spark ShuffleWriteProcessor 源码

  • 2022-10-20
  • 浏览 (375)

spark ShuffleWriteProcessor 代码

文件路径:/core/src/main/scala/org/apache/spark/shuffle/ShuffleWriteProcessor.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.shuffle

import org.apache.spark.{Partition, ShuffleDependency, SparkEnv, TaskContext}
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.scheduler.MapStatus

/**
 * The interface for customizing shuffle write process. The driver create a ShuffleWriteProcessor
 * and put it into [[ShuffleDependency]], and executors use it in each ShuffleMapTask.
 */
private[spark] class ShuffleWriteProcessor extends Serializable with Logging {

  /**
   * Create a [[ShuffleWriteMetricsReporter]] from the task context. As the reporter is a
   * per-row operator, here need a careful consideration on performance.
   */
  protected def createMetricsReporter(context: TaskContext): ShuffleWriteMetricsReporter = {
    context.taskMetrics().shuffleWriteMetrics
  }

  /**
   * The write process for particular partition, it controls the life circle of [[ShuffleWriter]]
   * get from [[ShuffleManager]] and triggers rdd compute, finally return the [[MapStatus]] for
   * this task.
   */
  def write(
      rdd: RDD[_],
      dep: ShuffleDependency[_, _, _],
      mapId: Long,
      context: TaskContext,
      partition: Partition): MapStatus = {
    var writer: ShuffleWriter[Any, Any] = null
    try {
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](
        dep.shuffleHandle,
        mapId,
        context,
        createMetricsReporter(context))
      writer.write(
        rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
      val mapStatus = writer.stop(success = true)
      if (mapStatus.isDefined) {
        // Check if sufficient shuffle mergers are available now for the ShuffleMapTask to push
        if (dep.shuffleMergeAllowed && dep.getMergerLocs.isEmpty) {
          val mapOutputTracker = SparkEnv.get.mapOutputTracker
          val mergerLocs =
            mapOutputTracker.getShufflePushMergerLocations(dep.shuffleId)
          if (mergerLocs.nonEmpty) {
            dep.setMergerLocs(mergerLocs)
          }
        }
        // Initiate shuffle push process if push based shuffle is enabled
        // The map task only takes care of converting the shuffle data file into multiple
        // block push requests. It delegates pushing the blocks to a different thread-pool -
        // ShuffleBlockPusher.BLOCK_PUSHER_POOL.
        if (!dep.shuffleMergeFinalized) {
          manager.shuffleBlockResolver match {
            case resolver: IndexShuffleBlockResolver =>
              logInfo(s"Shuffle merge enabled with ${dep.getMergerLocs.size} merger locations " +
                s" for stage ${context.stageId()} with shuffle ID ${dep.shuffleId}")
              logDebug(s"Starting pushing blocks for the task ${context.taskAttemptId()}")
              val dataFile = resolver.getDataFile(dep.shuffleId, mapId)
              new ShuffleBlockPusher(SparkEnv.get.conf)
                .initiateBlockPush(dataFile, writer.getPartitionLengths(), dep, partition.index)
            case _ =>
          }
        }
      }
      mapStatus.get
    } catch {
      case e: Exception =>
        try {
          if (writer != null) {
            writer.stop(success = false)
          }
        } catch {
          case e: Exception =>
            log.debug("Could not stop writer", e)
        }
        throw e
    }
  }
}

相关信息

spark 源码目录

相关文章

spark BaseShuffleHandle 源码

spark BlockStoreShuffleReader 源码

spark FetchFailedException 源码

spark IndexShuffleBlockResolver 源码

spark MigratableResolver 源码

spark ShuffleBlockInfo 源码

spark ShuffleBlockPusher 源码

spark ShuffleBlockResolver 源码

spark ShuffleDataIOUtils 源码

spark ShuffleHandle 源码

0  赞