spark PythonDStream 源码

  • 2022-10-20
  • 浏览 (304)

spark PythonDStream 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/api/python/PythonDStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.api.python

import java.io.{ObjectInputStream, ObjectOutputStream}
import java.lang.reflect.Proxy
import java.util.{ArrayList => JArrayList, List => JList}

import scala.collection.JavaConverters._
import scala.language.existentials

import py4j.Py4JException

import org.apache.spark.SparkException
import org.apache.spark.api.java._
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Interval, StreamingContext, Time}
import org.apache.spark.streaming.api.java._
import org.apache.spark.streaming.dstream._
import org.apache.spark.util.Utils

/**
 * Interface for Python callback function which is used to transform RDDs
 */
private[python] trait PythonTransformFunction {
  def call(time: Long, rdds: JList[_]): JavaRDD[Array[Byte]]

  /**
   * Get the failure, if any, in the last call to `call`.
   *
   * @return the failure message if there was a failure, or `null` if there was no failure.
   */
  def getLastFailure: String
}

/**
 * Interface for Python Serializer to serialize PythonTransformFunction
 */
private[python] trait PythonTransformFunctionSerializer {
  def dumps(id: String): Array[Byte]
  def loads(bytes: Array[Byte]): PythonTransformFunction

  /**
   * Get the failure, if any, in the last call to `dumps` or `loads`.
   *
   * @return the failure message if there was a failure, or `null` if there was no failure.
   */
  def getLastFailure: String
}

/**
 * Wraps a PythonTransformFunction (which is a Python object accessed through Py4J)
 * so that it looks like a Scala function and can be transparently serialized and
 * deserialized by Java.
 */
private[python] class TransformFunction(@transient var pfunc: PythonTransformFunction)
  extends function.Function2[JList[JavaRDD[_]], Time, JavaRDD[Array[Byte]]] {

  def apply(rdd: Option[RDD[_]], time: Time): Option[RDD[Array[Byte]]] = {
    val rdds = List(rdd.map(JavaRDD.fromRDD(_)).orNull).asJava
    Option(callPythonTransformFunction(time.milliseconds, rdds)).map(_.rdd)
  }

  def apply(rdd: Option[RDD[_]], rdd2: Option[RDD[_]], time: Time): Option[RDD[Array[Byte]]] = {
    val rdds = List(rdd.map(JavaRDD.fromRDD(_)).orNull, rdd2.map(JavaRDD.fromRDD(_)).orNull).asJava
    Option(callPythonTransformFunction(time.milliseconds, rdds)).map(_.rdd)
  }

  // for function.Function2
  def call(rdds: JList[JavaRDD[_]], time: Time): JavaRDD[Array[Byte]] = {
    callPythonTransformFunction(time.milliseconds, rdds)
  }

  private def callPythonTransformFunction(time: Long, rdds: JList[_]): JavaRDD[Array[Byte]] = {
    val resultRDD = pfunc.call(time, rdds)
    val failure = pfunc.getLastFailure
    if (failure != null) {
      throw new SparkException("An exception was raised by Python:\n" + failure)
    }
    resultRDD
  }

  private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
    val bytes = PythonTransformFunctionSerializer.serialize(pfunc)
    out.writeInt(bytes.length)
    out.write(bytes)
  }

  private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
    val length = in.readInt()
    val bytes = new Array[Byte](length)
    in.readFully(bytes)
    pfunc = PythonTransformFunctionSerializer.deserialize(bytes)
  }
}

/**
 * Helpers for PythonTransformFunctionSerializer
 *
 * PythonTransformFunctionSerializer is logically a singleton that's happens to be
 * implemented as a Python object.
 */
private[python] object PythonTransformFunctionSerializer {

  /**
   * A serializer in Python, used to serialize PythonTransformFunction
    */
  private var serializer: PythonTransformFunctionSerializer = _

  /*
   * Register a serializer from Python, should be called during initialization
   */
  def register(ser: PythonTransformFunctionSerializer): Unit = synchronized {
    serializer = ser
  }

  def serialize(func: PythonTransformFunction): Array[Byte] = synchronized {
    require(serializer != null, "Serializer has not been registered!")
    // get the id of PythonTransformFunction in py4j
    val h = Proxy.getInvocationHandler(func.asInstanceOf[Proxy])
    val f = h.getClass().getDeclaredField("id")
    f.setAccessible(true)
    val id = f.get(h).asInstanceOf[String]
    val results = serializer.dumps(id)
    val failure = serializer.getLastFailure
    if (failure != null) {
      throw new SparkException("An exception was raised by Python:\n" + failure)
    }
    results
  }

  def deserialize(bytes: Array[Byte]): PythonTransformFunction = synchronized {
    require(serializer != null, "Serializer has not been registered!")
    val pfunc = serializer.loads(bytes)
    val failure = serializer.getLastFailure
    if (failure != null) {
      throw new SparkException("An exception was raised by Python:\n" + failure)
    }
    pfunc
  }
}

/**
 * Helper functions, which are called from Python via Py4J.
 */
private[streaming] object PythonDStream {

  /**
   * cannot access PythonTransformFunctionSerializer.register() via Py4j
   * Py4JError: PythonTransformFunctionSerializerregister does not exist in the JVM
   */
  def registerSerializer(ser: PythonTransformFunctionSerializer): Unit = {
    PythonTransformFunctionSerializer.register(ser)
  }

  /**
   * helper function for DStream.foreachRDD(),
   * cannot be `foreachRDD`, it will confusing py4j
   */
  def callForeachRDD(jdstream: JavaDStream[Array[Byte]], pfunc: PythonTransformFunction): Unit = {
    val func = new TransformFunction((pfunc))
    jdstream.dstream.foreachRDD((rdd, time) => func(Some(rdd), time))
  }

  /**
   * convert list of RDD into queue of RDDs, for ssc.queueStream()
   */
  def toRDDQueue(rdds: JArrayList[JavaRDD[Array[Byte]]]): java.util.Queue[JavaRDD[Array[Byte]]] = {
    val queue = new java.util.LinkedList[JavaRDD[Array[Byte]]]
    rdds.asScala.foreach(queue.add)
    queue
  }

  /**
   * Stop [[StreamingContext]] if the Python process crashes (E.g., OOM) in case the user cannot
   * stop it in the Python side.
   */
  def stopStreamingContextIfPythonProcessIsDead(e: Throwable): Unit = {
    // These two special messages are from:
    // scalastyle:off
    // https://github.com/bartdag/py4j/blob/5cbb15a21f857e8cf334ce5f675f5543472f72eb/py4j-java/src/main/java/py4j/CallbackClient.java#L218
    // https://github.com/bartdag/py4j/blob/5cbb15a21f857e8cf334ce5f675f5543472f72eb/py4j-java/src/main/java/py4j/CallbackClient.java#L340
    // scalastyle:on
    if (e.isInstanceOf[Py4JException] &&
      ("Cannot obtain a new communication channel" == e.getMessage ||
        "Error while obtaining a new communication channel" == e.getMessage)) {
      // Start a new thread to stop StreamingContext to avoid deadlock.
      new Thread("Stop-StreamingContext") with Logging {
        setDaemon(true)

        override def run(): Unit = {
          logError(
            "Cannot connect to Python process. It's probably dead. Stopping StreamingContext.", e)
          StreamingContext.getActive().foreach(_.stop(stopSparkContext = false))
        }
      }.start()
    }
  }
}

/**
 * Base class for PythonDStream with some common methods
 */
private[python] abstract class PythonDStream(
    parent: DStream[_],
    pfunc: PythonTransformFunction)
  extends DStream[Array[Byte]] (parent.ssc) {

  val func = new TransformFunction(pfunc)

  override def dependencies: List[DStream[_]] = List(parent)

  override def slideDuration: Duration = parent.slideDuration

  val asJavaDStream: JavaDStream[Array[Byte]] = JavaDStream.fromDStream(this)
}

/**
 * Transformed DStream in Python.
 */
private[python] class PythonTransformedDStream (
    parent: DStream[_],
    pfunc: PythonTransformFunction)
  extends PythonDStream(parent, pfunc) {

  override def compute(validTime: Time): Option[RDD[Array[Byte]]] = {
    val rdd = parent.getOrCompute(validTime)
    if (rdd.isDefined) {
      func(rdd, validTime)
    } else {
      None
    }
  }
}

/**
 * Transformed from two DStreams in Python.
 */
private[python] class PythonTransformed2DStream(
    parent: DStream[_],
    parent2: DStream[_],
    pfunc: PythonTransformFunction)
  extends DStream[Array[Byte]] (parent.ssc) {

  val func = new TransformFunction(pfunc)

  override def dependencies: List[DStream[_]] = List(parent, parent2)

  override def slideDuration: Duration = parent.slideDuration

  override def compute(validTime: Time): Option[RDD[Array[Byte]]] = {
    val empty: RDD[_] = ssc.sparkContext.emptyRDD
    val rdd1 = parent.getOrCompute(validTime).getOrElse(empty)
    val rdd2 = parent2.getOrCompute(validTime).getOrElse(empty)
    func(Some(rdd1), Some(rdd2), validTime)
  }

  val asJavaDStream: JavaDStream[Array[Byte]] = JavaDStream.fromDStream(this)
}

/**
 * similar to StateDStream
 */
private[python] class PythonStateDStream(
    parent: DStream[Array[Byte]],
    reduceFunc: PythonTransformFunction,
    initialRDD: Option[RDD[Array[Byte]]])
  extends PythonDStream(parent, reduceFunc) {

  def this(
    parent: DStream[Array[Byte]],
    reduceFunc: PythonTransformFunction) = this(parent, reduceFunc, None)

  def this(
    parent: DStream[Array[Byte]],
    reduceFunc: PythonTransformFunction,
    initialRDD: JavaRDD[Array[Byte]]) = this(parent, reduceFunc, Some(initialRDD.rdd))

  super.persist(StorageLevel.MEMORY_ONLY)
  override val mustCheckpoint = true

  override def compute(validTime: Time): Option[RDD[Array[Byte]]] = {
    val lastState = getOrCompute(validTime - slideDuration)
    val rdd = parent.getOrCompute(validTime)
    if (rdd.isDefined) {
      func(lastState.orElse(initialRDD), rdd, validTime)
    } else {
      lastState
    }
  }
}

/**
 * similar to ReducedWindowedDStream
 */
private[python] class PythonReducedWindowedDStream(
    parent: DStream[Array[Byte]],
    preduceFunc: PythonTransformFunction,
    @transient private val pinvReduceFunc: PythonTransformFunction,
    _windowDuration: Duration,
    _slideDuration: Duration)
  extends PythonDStream(parent, preduceFunc) {

  super.persist(StorageLevel.MEMORY_ONLY)

  override val mustCheckpoint: Boolean = true

  val invReduceFunc: TransformFunction = new TransformFunction(pinvReduceFunc)

  def windowDuration: Duration = _windowDuration

  override def slideDuration: Duration = _slideDuration

  override def parentRememberDuration: Duration = rememberDuration + windowDuration

  override def compute(validTime: Time): Option[RDD[Array[Byte]]] = {
    val currentTime = validTime
    val current = new Interval(currentTime - windowDuration, currentTime)
    val previous = current - slideDuration

    //  _____________________________
    // |  previous window   _________|___________________
    // |___________________|       current window        |  --------------> Time
    //                     |_____________________________|
    //
    // |________ _________|          |________ _________|
    //          |                             |
    //          V                             V
    //       old RDDs                     new RDDs
    //
    val previousRDD = getOrCompute(previous.endTime)

    // for small window, reduce once will be better than twice
    if (pinvReduceFunc != null && previousRDD.isDefined
        && windowDuration >= slideDuration * 5) {

      // subtract the values from old RDDs
      val oldRDDs = parent.slice(previous.beginTime + parent.slideDuration, current.beginTime)
      val subtracted = if (oldRDDs.size > 0) {
        invReduceFunc(previousRDD, Some(ssc.sc.union(oldRDDs)), validTime)
      } else {
        previousRDD
      }

      // add the RDDs of the reduced values in "new time steps"
      val newRDDs = parent.slice(previous.endTime + parent.slideDuration, current.endTime)
      if (newRDDs.size > 0) {
        func(subtracted, Some(ssc.sc.union(newRDDs)), validTime)
      } else {
        subtracted
      }
    } else {
      // Get the RDDs of the reduced values in current window
      val currentRDDs = parent.slice(current.beginTime + parent.slideDuration, current.endTime)
      if (currentRDDs.size > 0) {
        func(None, Some(ssc.sc.union(currentRDDs)), validTime)
      } else {
        None
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞