spark ArrayType 源码
spark ArrayType 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ArrayType.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.types
import scala.math.Ordering
import org.json4s.JsonDSL._
import org.apache.spark.annotation.Stable
import org.apache.spark.sql.catalyst.util.ArrayData
import org.apache.spark.sql.catalyst.util.StringUtils.StringConcat
/**
* Companion object for ArrayType.
*
* @since 1.3.0
*/
@Stable
object ArrayType extends AbstractDataType {
/**
* Construct a [[ArrayType]] object with the given element type. The `containsNull` is true.
*/
def apply(elementType: DataType): ArrayType = ArrayType(elementType, containsNull = true)
override private[sql] def defaultConcreteType: DataType = ArrayType(NullType, containsNull = true)
override private[sql] def acceptsType(other: DataType): Boolean = {
other.isInstanceOf[ArrayType]
}
override private[spark] def simpleString: String = "array"
}
/**
* The data type for collections of multiple values.
* Internally these are represented as columns that contain a ``scala.collection.Seq``.
*
* Please use `DataTypes.createArrayType()` to create a specific instance.
*
* An [[ArrayType]] object comprises two fields, `elementType: [[DataType]]` and
* `containsNull: Boolean`.
* The field of `elementType` is used to specify the type of array elements.
* The field of `containsNull` is used to specify if the array can have `null` values.
*
* @param elementType The data type of values.
* @param containsNull Indicates if the array can have `null` values
*
* @since 1.3.0
*/
@Stable
case class ArrayType(elementType: DataType, containsNull: Boolean) extends DataType {
/** No-arg constructor for kryo. */
protected def this() = this(null, false)
private[sql] def buildFormattedString(
prefix: String,
stringConcat: StringConcat,
maxDepth: Int): Unit = {
if (maxDepth > 0) {
stringConcat.append(
s"$prefix-- element: ${elementType.typeName} (containsNull = $containsNull)\n")
DataType.buildFormattedString(elementType, s"$prefix |", stringConcat, maxDepth)
}
}
override private[sql] def jsonValue =
("type" -> typeName) ~
("elementType" -> elementType.jsonValue) ~
("containsNull" -> containsNull)
/**
* The default size of a value of the ArrayType is the default size of the element type.
* We assume that there is only 1 element on average in an array. See SPARK-18853.
*/
override def defaultSize: Int = 1 * elementType.defaultSize
override def simpleString: String = s"array<${elementType.simpleString}>"
override def catalogString: String = s"array<${elementType.catalogString}>"
override def sql: String = s"ARRAY<${elementType.sql}>"
override private[spark] def asNullable: ArrayType =
ArrayType(elementType.asNullable, containsNull = true)
override private[spark] def existsRecursively(f: (DataType) => Boolean): Boolean = {
f(this) || elementType.existsRecursively(f)
}
@transient
private[sql] lazy val interpretedOrdering: Ordering[ArrayData] = new Ordering[ArrayData] {
private[this] val elementOrdering: Ordering[Any] = elementType match {
case dt: AtomicType => dt.ordering.asInstanceOf[Ordering[Any]]
case a : ArrayType => a.interpretedOrdering.asInstanceOf[Ordering[Any]]
case s: StructType => s.interpretedOrdering.asInstanceOf[Ordering[Any]]
case other =>
throw new IllegalArgumentException(
s"Type ${other.catalogString} does not support ordered operations")
}
def compare(x: ArrayData, y: ArrayData): Int = {
val leftArray = x
val rightArray = y
val minLength = scala.math.min(leftArray.numElements(), rightArray.numElements())
var i = 0
while (i < minLength) {
val isNullLeft = leftArray.isNullAt(i)
val isNullRight = rightArray.isNullAt(i)
if (isNullLeft && isNullRight) {
// Do nothing.
} else if (isNullLeft) {
return -1
} else if (isNullRight) {
return 1
} else {
val comp =
elementOrdering.compare(
leftArray.get(i, elementType),
rightArray.get(i, elementType))
if (comp != 0) {
return comp
}
}
i += 1
}
if (leftArray.numElements() < rightArray.numElements()) {
-1
} else if (leftArray.numElements() > rightArray.numElements()) {
1
} else {
0
}
}
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦