spark ShuffleWriteProcessor 源码
spark ShuffleWriteProcessor 代码
文件路径:/core/src/main/scala/org/apache/spark/shuffle/ShuffleWriteProcessor.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.shuffle
import org.apache.spark.{Partition, ShuffleDependency, SparkEnv, TaskContext}
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.scheduler.MapStatus
/**
* The interface for customizing shuffle write process. The driver create a ShuffleWriteProcessor
* and put it into [[ShuffleDependency]], and executors use it in each ShuffleMapTask.
*/
private[spark] class ShuffleWriteProcessor extends Serializable with Logging {
/**
* Create a [[ShuffleWriteMetricsReporter]] from the task context. As the reporter is a
* per-row operator, here need a careful consideration on performance.
*/
protected def createMetricsReporter(context: TaskContext): ShuffleWriteMetricsReporter = {
context.taskMetrics().shuffleWriteMetrics
}
/**
* The write process for particular partition, it controls the life circle of [[ShuffleWriter]]
* get from [[ShuffleManager]] and triggers rdd compute, finally return the [[MapStatus]] for
* this task.
*/
def write(
rdd: RDD[_],
dep: ShuffleDependency[_, _, _],
mapId: Long,
context: TaskContext,
partition: Partition): MapStatus = {
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](
dep.shuffleHandle,
mapId,
context,
createMetricsReporter(context))
writer.write(
rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
val mapStatus = writer.stop(success = true)
if (mapStatus.isDefined) {
// Check if sufficient shuffle mergers are available now for the ShuffleMapTask to push
if (dep.shuffleMergeAllowed && dep.getMergerLocs.isEmpty) {
val mapOutputTracker = SparkEnv.get.mapOutputTracker
val mergerLocs =
mapOutputTracker.getShufflePushMergerLocations(dep.shuffleId)
if (mergerLocs.nonEmpty) {
dep.setMergerLocs(mergerLocs)
}
}
// Initiate shuffle push process if push based shuffle is enabled
// The map task only takes care of converting the shuffle data file into multiple
// block push requests. It delegates pushing the blocks to a different thread-pool -
// ShuffleBlockPusher.BLOCK_PUSHER_POOL.
if (!dep.shuffleMergeFinalized) {
manager.shuffleBlockResolver match {
case resolver: IndexShuffleBlockResolver =>
logInfo(s"Shuffle merge enabled with ${dep.getMergerLocs.size} merger locations " +
s" for stage ${context.stageId()} with shuffle ID ${dep.shuffleId}")
logDebug(s"Starting pushing blocks for the task ${context.taskAttemptId()}")
val dataFile = resolver.getDataFile(dep.shuffleId, mapId)
new ShuffleBlockPusher(SparkEnv.get.conf)
.initiateBlockPush(dataFile, writer.getPartitionLengths(), dep, partition.index)
case _ =>
}
}
}
mapStatus.get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}
}
相关信息
相关文章
spark BlockStoreShuffleReader 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦