go compare 源码

  • 2022-07-15
  • 浏览 (1011)

golang compare 代码

文件路径:/src/cmd/compile/internal/walk/compare.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"encoding/binary"
	"fmt"
	"go/constant"
	"hash/fnv"
	"io"

	"cmd/compile/internal/base"
	"cmd/compile/internal/compare"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/ssagen"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
)

func fakePC(n ir.Node) ir.Node {
	// In order to get deterministic IDs, we include the package path, absolute filename, line number, column number
	// in the calculation of the fakePC for the IR node.
	hash := fnv.New32()
	// We ignore the errors here because the `io.Writer` in the `hash.Hash` interface never returns an error.
	io.WriteString(hash, base.Ctxt.Pkgpath)
	io.WriteString(hash, base.Ctxt.PosTable.Pos(n.Pos()).AbsFilename())
	binary.Write(hash, binary.LittleEndian, int64(n.Pos().Line()))
	binary.Write(hash, binary.LittleEndian, int64(n.Pos().Col()))
	// We also include the string representation of the node to distinguish autogenerated expression since
	// those get the same `src.XPos`
	io.WriteString(hash, fmt.Sprintf("%v", n))

	return ir.NewInt(int64(hash.Sum32()))
}

// The result of walkCompare MUST be assigned back to n, e.g.
//
//	n.Left = walkCompare(n.Left, init)
func walkCompare(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
	if n.X.Type().IsInterface() && n.Y.Type().IsInterface() && n.X.Op() != ir.ONIL && n.Y.Op() != ir.ONIL {
		return walkCompareInterface(n, init)
	}

	if n.X.Type().IsString() && n.Y.Type().IsString() {
		return walkCompareString(n, init)
	}

	n.X = walkExpr(n.X, init)
	n.Y = walkExpr(n.Y, init)

	// Given mixed interface/concrete comparison,
	// rewrite into types-equal && data-equal.
	// This is efficient, avoids allocations, and avoids runtime calls.
	if n.X.Type().IsInterface() != n.Y.Type().IsInterface() {
		// Preserve side-effects in case of short-circuiting; see #32187.
		l := cheapExpr(n.X, init)
		r := cheapExpr(n.Y, init)
		// Swap so that l is the interface value and r is the concrete value.
		if n.Y.Type().IsInterface() {
			l, r = r, l
		}

		// Handle both == and !=.
		eq := n.Op()
		andor := ir.OOROR
		if eq == ir.OEQ {
			andor = ir.OANDAND
		}
		// Check for types equal.
		// For empty interface, this is:
		//   l.tab == type(r)
		// For non-empty interface, this is:
		//   l.tab != nil && l.tab._type == type(r)
		var eqtype ir.Node
		tab := ir.NewUnaryExpr(base.Pos, ir.OITAB, l)
		rtyp := reflectdata.TypePtr(r.Type())
		if l.Type().IsEmptyInterface() {
			tab.SetType(types.NewPtr(types.Types[types.TUINT8]))
			tab.SetTypecheck(1)
			eqtype = ir.NewBinaryExpr(base.Pos, eq, tab, rtyp)
		} else {
			nonnil := ir.NewBinaryExpr(base.Pos, brcom(eq), typecheck.NodNil(), tab)
			match := ir.NewBinaryExpr(base.Pos, eq, itabType(tab), rtyp)
			eqtype = ir.NewLogicalExpr(base.Pos, andor, nonnil, match)
		}
		// Check for data equal.
		eqdata := ir.NewBinaryExpr(base.Pos, eq, ifaceData(n.Pos(), l, r.Type()), r)
		// Put it all together.
		expr := ir.NewLogicalExpr(base.Pos, andor, eqtype, eqdata)
		return finishCompare(n, expr, init)
	}

	// Must be comparison of array or struct.
	// Otherwise back end handles it.
	// While we're here, decide whether to
	// inline or call an eq alg.
	t := n.X.Type()
	var inline bool

	maxcmpsize := int64(4)
	unalignedLoad := ssagen.Arch.LinkArch.CanMergeLoads
	if unalignedLoad {
		// Keep this low enough to generate less code than a function call.
		maxcmpsize = 2 * int64(ssagen.Arch.LinkArch.RegSize)
	}

	switch t.Kind() {
	default:
		if base.Debug.Libfuzzer != 0 && t.IsInteger() {
			n.X = cheapExpr(n.X, init)
			n.Y = cheapExpr(n.Y, init)

			// If exactly one comparison operand is
			// constant, invoke the constcmp functions
			// instead, and arrange for the constant
			// operand to be the first argument.
			l, r := n.X, n.Y
			if r.Op() == ir.OLITERAL {
				l, r = r, l
			}
			constcmp := l.Op() == ir.OLITERAL && r.Op() != ir.OLITERAL

			var fn string
			var paramType *types.Type
			switch t.Size() {
			case 1:
				fn = "libfuzzerTraceCmp1"
				if constcmp {
					fn = "libfuzzerTraceConstCmp1"
				}
				paramType = types.Types[types.TUINT8]
			case 2:
				fn = "libfuzzerTraceCmp2"
				if constcmp {
					fn = "libfuzzerTraceConstCmp2"
				}
				paramType = types.Types[types.TUINT16]
			case 4:
				fn = "libfuzzerTraceCmp4"
				if constcmp {
					fn = "libfuzzerTraceConstCmp4"
				}
				paramType = types.Types[types.TUINT32]
			case 8:
				fn = "libfuzzerTraceCmp8"
				if constcmp {
					fn = "libfuzzerTraceConstCmp8"
				}
				paramType = types.Types[types.TUINT64]
			default:
				base.Fatalf("unexpected integer size %d for %v", t.Size(), t)
			}
			init.Append(mkcall(fn, nil, init, tracecmpArg(l, paramType, init), tracecmpArg(r, paramType, init), fakePC(n)))
		}
		return n
	case types.TARRAY:
		// We can compare several elements at once with 2/4/8 byte integer compares
		inline = t.NumElem() <= 1 || (types.IsSimple[t.Elem().Kind()] && (t.NumElem() <= 4 || t.Elem().Size()*t.NumElem() <= maxcmpsize))
	case types.TSTRUCT:
		inline = t.NumComponents(types.IgnoreBlankFields) <= 4
	}

	cmpl := n.X
	for cmpl != nil && cmpl.Op() == ir.OCONVNOP {
		cmpl = cmpl.(*ir.ConvExpr).X
	}
	cmpr := n.Y
	for cmpr != nil && cmpr.Op() == ir.OCONVNOP {
		cmpr = cmpr.(*ir.ConvExpr).X
	}

	// Chose not to inline. Call equality function directly.
	if !inline {
		// eq algs take pointers; cmpl and cmpr must be addressable
		if !ir.IsAddressable(cmpl) || !ir.IsAddressable(cmpr) {
			base.Fatalf("arguments of comparison must be lvalues - %v %v", cmpl, cmpr)
		}

		fn, needsize := eqFor(t)
		call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
		call.Args.Append(typecheck.NodAddr(cmpl))
		call.Args.Append(typecheck.NodAddr(cmpr))
		if needsize {
			call.Args.Append(ir.NewInt(t.Size()))
		}
		res := ir.Node(call)
		if n.Op() != ir.OEQ {
			res = ir.NewUnaryExpr(base.Pos, ir.ONOT, res)
		}
		return finishCompare(n, res, init)
	}

	// inline: build boolean expression comparing element by element
	andor := ir.OANDAND
	if n.Op() == ir.ONE {
		andor = ir.OOROR
	}
	var expr ir.Node
	comp := func(el, er ir.Node) {
		a := ir.NewBinaryExpr(base.Pos, n.Op(), el, er)
		if expr == nil {
			expr = a
		} else {
			expr = ir.NewLogicalExpr(base.Pos, andor, expr, a)
		}
	}
	and := func(cond ir.Node) {
		if expr == nil {
			expr = cond
		} else {
			expr = ir.NewLogicalExpr(base.Pos, andor, expr, cond)
		}
	}
	cmpl = safeExpr(cmpl, init)
	cmpr = safeExpr(cmpr, init)
	if t.IsStruct() {
		conds := compare.EqStruct(t, cmpl, cmpr)
		if n.Op() == ir.OEQ {
			for _, cond := range conds {
				and(cond)
			}
		} else {
			for _, cond := range conds {
				notCond := ir.NewUnaryExpr(base.Pos, ir.ONOT, cond)
				and(notCond)
			}
		}
	} else {
		step := int64(1)
		remains := t.NumElem() * t.Elem().Size()
		combine64bit := unalignedLoad && types.RegSize == 8 && t.Elem().Size() <= 4 && t.Elem().IsInteger()
		combine32bit := unalignedLoad && t.Elem().Size() <= 2 && t.Elem().IsInteger()
		combine16bit := unalignedLoad && t.Elem().Size() == 1 && t.Elem().IsInteger()
		for i := int64(0); remains > 0; {
			var convType *types.Type
			switch {
			case remains >= 8 && combine64bit:
				convType = types.Types[types.TINT64]
				step = 8 / t.Elem().Size()
			case remains >= 4 && combine32bit:
				convType = types.Types[types.TUINT32]
				step = 4 / t.Elem().Size()
			case remains >= 2 && combine16bit:
				convType = types.Types[types.TUINT16]
				step = 2 / t.Elem().Size()
			default:
				step = 1
			}
			if step == 1 {
				comp(
					ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i)),
					ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i)),
				)
				i++
				remains -= t.Elem().Size()
			} else {
				elemType := t.Elem().ToUnsigned()
				cmplw := ir.Node(ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i)))
				cmplw = typecheck.Conv(cmplw, elemType) // convert to unsigned
				cmplw = typecheck.Conv(cmplw, convType) // widen
				cmprw := ir.Node(ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i)))
				cmprw = typecheck.Conv(cmprw, elemType)
				cmprw = typecheck.Conv(cmprw, convType)
				// For code like this:  uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ...
				// ssa will generate a single large load.
				for offset := int64(1); offset < step; offset++ {
					lb := ir.Node(ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i+offset)))
					lb = typecheck.Conv(lb, elemType)
					lb = typecheck.Conv(lb, convType)
					lb = ir.NewBinaryExpr(base.Pos, ir.OLSH, lb, ir.NewInt(8*t.Elem().Size()*offset))
					cmplw = ir.NewBinaryExpr(base.Pos, ir.OOR, cmplw, lb)
					rb := ir.Node(ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i+offset)))
					rb = typecheck.Conv(rb, elemType)
					rb = typecheck.Conv(rb, convType)
					rb = ir.NewBinaryExpr(base.Pos, ir.OLSH, rb, ir.NewInt(8*t.Elem().Size()*offset))
					cmprw = ir.NewBinaryExpr(base.Pos, ir.OOR, cmprw, rb)
				}
				comp(cmplw, cmprw)
				i += step
				remains -= step * t.Elem().Size()
			}
		}
	}
	if expr == nil {
		expr = ir.NewBool(n.Op() == ir.OEQ)
		// We still need to use cmpl and cmpr, in case they contain
		// an expression which might panic. See issue 23837.
		a1 := typecheck.Stmt(ir.NewAssignStmt(base.Pos, ir.BlankNode, cmpl))
		a2 := typecheck.Stmt(ir.NewAssignStmt(base.Pos, ir.BlankNode, cmpr))
		init.Append(a1, a2)
	}
	return finishCompare(n, expr, init)
}

func walkCompareInterface(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
	n.Y = cheapExpr(n.Y, init)
	n.X = cheapExpr(n.X, init)
	eqtab, eqdata := compare.EqInterface(n.X, n.Y)
	var cmp ir.Node
	if n.Op() == ir.OEQ {
		cmp = ir.NewLogicalExpr(base.Pos, ir.OANDAND, eqtab, eqdata)
	} else {
		eqtab.SetOp(ir.ONE)
		cmp = ir.NewLogicalExpr(base.Pos, ir.OOROR, eqtab, ir.NewUnaryExpr(base.Pos, ir.ONOT, eqdata))
	}
	return finishCompare(n, cmp, init)
}

func walkCompareString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
	if base.Debug.Libfuzzer != 0 {
		if !ir.IsConst(n.X, constant.String) || !ir.IsConst(n.Y, constant.String) {
			fn := "libfuzzerHookStrCmp"
			n.X = cheapExpr(n.X, init)
			n.Y = cheapExpr(n.Y, init)
			paramType := types.Types[types.TSTRING]
			init.Append(mkcall(fn, nil, init, tracecmpArg(n.X, paramType, init), tracecmpArg(n.Y, paramType, init), fakePC(n)))
		}
	}
	// Rewrite comparisons to short constant strings as length+byte-wise comparisons.
	var cs, ncs ir.Node // const string, non-const string
	switch {
	case ir.IsConst(n.X, constant.String) && ir.IsConst(n.Y, constant.String):
		// ignore; will be constant evaluated
	case ir.IsConst(n.X, constant.String):
		cs = n.X
		ncs = n.Y
	case ir.IsConst(n.Y, constant.String):
		cs = n.Y
		ncs = n.X
	}
	if cs != nil {
		cmp := n.Op()
		// Our comparison below assumes that the non-constant string
		// is on the left hand side, so rewrite "" cmp x to x cmp "".
		// See issue 24817.
		if ir.IsConst(n.X, constant.String) {
			cmp = brrev(cmp)
		}

		// maxRewriteLen was chosen empirically.
		// It is the value that minimizes cmd/go file size
		// across most architectures.
		// See the commit description for CL 26758 for details.
		maxRewriteLen := 6
		// Some architectures can load unaligned byte sequence as 1 word.
		// So we can cover longer strings with the same amount of code.
		canCombineLoads := ssagen.Arch.LinkArch.CanMergeLoads
		combine64bit := false
		if canCombineLoads {
			// Keep this low enough to generate less code than a function call.
			maxRewriteLen = 2 * ssagen.Arch.LinkArch.RegSize
			combine64bit = ssagen.Arch.LinkArch.RegSize >= 8
		}

		var and ir.Op
		switch cmp {
		case ir.OEQ:
			and = ir.OANDAND
		case ir.ONE:
			and = ir.OOROR
		default:
			// Don't do byte-wise comparisons for <, <=, etc.
			// They're fairly complicated.
			// Length-only checks are ok, though.
			maxRewriteLen = 0
		}
		if s := ir.StringVal(cs); len(s) <= maxRewriteLen {
			if len(s) > 0 {
				ncs = safeExpr(ncs, init)
			}
			r := ir.Node(ir.NewBinaryExpr(base.Pos, cmp, ir.NewUnaryExpr(base.Pos, ir.OLEN, ncs), ir.NewInt(int64(len(s)))))
			remains := len(s)
			for i := 0; remains > 0; {
				if remains == 1 || !canCombineLoads {
					cb := ir.NewInt(int64(s[i]))
					ncb := ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i)))
					r = ir.NewLogicalExpr(base.Pos, and, r, ir.NewBinaryExpr(base.Pos, cmp, ncb, cb))
					remains--
					i++
					continue
				}
				var step int
				var convType *types.Type
				switch {
				case remains >= 8 && combine64bit:
					convType = types.Types[types.TINT64]
					step = 8
				case remains >= 4:
					convType = types.Types[types.TUINT32]
					step = 4
				case remains >= 2:
					convType = types.Types[types.TUINT16]
					step = 2
				}
				ncsubstr := typecheck.Conv(ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i))), convType)
				csubstr := int64(s[i])
				// Calculate large constant from bytes as sequence of shifts and ors.
				// Like this:  uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ...
				// ssa will combine this into a single large load.
				for offset := 1; offset < step; offset++ {
					b := typecheck.Conv(ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i+offset))), convType)
					b = ir.NewBinaryExpr(base.Pos, ir.OLSH, b, ir.NewInt(int64(8*offset)))
					ncsubstr = ir.NewBinaryExpr(base.Pos, ir.OOR, ncsubstr, b)
					csubstr |= int64(s[i+offset]) << uint8(8*offset)
				}
				csubstrPart := ir.NewInt(csubstr)
				// Compare "step" bytes as once
				r = ir.NewLogicalExpr(base.Pos, and, r, ir.NewBinaryExpr(base.Pos, cmp, csubstrPart, ncsubstr))
				remains -= step
				i += step
			}
			return finishCompare(n, r, init)
		}
	}

	var r ir.Node
	if n.Op() == ir.OEQ || n.Op() == ir.ONE {
		// prepare for rewrite below
		n.X = cheapExpr(n.X, init)
		n.Y = cheapExpr(n.Y, init)
		eqlen, eqmem := compare.EqString(n.X, n.Y)
		// quick check of len before full compare for == or !=.
		// memequal then tests equality up to length len.
		if n.Op() == ir.OEQ {
			// len(left) == len(right) && memequal(left, right, len)
			r = ir.NewLogicalExpr(base.Pos, ir.OANDAND, eqlen, eqmem)
		} else {
			// len(left) != len(right) || !memequal(left, right, len)
			eqlen.SetOp(ir.ONE)
			r = ir.NewLogicalExpr(base.Pos, ir.OOROR, eqlen, ir.NewUnaryExpr(base.Pos, ir.ONOT, eqmem))
		}
	} else {
		// sys_cmpstring(s1, s2) :: 0
		r = mkcall("cmpstring", types.Types[types.TINT], init, typecheck.Conv(n.X, types.Types[types.TSTRING]), typecheck.Conv(n.Y, types.Types[types.TSTRING]))
		r = ir.NewBinaryExpr(base.Pos, n.Op(), r, ir.NewInt(0))
	}

	return finishCompare(n, r, init)
}

// The result of finishCompare MUST be assigned back to n, e.g.
//
//	n.Left = finishCompare(n.Left, x, r, init)
func finishCompare(n *ir.BinaryExpr, r ir.Node, init *ir.Nodes) ir.Node {
	r = typecheck.Expr(r)
	r = typecheck.Conv(r, n.Type())
	r = walkExpr(r, init)
	return r
}

func eqFor(t *types.Type) (n ir.Node, needsize bool) {
	// Should only arrive here with large memory or
	// a struct/array containing a non-memory field/element.
	// Small memory is handled inline, and single non-memory
	// is handled by walkCompare.
	switch a, _ := types.AlgType(t); a {
	case types.AMEM:
		n := typecheck.LookupRuntime("memequal")
		n = typecheck.SubstArgTypes(n, t, t)
		return n, true
	case types.ASPECIAL:
		sym := reflectdata.TypeSymPrefix(".eq", t)
		// TODO(austin): This creates an ir.Name with a nil Func.
		n := typecheck.NewName(sym)
		ir.MarkFunc(n)
		n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
			types.NewField(base.Pos, nil, types.NewPtr(t)),
			types.NewField(base.Pos, nil, types.NewPtr(t)),
		}, []*types.Field{
			types.NewField(base.Pos, nil, types.Types[types.TBOOL]),
		}))
		return n, false
	}
	base.Fatalf("eqFor %v", t)
	return nil, false
}

// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.ONE
	case ir.ONE:
		return ir.OEQ
	case ir.OLT:
		return ir.OGE
	case ir.OGT:
		return ir.OLE
	case ir.OLE:
		return ir.OGT
	case ir.OGE:
		return ir.OLT
	}
	base.Fatalf("brcom: no com for %v\n", op)
	return op
}

// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.OEQ
	case ir.ONE:
		return ir.ONE
	case ir.OLT:
		return ir.OGT
	case ir.OGT:
		return ir.OLT
	case ir.OLE:
		return ir.OGE
	case ir.OGE:
		return ir.OLE
	}
	base.Fatalf("brrev: no rev for %v\n", op)
	return op
}

func tracecmpArg(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
	// Ugly hack to avoid "constant -1 overflows uintptr" errors, etc.
	if n.Op() == ir.OLITERAL && n.Type().IsSigned() && ir.Int64Val(n) < 0 {
		n = copyExpr(n, n.Type(), init)
	}

	return typecheck.Conv(n, t)
}

相关信息

go 源码目录

相关文章

go assign 源码

go builtin 源码

go closure 源码

go complit 源码

go convert 源码

go expr 源码

go order 源码

go race 源码

go range 源码

go select 源码

0  赞