
for ; i > n; i -= n {
fmt.Print(dots)
}
fmt.Print(dots[0:i])
fmt.Println(a...)
}
func trace(p *parser, msg string) *parser {
p.printTrace(msg, "(")
p.indent++
return p
}
// Usage pattern: defer un(trace(p, "..."));
func un(p *parser) {
p.indent--
p.printTrace(")")
}
// Advance to the next token.
func (p *parser) next0() {
// Because of one-token look-ahead, print the previous token
// when tracing as it provides a more readable output. The
// very first token (!p.pos.IsValid()) is not initialized
// (it is token.ILLEGAL), so don't print it.
if p.trace && p.pos.IsValid() {
s := p.tok.String()
switch {
case p.tok.IsLiteral():
p.printTrace(s, p.lit)
case p.tok.IsOperator(), p.tok.IsKeyword():
p.printTrace("\"" + s + "\"")
default:
p.printTrace(s)
}
}
p.pos, p.tok, p.lit = p.scanner.Scan()
}
// Consume a comment and return it and the line on which it ends.
func (p *parser) consumeComment() (comment *ast.Comment, endline int) {
// /*-style comments may end on a different line than where they start.
// Scan the comment for '\n' chars and adjust endline accordingly.
endline = p.file.Line(p.pos)
if p.lit[1] == '*' {
// don't use range here - no need to decode Unicode code points
for i := 0; i < len(p.lit); i++ {
if p.lit[i] == '\n' {
endline++
}
}
}
comment = &ast.Comment{p.pos, p.lit}
p.next0()
return
}
// Consume a group of adjacent comments, add it to the parser's
// comments list, and return it together with the line at which
// the last comment in the group ends. An empty line or non-comment
// token terminates a comment group.
func (p *parser) consumeCommentGroup() (comments *ast.CommentGroup, endline int) {
var list []*ast.Comment
endline = p.file.Line(p.pos)
for p.tok == token.COMMENT && endline+1 >= p.file.Line(p.pos) {
var comment *ast.Comment
comment, endline = p.consumeComment()
list = append(list, comment)
}
// add comment group to the comments list
comments = &ast.CommentGroup{list}
p.comments = append(p.comments, comments)
return
}
// Advance to the next non-comment token. In the process, collect
// any comment groups encountered, and remember the last lead and
// line comments.
//
// A lead comment is a comment group that starts and ends in a
// line without any other tokens and that is followed by a non-comment
// token on the line immediately after the comment group.
//
// A line comment is a comment group that follows a non-comment
// token on the same line, and that has no tokens after it on the line
// where it ends.
//
// Lead and line comments may be considered documentation that is
// stored in the AST.
func (p *parser) next() {
p.leadComment = nil
p.lineComment = nil
line := p.file.Line(p.pos) // current line
p.next0()
if p.tok == token.COMMENT {
var comment *ast.CommentGroup
var endline int
if p.file.Line(p.pos) == line {
// The comment is on same line as the previous token; it
// cannot be a lead comment but may be a line comment.
comment, endline = p.consumeCommentGroup()
if p.file.Line(p.pos) != endline {
// The next token is on a different line, thus
// the last comment group is a line comment.
p.lineComment = comment
}
}
// consume successor comments, if any
endline = -1
for p.tok == token.COMMENT {
comment, endline = p.consumeCommentGroup()
}
if endline+1 == p.file.Line(p.pos) {
// The next token is following on the line immediately after the
// comment group, thus the last comment group is a lead comment.
p.leadComment = comment
}
}
}
func (p *parser) error(pos token.Pos, msg string) {
p.Error(p.file.Position(pos), msg)
}
func (p *parser) errorExpected(pos token.Pos, msg string) {
msg = "expected " + msg
if pos == p.pos {
// the error happened at the current position;
// make the error message more specific
if p.tok == token.SEMICOLON && p.lit[0] == '\n' {
msg += ", found newline"
} else {
msg += ", found '" + p.tok.String() + "'"
if p.tok.IsLiteral() {
msg += " " + p.lit
}
}
}
p.error(pos, msg)
}
func (p *parser) expect(tok token.Token) token.Pos {
pos := p.pos
if p.tok != tok {
p.errorExpected(pos, "'"+tok.String()+"'")
}
p.next() // make progress
return pos
}
func (p *parser) expectSemi() {
if p.tok != token.RPAREN && p.tok != token.RBRACE {
p.expect(token.SEMICOLON)
}
}
func assert(cond bool, msg string) {
if !cond {
panic("go/parser internal error: " + msg)
}
}
// ----------------------------------------------------------------------------
// Identifiers
func (p *parser) parseIdent() *ast.Ident {
pos := p.pos
name := "_"
if p.tok == token.IDENT {
name = p.lit
p.next()
} else {
p.expect(token.IDENT) // use expect() error handling
}
return &ast.Ident{pos, name, nil}
}
func (p *parser) parseIdentList() (list []*ast.Ident) {
if p.trace {
defer un(trace(p, "IdentList"))
}
list = append(list, p.parseIdent())
for p.tok == token.COMMA {
p.next()
list = append(list, p.parseIdent())
}
return
}
// ----------------------------------------------------------------------------
// Common productions
// If lhs is set, result list elements which are identifiers are not resolved.
func (p *parser) parseExprList(lhs bool) (list []ast.Expr) {
if p.trace {
defer un(trace(p, "ExpressionList"))
}
list = append(list, p.parseExpr(lhs))
for p.tok == token.COMMA {
p.next()
list = append(list, p.parseExpr(lhs))
}
return
}
func (p *parser) parseLhsList() []ast.Expr {
list := p.parseExprList(true)
switch p.tok {
case token.DEFINE:
// lhs of a short variable declaration
p.shortVarDecl(p.makeIdentList(list))
case token.COLON:
// lhs of a label declaration or a communication clause of a select
// statement (parseLhsList is not called when parsing the case clause
// of a switch statement):
// - labels are declared by the caller of parseLhsList
// - for communication clauses, if there is a stand-alone identifier
// followed by a colon, we have a syntax error; there is no need
// to resolve the identifier in that case
default:
// identifiers must be declared elsewhere
for _, x := range list {
p.resolve(x)
}
}
return list
}
func (p *parser) parseRhsList() []ast.Expr {
return p.parseExprList(false)
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) parseType() ast.Expr {
if p.trace {
defer un(trace(p, "Type"))
}
typ := p.tryType()
if typ == nil {
pos := p.pos
p.errorExpected(pos, "type")
p.next() // make progress
return &ast.BadExpr{pos, p.pos}
}
return typ
}
// If the result is an identifier, it is not resolved.
func (p *parser) parseTypeName() ast.Expr {
if p.trace {
defer un(trace(p, "TypeName"))
}
ident := p.parseIdent()
// don't resolve ident yet - it may be a parameter or field name
if p.tok == token.PERIOD {
// ident is a package name
p.next()
p.resolve(ident)
sel := p.parseIdent()
return &ast.SelectorExpr{ident, sel}
}
return ident
}
func (p *parser) parseArrayType(ellipsisOk bool) ast.Expr {
if p.trace {
defer un(trace(p, "ArrayType"))
}
lbrack := p.expect(token.LBRACK)
var len ast.Expr
if ellipsisOk && p.tok == token.ELLIPSIS {
len = &ast.Ellipsis{p.pos, nil}
p.next()
} else if p.tok != token.RBRACK {
len = p.parseRhs()
}
p.expect(token.RBRACK)
elt := p.parseType()
return &ast.ArrayType{lbrack, len, elt}
}
func (p *parser) makeIdentList(list []ast.Expr) []*ast.Ident {
idents := make([]*ast.Ident, len(list))
for i, x := range list {
ident, isIdent := x.(*ast.Ident)
if !isIdent {
pos := x.(ast.Expr).Pos()
p.errorExpected(pos, "identifier")
ident = &ast.Ident{pos, "_", nil}
}
idents[i] = ident
}
return idents
}
func (p *parser) parseFieldDecl(scope *ast.Scope) *ast.Field {
if p.trace {
defer un(trace(p, "FieldDecl"))
}
doc := p.leadComment
// fields
list, typ := p.parseVarList(false)
// optional tag
var tag *ast.BasicLit
if p.tok == token.STRING {
tag = &ast.BasicLit{p.pos, p.tok, p.lit}
p.next()
}
// analyze case
var idents []*ast.Ident
if typ != nil {
// IdentifierList Type
idents = p.makeIdentList(list)
} else {
// ["*"] TypeName (AnonymousField)
typ = list[0] // we always have at least one element
p.resolve(typ)
if n := len(list); n > 1 || !isTypeName(deref(typ)) {
pos := typ.Pos()
p.errorExpected(pos, "anonymous field")
typ = &ast.BadExpr{pos, list[n-1].End()}
}
}
p.expectSemi() // call before accessing p.linecomment
field := &ast.Field{doc, idents, typ, tag, p.lineComment}
p.declare(field, scope, ast.Var, idents...)
return field
}
func (p *parser) parseStructType() *ast.StructType {
if p.trace {
defer un(trace(p, "StructType"))
}
pos := p.expect(token.STRUCT)
lbrace := p.expect(token.LBRACE)
scope := ast.NewScope(nil) // struct scope
var list []*ast.Field
for p.tok == token.IDENT || p.tok == token.MUL || p.tok == token.LPAREN {
// a field declaration cannot start with a '(' but we accept
// it here for more robust parsing and better error messages
// (parseFieldDecl will check and complain if necessary)
list = append(list, p.parseFieldDecl(scope))
}
rbrace := p.expect(token.RBRACE)
// TODO(gri): store struct scope in AST
return &ast.StructType{pos, &ast.FieldList{lbrace, list, rbrace}, false}
}
func (p *parser) parsePointerType() *ast.StarExpr {
if p.trace {
defer un(trace(p, "PointerType"))
}
star := p.expect(token.MUL)
base := p.parseType()
return &ast.StarExpr{star, base}
}
func (p *parser) tryVarType(isParam bool) ast.Expr {
if isParam && p.tok == token.ELLIPSIS {
pos := p.pos
p.next()
typ := p.tryIdentOrType(isParam) // don't use parseType so we can provide better error message
if typ == nil {
p.error(pos, "'...' parameter is missing type")
typ = &ast.BadExpr{pos, p.pos}
}
if p.tok != token.RPAREN {
p.error(pos, "can use '...' with last parameter type only")
}
return &ast.Ellipsis{pos, typ}
}
return p.tryIdentOrType(false)
}
func (p *parser) parseVarType(isParam bool) ast.Expr {
typ := p.tryVarType(isParam)
if typ == nil {
pos := p.pos
p.errorExpected(pos, "type")
p.next() // make progress
typ = &ast.BadExpr{pos, p.pos}
}
return typ
}
func (p *parser) parseVarList(isParam bool) (list []ast.Expr, typ ast.Expr) {
if p.trace {
defer un(trace(p, "VarList"))
}
// a list of identifiers looks like a list of type names
for {
// parseVarType accepts any type (including parenthesized ones)
// even though the syntax does not permit them here: we
// accept them all for more robust parsing and complain
// afterwards
list = append(list, p.parseVarType(isParam))
if p.tok != token.COMMA {
break
}
p.next()
}
// if we had a list of identifiers, it must be followed by a type
typ = p.tryVarType(isParam)
if typ != nil {
p.resolve(typ)
}
return
}
func (p *parser) parseParameterList(scope *ast.Scope, ellipsisOk bool) (params []*ast.Field) {
if p.trace {
defer un(trace(p, "ParameterList"))
}
list, typ := p.parseVarList(ellipsisOk)
if typ != nil {
// IdentifierList Type
idents := p.makeIdentList(list)
field := &ast.Field{nil, idents, typ, nil, nil}
params = append(params, field)
// Go spec: The scope of an identifier denoting a function
// parameter or result variable is the function body.
p.declare(field, scope, ast.Var, idents...)
if p.tok == token.COMMA {
p.next()
}
for p.tok != token.RPAREN && p.tok != token.EOF {
idents := p.parseIdentList()
typ := p.parseVarType(ellipsisOk)
field := &ast.Field{nil, idents, typ, nil, nil}
params = append(params, field)
// Go spec: The scope of an identifier denoting a function
// parameter or result variable is the function body.
p.declare(field, scope, ast.Var, idents...)
if p.tok != token.COMMA {
break
}
p.next()
}
} else {
// Type { "," Type } (anonymous parameters)
params = make([]*ast.Field, len(list))
for i, x := range list {
p.resolve(x)
params[i] = &ast.Field{Type: x}
}
}
return
}
func (p *parser) parseParameters(scope *ast.Scope, ellipsisOk bool) *ast.FieldList {
if p.trace {
defer un(trace(p, "Parameters"))
}
var params []*ast.Field
lparen := p.expect(token.LPAREN)
if p.tok != token.RPAREN {
params = p.parseParameterList(scope, ellipsisOk)
}
rparen := p.expect(token.RPAREN)
return &ast.FieldList{lparen, params, rparen}
}
func (p *parser) parseResult(scope *ast.Scope) *ast.FieldList {
if p.trace {
defer un(trace(p, "Result"))
}
if p.tok == token.LPAREN {
return p.parseParameters(scope, false)
}
typ := p.tryType()
if typ != nil {
list := make([]*ast.Field, 1)
list[0] = &ast.Field{Type: typ}
return &ast.FieldList{List: list}
}
return nil
}
func (p *parser) parseSignature(scope *ast.Scope) (params, results *ast.FieldList) {
if p.trace {
defer un(trace(p, "Signature"))
}
params = p.parseParameters(scope, true)
results = p.parseResult(scope)
return
}
func (p *parser) parseFuncType() (*ast.FuncType, *ast.Scope) {
if p.trace {
defer un(trace(p, "FuncType"))
}
pos := p.expect(token.FUNC)
scope := ast.NewScope(p.topScope) // function scope
params, results := p.parseSignature(scope)
return &ast.FuncType{pos, params, results}, scope
}
func (p *parser) parseMethodSpec(scope *ast.Scope) *ast.Field {
if p.trace {
defer un(trace(p, "MethodSpec"))
}
doc := p.leadComment
var idents []*ast.Ident
var typ ast.Expr
x := p.parseTypeName()
if ident, isIdent := x.(*ast.Ident); isIdent && p.tok == token.LPAREN {
// method
idents = []*ast.Ident{ident}
scope := ast.NewScope(nil) // method scope
params, results := p.parseSignature(scope)
typ = &ast.FuncType{token.NoPos, params, results}
} else {
// embedded interface
typ = x
}
p.expectSemi() // call before accessing p.linecomment
spec := &ast.Field{doc, idents, typ, nil, p.lineComment}
p.declare(spec, scope, ast.Fun, idents...)
return spec
}
func (p *parser) parseInterfaceType() *ast.InterfaceType {
if p.trace {
defer un(trace(p, "InterfaceType"))
}
pos := p.expect(token.INTERFACE)
lbrace := p.expect(token.LBRACE)
scope := ast.NewScope(nil) // interface scope
var list []*ast.Field
for p.tok == token.IDENT {
list = append(list, p.parseMethodSpec(scope))
}
rbrace := p.expect(token.RBRACE)
// TODO(gri): store interface scope in AST
return &ast.InterfaceType{pos, &ast.FieldList{lbrace, list, rbrace}, false}
}
func (p *parser) parseMapType() *ast.MapType {
if p.trace {
defer un(trace(p, "MapType"))
}
pos := p.expect(token.MAP)
p.expect(token.LBRACK)
key := p.parseType()
p.expect(token.RBRACK)
value := p.parseType()
return &ast.MapType{pos, key, value}
}
func (p *parser) parseChanType() *ast.ChanType {
if p.trace {
defer un(trace(p, "ChanType"))
}
pos := p.pos
dir := ast.SEND | ast.RECV
if p.tok == token.CHAN {
p.next()
if p.tok == token.ARROW {
p.next()
dir = ast.SEND
}
} else {
p.expect(token.ARROW)
p.expect(token.CHAN)
dir = ast.RECV
}
value := p.parseType()
return &ast.ChanType{pos, dir, value}
}
// If the result is an identifier, it is not resolved.
func (p *parser) tryIdentOrType(ellipsisOk bool) ast.Expr {
switch p.tok {
case token.IDENT:
return p.parseTypeName()
case token.LBRACK:
return p.parseArrayType(ellipsisOk)
case token.STRUCT:
return p.parseStructType()
case token.MUL:
return p.parsePointerType()
case token.FUNC:
typ, _ := p.parseFuncType()
return typ
case token.INTERFACE:
return p.parseInterfaceType()
case token.MAP:
return p.parseMapType()
case token.CHAN, token.ARROW:
return p.parseChanType()
case token.LPAREN:
lparen := p.pos
p.next()
typ := p.parseType()
rparen := p.expect(token.RPAREN)
return &ast.ParenExpr{lparen, typ, rparen}
}
// no type found
return nil
}
func (p *parser) tryType() ast.Expr {
typ := p.tryIdentOrType(false)
if typ != nil {
p.resolve(typ)
}
return typ
}
// ----------------------------------------------------------------------------
// Blocks
func (p *parser) parseStmtList() (list []ast.Stmt) {
if p.trace {
defer un(trace(p, "StatementList"))
}
for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF {
list = append(list, p.parseStmt())
}
return
}
func (p *parser) parseBody(scope *ast.Scope) *ast.BlockStmt {
if p.trace {
defer un(trace(p, "Body"))
}
lbrace := p.expect(token.LBRACE)
p.topScope = scope // open function scope
p.openLabelScope()
list := p.parseStmtList()
p.closeLabelScope()
p.closeScope()
rbrace := p.expect(token.RBRACE)
return &ast.BlockStmt{lbrace, list, rbrace}
}
func (p *parser) parseBlockStmt() *ast.BlockStmt {
if p.trace {
defer un(trace(p, "BlockStmt"))
}
lbrace := p.expect(token.LBRACE)
p.openScope()
list := p.parseStmtList()
p.closeScope()
rbrace := p.expect(token.RBRACE)
return &ast.BlockStmt{lbrace, list, rbrace}
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) parseFuncTypeOrLit() ast.Expr {
if p.trace {
defer un(trace(p, "FuncTypeOrLit"))
}
typ, scope := p.parseFuncType()
if p.tok != token.LBRACE {
// function type only
return typ
}
p.exprLev++
body := p.parseBody(scope)
p.exprLev--
return &ast.FuncLit{typ, body}
}
// parseOperand may return an expression or a raw type (incl. array
// types of the form [...]T. Callers must verify the result.
// If lhs is set and the result is an identifier, it is not resolved.
func (p *parser) parseOperand(lhs bool) ast.Expr {
if p.trace {
defer un(trace(p, "Operand"))
}
switch p.tok {
case token.IDENT:
x := p.parseIdent()
if !lhs {
p.resolve(x)
}
return x
case token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING:
x := &ast.BasicLit{p.pos, p.tok, p.lit}
p.next()
return x
case token.LPAREN:
lparen := p.pos
p.next()
p.exprLev++
x := p.parseRhs()
p.exprLev--
rparen := p.expect(token.RPAREN)
return &ast.ParenExpr{lparen, x, rparen}
case token.FUNC:
return p.parseFuncTypeOrLit()
default:
if typ := p.tryIdentOrType(true); typ != nil {
// could be type for composite literal or conversion
_, isIdent := typ.(*ast.Ident)
assert(!isIdent, "type cannot be identifier")
return typ
}
}
pos := p.pos
p.errorExpected(pos, "operand")
p.next() // make progress
return &ast.BadExpr{pos, p.pos}
}
func (p *parser) parseSelector(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "Selector"))
}
sel := p.parseIdent()
return &ast.SelectorExpr{x, sel}
}
func (p *parser) parseTypeAssertion(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "TypeAssertion"))
}
p.expect(token.LPAREN)
var typ ast.Expr
if p.tok == token.TYPE {
// type switch: typ == nil
p.next()
} else {
typ = p.parseType()
}
p.expect(token.RPAREN)
return &ast.TypeAssertExpr{x, typ}
}
func (p *parser) parseIndexOrSlice(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "IndexOrSlice"))
}
lbrack := p.expect(token.LBRACK)
p.exprLev++
var low, high ast.Expr
isSlice := false
if p.tok != token.COLON {
low = p.parseRhs()
}
if p.tok == token.COLON {
isSlice = true
p.next()
if p.tok != token.RBRACK {
high = p.parseRhs()
}
}
p.exprLev--
rbrack := p.expect(token.RBRACK)
if isSlice {
return &ast.SliceExpr{x, lbrack, low, high, rbrack}
}
return &ast.IndexExpr{x, lbrack, low, rbrack}
}
func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr {
if p.trace {
defer un(trace(p, "CallOrConversion"))
}
lparen := p.expect(token.LPAREN)
p.exprLev++
var list []ast.Expr
var ellipsis token.Pos
for p.tok != token.RPAREN && p.tok != token.EOF && !ellipsis.IsValid() {
list = append(list, p.parseRhs())
if p.tok == token.ELLIPSIS {
ellipsis = p.pos
p.next()
}
if p.tok != token.COMMA {
break
}
p.next()
}
p.exprLev--
rparen := p.expect(token.RPAREN)
return &ast.CallExpr{fun, lparen, list, ellipsis, rparen}
}
func (p *parser) parseElement(keyOk bool) ast.Expr {
if p.trace {
defer un(trace(p, "Element"))
}
if p.tok == token.LBRACE {
return p.parseLiteralValue(nil)
}
x := p.parseExpr(keyOk) // don't resolve if map key
if keyOk {
if p.tok == token.COLON {
colon := p.pos
p.next()
return &ast.KeyValueExpr{x, colon, p.parseElement(false)}
}
p.resolve(x) // not a map key
}
return x
}
func (p *parser) parseElementList() (list []ast.Expr) {
if p.trace {
defer un(trace(p, "ElementList"))
}
for p.tok != token.RBRACE && p.tok != token.EOF {
list = append(list, p.parseElement(true))
if p.tok != token.COMMA {
break
}
p.next()
}
return
}
func (p *parser) parseLiteralValue(typ ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "LiteralValue"))
}
lbrace := p.expect(token.LBRACE)
var elts []ast.Expr
p.exprLev++
if p.tok != token.RBRACE {
elts = p.parseElementList()
}
p.exprLev--
rbrace := p.expect(token.RBRACE)
return &ast.CompositeLit{typ, lbrace, elts, rbrace}
}
// checkExpr checks that x is an expression (and not a type).
func (p *parser) checkExpr(x ast.Expr) ast.Expr {
switch t := unparen(x).(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.BasicLit:
case *ast.FuncLit:
case *ast.CompositeLit:
case *ast.ParenExpr:
panic("unreachable")
case *ast.SelectorExpr:
case *ast.IndexExpr:
case *ast.SliceExpr:
case *ast.TypeAssertExpr:
if t.Type == nil {
// the form X.(type) is only allowed in type switch expressions
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos(), x.End()}
}
case *ast.CallExpr:
case *ast.StarExpr:
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos(), x.End()}
}
case *ast.BinaryExpr:
default:
// all other nodes are not proper expressions
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos(), x.End()}
}
return x
}
// isTypeName reports whether x is a (qualified) TypeName.
func isTypeName(x ast.Expr) bool {
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.SelectorExpr:
_, isIdent := t.X.(*ast.Ident)
return isIdent
default:
return false // all other nodes are not type names
}
return true
}
// isLiteralType reports whether x is a legal composite literal type.
func isLiteralType(x ast.Expr) bool {
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.SelectorExpr:
_, isIdent := t.X.(*ast.Ident)
return isIdent
case *ast.ArrayType:
case *ast.StructType:
case *ast.MapType:
default:
return false // all other nodes are not legal composite literal types
}
return true
}
// If x is of the form *T, deref returns T, otherwise it returns x.
func deref(x ast.Expr) ast.Expr {
if p, isPtr := x.(*ast.StarExpr); isPtr {
x = p.X
}
return x
}
// If x is of the form (T), unparen returns unparen(T), otherwise it returns x.
func unparen(x ast.Expr) ast.Expr {
if p, isParen := x.(*ast.ParenExpr); isParen {
x = unparen(p.X)
}
return x
}
// checkExprOrType checks that x is an expression or a type
// (and not a raw type such as [...]T).
func (p *parser) checkExprOrType(x ast.Expr) ast.Expr {
switch t := unparen(x).(type) {
case *ast.ParenExpr:
panic("unreachable")
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos(), x.End()}
}
case *ast.ArrayType:
if len, isEllipsis := t.Len.(*ast.Ellipsis); isEllipsis {
p.error(len.Pos(), "expected array length, found '...'")
x = &ast.BadExpr{x.Pos(), x.End()}
}
}
// all other nodes are expressions or types
return x
}
// If lhs is set and the result is an identifier, it is not resolved.
func (p *parser) parsePrimaryExpr(lhs bool) ast.Expr {
if p.trace {
defer un(trace(p, "PrimaryExpr"))
}
x := p.parseOperand(lhs)
L:
for {
switch p.tok {
case token.PERIOD:
p.next()
if lhs {
p.resolve(x)
}
switch p.tok {
case token.IDENT:
x = p.parseSelector(p.checkExpr(x))
case token.LPAREN:
x = p.parseTypeAssertion(p.checkExpr(x))
default:
pos := p.pos
p.next() // make progress
p.errorExpected(pos, "selector or type assertion")
x = &ast.BadExpr{pos, p.pos}
}
case token.LBRACK:
if lhs {
p.resolve(x)
}
x = p.parseIndexOrSlice(p.checkExpr(x))
case token.LPAREN:
if lhs {
p.resolve(x)
}
x = p.parseCallOrConversion(p.checkExprOrType(x))
case token.LBRACE:
if isLiteralType(x) && (p.exprLev >= 0 || !isTypeName(x)) {
if lhs {
p.resolve(x)
}
x = p.parseLiteralValue(x)
} else {
break L
}
default:
break L
}
lhs = false // no need to try to resolve again
}
return x
}
// If lhs is set and the result is an identifier, it is not resolved.
func (p *parser) parseUnaryExpr(lhs bool) ast.Expr {
if p.trace {
defer un(trace(p, "UnaryExpr"))
}
switch p.tok {
case token.ADD, token.SUB, token.NOT, token.XOR, token.AND, token.RANGE:
pos, op := p.pos, p.tok
p.next()
x := p.parseUnaryExpr(false)
return &ast.UnaryExpr{pos, op, p.checkExpr(x)}
case token.ARROW:
// channel type or receive expression
pos := p.pos
p.next()
if p.tok == token.CHAN {
p.next()
value := p.parseType()
return &ast.ChanType{pos, ast.RECV, value}
}
x := p.parseUnaryExpr(false)
return &ast.UnaryExpr{pos, token.ARROW, p.checkExpr(x)}
case token.MUL:
// pointer type or unary "*" expression
pos := p.pos
p.next()
x := p.parseUnaryExpr(false)
return &ast.StarExpr{pos, p.checkExprOrType(x)}
}
return p.parsePrimaryExpr(lhs)
}
// If lhs is set and the result is an identifier, it is not resolved.
func (p *parser) parseBinaryExpr(lhs bool, prec1 int) ast.Expr {
if p.trace {
defer un(trace(p, "BinaryExpr"))
}
x := p.parseUnaryExpr(lhs)
for prec := p.tok.Precedence(); prec >= prec1; prec-- {
for p.tok.Precedence() == prec {
pos, op := p.pos, p.tok
p.next()
if lhs {
p.resolve(x)
lhs = false
}
y := p.parseBinaryExpr(false, prec+1)
x = &ast.BinaryExpr{p.checkExpr(x), pos, op, p.checkExpr(y)}
}
}
return x
}
// If lhs is set and the result is an identifier, it is not resolved.
// TODO(gri): parseExpr may return a type or even a raw type ([..]int) -
// should reject when a type/raw type is obviously not allowed
func (p *parser) parseExpr(lhs bool) ast.Expr {
if p.trace {
defer un(trace(p, "Expression"))
}
return p.parseBinaryExpr(lhs, token.LowestPrec+1)
}
func (p *parser) parseRhs() ast.Expr {
return p.parseExpr(false)
}
// ----------------------------------------------------------------------------
// Statements
func (p *parser) parseSimpleStmt(labelOk bool) ast.Stmt {
if p.trace {
defer un(trace(p, "SimpleStmt"))
}
x := p.parseLhsList()
switch p.tok {
case
token.DEFINE, token.ASSIGN, token.ADD_ASSIGN,
token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN,
token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN,
token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN:
// assignment statement
pos, tok := p.pos, p.tok
p.next()
y := p.parseRhsList()
return &ast.AssignStmt{x, pos, tok, y}
}
if len(x) > 1 {
p.errorExpected(x[0].Pos(), "1 expression")
// continue with first expression
}
switch p.tok {
case token.COLON:
// labeled statement
colon := p.pos
p.next()
if label, isIdent := x[0].(*ast.Ident); labelOk && isIdent {
// Go spec: The scope of a label is the body of the function
// in which it is declared and excludes the body of any nested
// function.
stmt := &ast.LabeledStmt{label, colon, p.parseStmt()}
p.declare(stmt, p.labelScope, ast.Lbl, label)
return stmt
}
p.error(x[0].Pos(), "illegal label declaration")
return &ast.BadStmt{x[0].Pos(), colon + 1}
case token.ARROW:
// send statement
arrow := p.pos
p.next() // consume "<-"
y := p.parseRhs()
return &ast.SendStmt{x[0], arrow, y}
case token.INC, token.DEC:
// increment or decrement
s := &ast.IncDecStmt{x[0], p.pos, p.tok}
p.next() // consume "++" or "--"
return s
}
// expression
return &ast.ExprStmt{x[0]}
}
func (p *parser) parseCallExpr() *ast.CallExpr {
x := p.parseRhs()
if call, isCall := x.(*ast.CallExpr); isCall {
return call
}
p.errorExpected(x.Pos(), "function/method call")
return nil
}
func (p *parser) parseGoStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "GoStmt"))
}
pos := p.expect(token.GO)
call := p.parseCallExpr()
p.expectSemi()
if call == nil {
return &ast.BadStmt{pos, pos + 2} // len("go")
}
return &ast.GoStmt{pos, call}
}
func (p *parser) parseDeferStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "DeferStmt"))
}
pos := p.expect(token.DEFER)
call := p.parseCallExpr()
p.expectSemi()
if call == nil {
return &ast.BadStmt{pos, pos + 5} // len("defer")
}
return &ast.DeferStmt{pos, call}
}
func (p *parser) parseReturnStmt() *ast.ReturnStmt {
if p.trace {
defer un(trace(p, "ReturnStmt"))
}
pos := p.pos
p.expect(token.RETURN)
var x []ast.Expr
if p.tok != token.SEMICOLON && p.tok != token.RBRACE {
x = p.parseRhsList()
}
p.expectSemi()
return &ast.ReturnStmt{pos, x}
}
func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt {
if p.trace {
defer un(trace(p, "BranchStmt"))
}
pos := p.expect(tok)
var label *ast.Ident
if tok != token.FALLTHROUGH && p.tok == token.IDENT {
label = p.parseIdent()
// add to list of unresolved targets
n := len(p.targetStack) - 1
p.targetStack[n] = append(p.targetStack[n], label)
}
p.expectSemi()
return &ast.BranchStmt{pos, tok, label}
}
func (p *parser) makeExpr(s ast.Stmt) ast.Expr {
if s == nil {
return nil
}
if es, isExpr := s.(*ast.ExprStmt); isExpr {
return p.checkExpr(es.X)
}
p.error(s.Pos(), "expected condition, found simple statement")
return &ast.BadExpr{s.Pos(), s.End()}
}
func (p *parser) parseIfStmt() *ast.IfStmt {
if p.trace {
defer un(trace(p, "IfStmt"))
}
pos := p.expect(token.IF)
p.openScope()
defer p.closeScope()
var s ast.Stmt
var x ast.Expr
{
prevLev := p.exprLev
p.exprLev = -1
if p.tok == token.SEMICOLON {
p.next()
x = p.parseRhs()
} else {
s = p.parseSimpleStmt(false)
if p.tok == token.SEMICOLON {
p.next()
x = p.parseRhs()
} else {
x = p.makeExpr(s)
s = nil
}
}
p.exprLev = prevLev
}
body := p.parseBlockStmt()
var else_ ast.Stmt
if p.tok == token.ELSE {
p.next()
else_ = p.parseStmt()
} else {
p.expectSemi()
}
return &ast.IfStmt{pos, s, x, body, else_}
}
func (p *parser) parseTypeList() (list []ast.Expr) {
if p.trace {
defer un(trace(p, "TypeList"))
}
list = append(list, p.parseType())
for p.tok == token.COMMA {
p.next()
list = append(list, p.parseType())
}
return
}
func (p *parser) parseCaseClause(exprSwitch bool) *ast.CaseClause {
if p.trace {
defer un(trace(p, "CaseClause"))
}
pos := p.pos
var list []ast.Expr
if p.tok == token.CASE {
p.next()
if exprSwitch {
list = p.parseRhsList()
} else {
list = p.parseTypeList()
}
} else {
p.expect(token.DEFAULT)
}
colon := p.expect(token.COLON)
p.openScope()
body := p.parseStmtList()
p.closeScope()
return &ast.CaseClause{pos, list, colon, body}
}
func isExprSwitch(s ast.Stmt) bool {
if s == nil {
return true
}
if e, ok := s.(*ast.ExprStmt); ok {
if a, ok := e.X.(*ast.TypeAssertExpr); ok {
return a.Type != nil // regular type assertion
}
return true
}
return false
}
func (p *parser) parseSwitchStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "SwitchStmt"))
}
pos := p.expect(token.SWITCH)
p.openScope()
defer p.closeScope()
var s1, s2 ast.Stmt
if p.tok != token.LBRACE {
prevLev := p.exprLev
p.exprLev = -1
if p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt(false)
}
if p.tok == token.SEMICOLON {
p.next()
s1 = s2
s2 = nil
if p.tok != token.LBRACE {
s2 = p.parseSimpleStmt(false)
}
}
p.exprLev = prevLev
}
exprSwitch := isExprSwitch(s2)
lbrace := p.expect(token.LBRACE)
var list []ast.Stmt
for p.tok == token.CASE || p.tok == token.DEFAULT {
list = append(list, p.parseCaseClause(exprSwitch))
}
rbrace := p.expect(token.RBRACE)
p.expectSemi()
body := &ast.BlockStmt{lbrace, list, rbrace}
if exprSwitch {
return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body}
}
// type switch
// TODO(gri): do all the checks!
return &ast.TypeSwitchStmt{pos, s1, s2, body}
}
func (p *parser) parseCommClause() *ast.CommClause {
if p.trace {
defer un(trace(p, "CommClause"))
}
p.openScope()
pos := p.pos
var comm ast.Stmt
if p.tok == token.CASE {
p.next()
lhs := p.parseLhsList()
if p.tok == token.ARROW {
// SendStmt
if len(lhs) > 1 {
p.errorExpected(lhs[0].Pos(), "1 expression")
// continue with first expression
}
arrow := p.pos
p.next()
rhs := p.parseRhs()
comm = &ast.SendStmt{lhs[0], arrow, rhs}
} else {
// RecvStmt
pos := p.pos
tok := p.tok
var rhs ast.Expr
if tok == token.ASSIGN || tok == token.DEFINE {
// RecvStmt with assignment
if len(lhs) > 2 {
p.errorExpected(lhs[0].Pos(), "1 or 2 expressions")
// continue with first two expressions
lhs = lhs[0:2]
}
p.next()
rhs = p.parseRhs()
} else {
// rhs must be single receive operation
if len(lhs) > 1 {
p.errorExpected(lhs[0].Pos(), "1 expression")
// continue with first expression
}
rhs = lhs[0]
lhs = nil // there is no lhs
}
if x, isUnary := rhs.(*ast.UnaryExpr); !isUnary || x.Op != token.ARROW {
p.errorExpected(rhs.Pos(), "send or receive operation")
rhs = &ast.BadExpr{rhs.Pos(), rhs.End()}
}
if lhs != nil {
comm = &ast.AssignStmt{lhs, pos, tok, []ast.Expr{rhs}}
} else {
comm = &ast.ExprStmt{rhs}
}
}
} else {
p.expect(token.DEFAULT)
}
colon := p.expect(token.COLON)
body := p.parseStmtList()
p.closeScope()
return &ast.CommClause{pos, comm, colon, body}
}
func (p *parser) parseSelectStmt() *ast.SelectStmt {
if p.trace {
defer un(trace(p, "SelectStmt"))
}
pos := p.expect(token.SELECT)
lbrace := p.expect(token.LBRACE)
var list []ast.Stmt
for p.tok == token.CASE || p.tok == token.DEFAULT {
list = append(list, p.parseCommClause())
}
rbrace := p.expect(token.RBRACE)
p.expectSemi()
body := &ast.BlockStmt{lbrace, list, rbrace}
return &ast.SelectStmt{pos, body}
}
func (p *parser) parseForStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "ForStmt"))
}
pos := p.expect(token.FOR)
p.openScope()
defer p.closeScope()
var s1, s2, s3 ast.Stmt
if p.tok != token.LBRACE {
prevLev := p.exprLev
p.exprLev = -1
if p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt(false)
}
if p.tok == token.SEMICOLON {
p.next()
s1 = s2
s2 = nil
if p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt(false)
}
p.expectSemi()
if p.tok != token.LBRACE {
s3 = p.parseSimpleStmt(false)
}
}
p.exprLev = prevLev
}
body := p.parseBlockStmt()
p.expectSemi()
if as, isAssign := s2.(*ast.AssignStmt); isAssign {
// possibly a for statement with a range clause; check assignment operator
if as.Tok != token.ASSIGN && as.Tok != token.DEFINE {
p.errorExpected(as.TokPos, "'=' or ':='")
return &ast.BadStmt{pos, body.End()}
}
// check lhs
var key, value ast.Expr
switch len(as.Lhs) {
case 2:
key, value = as.Lhs[0], as.Lhs[1]
case 1:
key = as.Lhs[0]
default:
p.errorExpected(as.Lhs[0].Pos(), "1 or 2 expressions")
return &ast.BadStmt{pos, body.End()}
}
// check rhs
if len(as.Rhs) != 1 {
p.errorExpected(as.Rhs[0].Pos(), "1 expression")
return &ast.BadStmt{pos, body.End()}
}
if rhs, isUnary := as.Rhs[0].(*ast.UnaryExpr); isUnary && rhs.Op == token.RANGE {
// rhs is range expression
// (any short variable declaration was handled by parseSimpleStat above)
return &ast.RangeStmt{pos, key, value, as.TokPos, as.Tok, rhs.X, body}
}
p.errorExpected(s2.Pos(), "range clause")
return &ast.BadStmt{pos, body.End()}
}
// regular for statement
return &ast.ForStmt{pos, s1, p.makeExpr(s2), s3, body}
}
func (p *parser) parseStmt() (s ast.Stmt) {
if p.trace {
defer un(trace(p, "Statement"))
}
switch p.tok {
case token.CONST, token.TYPE, token.VAR:
s = &ast.DeclStmt{p.parseDecl()}
case
// tokens that may start a top-level expression
token.IDENT, token.INT, token.FLOAT, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operand
token.LBRACK, token.STRUCT, // composite type
token.MUL, token.AND, token.ARROW, token.ADD, token.SUB, token.XOR: // unary operators
s = p.parseSimpleStmt(true)
// because of the required look-ahead, labeled statements are
// parsed by parseSimpleStmt - don't expect a semicolon after
// them
if _, isLabeledStmt := s.(*ast.LabeledStmt); !isLabeledStmt {
p.expectSemi()
}
case token.GO:
s = p.parseGoStmt()
case token.DEFER:
s = p.parseDeferStmt()
case token.RETURN:
s = p.parseReturnStmt()
case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH:
s = p.parseBranchStmt(p.tok)
case token.LBRACE:
s = p.parseBlockStmt()
p.expectSemi()
case token.IF:
s = p.parseIfStmt()
case token.SWITCH:
s = p.parseSwitchStmt()
case token.SELECT:
s = p.parseSelectStmt()
case token.FOR:
s = p.parseForStmt()
case token.SEMICOLON:
s = &ast.EmptyStmt{p.pos}
p.next()
case token.RBRACE:
// a semicolon may be omitted before a closing "}"
s = &ast.EmptyStmt{p.pos}
default:
// no statement found
pos := p.pos
p.errorExpected(pos, "statement")
p.next() // make progress
s = &ast.BadStmt{pos, p.pos}
}
return
}
// ----------------------------------------------------------------------------
// Declarations
type parseSpecFunction func(p *parser, doc *ast.CommentGroup, iota int) ast.Spec
func parseImportSpec(p *parser, doc *ast.CommentGroup, _ int) ast.Spec {
if p.trace {
defer un(trace(p, "ImportSpec"))
}
var ident *ast.Ident
switch p.tok {
case token.PERIOD:
ident = &ast.Ident{p.pos, ".", nil}
p.next()
case token.IDENT:
ident = p.parseIdent()
}
var path *ast.BasicLit
if p.tok == token.STRING {
path = &ast.BasicLit{p.pos, p.tok, p.lit}
p.next()
} else {
p.expect(token.STRING) // use expect() error handling
}
p.expectSemi() // call before accessing p.linecomment
// collect imports
spec := &ast.ImportSpec{doc, ident, path, p.lineComment}
p.imports = append(p.imports, spec)
return spec
}
func parseConstSpec(p *parser, doc *ast.CommentGroup, iota int) ast.Spec {
if p.trace {
defer un(trace(p, "ConstSpec"))
}
idents := p.parseIdentList()
typ := p.tryType()
var values []ast.Expr
if typ != nil || p.tok == token.ASSIGN || iota == 0 {
p.expect(token.ASSIGN)
values = p.parseRhsList()
}
p.expectSemi() // call before accessing p.linecomment
// Go spec: The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec and ends at
// the end of the innermost containing block.
// (Global identifiers are resolved in a separate phase after parsing.)
spec := &ast.ValueSpec{doc, idents, typ, values, p.lineComment}
p.declare(spec, p.topScope, ast.Con, idents...)
return spec
}
func parseTypeSpec(p *parser, doc *ast.CommentGroup, _ int) ast.Spec {
if p.trace {
defer un(trace(p, "TypeSpec"))
}
ident := p.parseIdent()
// Go spec: The scope of a type identifier declared inside a function begins
// at the identifier in the TypeSpec and ends at the end of the innermost
// containing block.
// (Global identifiers are resolved in a separate phase after parsing.)
spec := &ast.TypeSpec{doc, ident, nil, nil}
p.declare(spec, p.topScope, ast.Typ, ident)
spec.Type = p.parseType()
p.expectSemi() // call before accessing p.linecomment
spec.Comment = p.lineComment
return spec
}
func parseVarSpec(p *parser, doc *ast.CommentGroup, _ int) ast.Spec {
if p.trace {
defer un(trace(p, "VarSpec"))
}
idents := p.parseIdentList()
typ := p.tryType()
var values []ast.Expr
if typ == nil || p.tok == token.ASSIGN {
p.expect(token.ASSIGN)
values = p.parseRhsList()
}
p.expectSemi() // call before accessing p.linecomment
// Go spec: The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec and ends at
// the end of the innermost containing block.
// (Global identifiers are resolved in a separate phase after parsing.)
spec := &ast.ValueSpec{doc, idents, typ, values, p.lineComment}
p.declare(spec, p.topScope, ast.Var, idents...)
return spec
}
func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction) *ast.GenDecl {
if p.trace {
defer un(trace(p, "GenDecl("+keyword.String()+")"))
}
doc := p.leadComment
pos := p.expect(keyword)
var lparen, rparen token.Pos
var list []ast.Spec
if p.tok == token.LPAREN {
lparen = p.pos
p.next()
for iota := 0; p.tok != token.RPAREN && p.tok != token.EOF; iota++ {
list = append(list, f(p, p.leadComment, iota))
}
rparen = p.expect(token.RPAREN)
p.expectSemi()
} else {
list = append(list, f(p, nil, 0))
}
return &ast.GenDecl{doc, pos, keyword, lparen, list, rparen}
}
func (p *parser) parseReceiver(scope *ast.Scope) *ast.FieldList {
if p.trace {
defer un(trace(p, "Receiver"))
}
pos := p.pos
par := p.parseParameters(scope, false)
// must have exactly one receiver
if par.NumFields() != 1 {
p.errorExpected(pos, "exactly one receiver")
// TODO determine a better range for BadExpr below
par.List = []*ast.Field{{Type: &ast.BadExpr{pos, pos}}}
return par
}
// recv type must be of the form ["*"] identifier
recv := par.List[0]
base := deref(recv.Type)
if _, isIdent := base.(*ast.Ident); !isIdent {
p.errorExpected(base.Pos(), "(unqualified) identifier")
par.List = []*ast.Field{{Type: &ast.BadExpr{recv.Pos(), recv.End()}}}
}
return par
}
func (p *parser) parseFuncDecl() *ast.FuncDecl {
if p.trace {
defer un(trace(p, "FunctionDecl"))
}
doc := p.leadComment
pos := p.expect(token.FUNC)
scope := ast.NewScope(p.topScope) // function scope
var recv *ast.FieldList
if p.tok == token.LPAREN {
recv = p.parseReceiver(scope)
}
ident := p.parseIdent()
params, results := p.parseSignature(scope)
var body *ast.BlockStmt
if p.tok == token.LBRACE {
body = p.parseBody(scope)
}
p.expectSemi()
decl := &ast.FuncDecl{doc, recv, ident, &ast.FuncType{pos, params, results}, body}
if recv == nil {
// Go spec: The scope of an identifier denoting a constant, type,
// variable, or function (but not method) declared at top level
// (outside any function) is the package block.
//
// init() functions cannot be referred to and there may
// be more than one - don't put them in the pkgScope
if ident.Name != "init" {
p.declare(decl, p.pkgScope, ast.Fun, ident)
}
}
return decl
}
func (p *parser) parseDecl() ast.Decl {
if p.trace {
defer un(trace(p, "Declaration"))
}
var f parseSpecFunction
switch p.tok {
case token.CONST:
f = parseConstSpec
case token.TYPE:
f = parseTypeSpec
case token.VAR:
f = parseVarSpec
case token.FUNC:
return p.parseFuncDecl()
default:
pos := p.pos
p.errorExpected(pos, "declaration")
p.next() // make progress
decl := &ast.BadDecl{pos, p.pos}
return decl
}
return p.parseGenDecl(p.tok, f)
}
func (p *parser) parseDeclList() (list []ast.Decl) {
if p.trace {
defer un(trace(p, "DeclList"))
}
for p.tok != token.EOF {
list = append(list, p.parseDecl())
}
return
}
// ----------------------------------------------------------------------------
// Source files
func (p *parser) parseFile() *ast.File {
if p.trace {
defer un(trace(p, "File"))
}
// package clause
doc := p.leadComment
pos := p.expect(token.PACKAGE)
// Go spec: The package clause is not a declaration;
// the package name does not appear in any scope.
ident := p.parseIdent()
if ident.Name == "_" {
p.error(p.pos, "invalid package name _")
}
p.expectSemi()
var decls []ast.Decl
// Don't bother parsing the rest if we had errors already.
// Likely not a Go source file at all.
if p.ErrorCount() == 0 && p.mode&PackageClauseOnly == 0 {
// import decls
for p.tok == token.IMPORT {
decls = append(decls, p.parseGenDecl(token.IMPORT, parseImportSpec))
}
if p.mode&ImportsOnly == 0 {
// rest of package body
for p.tok != token.EOF {
decls = append(decls, p.parseDecl())
}
}
}
assert(p.topScope == p.pkgScope, "imbalanced scopes")
// resolve global identifiers within the same file
i := 0
for _, ident := range p.unresolved {
// i <= index for current ident
assert(ident.Obj == unresolved, "object already resolved")
ident.Obj = p.pkgScope.Lookup(ident.Name) // also removes unresolved sentinel
if ident.Obj == nil {
p.unresolved[i] = ident
i++
}
}
// TODO(gri): store p.imports in AST
return &ast.File{doc, pos, ident, decls, p.pkgScope, p.imports, p.unresolved[0:i], p.comments}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦