spark GenericAvroSerializer 源码

  • 2022-10-20
  • 浏览 (356)

spark GenericAvroSerializer 代码

文件路径:/core/src/main/scala/org/apache/spark/serializer/GenericAvroSerializer.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.serializer

import java.io.{ByteArrayInputStream, ByteArrayOutputStream}
import java.nio.ByteBuffer
import java.nio.charset.StandardCharsets

import scala.collection.mutable

import com.esotericsoftware.kryo.{Kryo, Serializer => KSerializer}
import com.esotericsoftware.kryo.io.{Input => KryoInput, Output => KryoOutput}
import org.apache.avro.{Schema, SchemaNormalization}
import org.apache.avro.generic.{GenericContainer, GenericData}
import org.apache.avro.io._
import org.apache.commons.io.IOUtils

import org.apache.spark.{SparkEnv, SparkException}
import org.apache.spark.io.CompressionCodec
import org.apache.spark.util.Utils

/**
 * Custom serializer used for generic Avro containers. If the user registers the schemas
 * ahead of time, then the schema's fingerprint will be sent with each message instead of the actual
 * schema, as to reduce network IO.
 * Actions like parsing or compressing schemas are computationally expensive so the serializer
 * caches all previously seen values as to reduce the amount of work needed to do.
 * @param schemas a map where the keys are unique IDs for Avro schemas and the values are the
 *                string representation of the Avro schema, used to decrease the amount of data
 *                that needs to be serialized.
 * @tparam D the subtype of [[GenericContainer]] handled by this serializer
 */
private[serializer] class GenericAvroSerializer[D <: GenericContainer]
  (schemas: Map[Long, String]) extends KSerializer[D] {

  /** Used to reduce the amount of effort to compress the schema */
  private val compressCache = new mutable.HashMap[Schema, Array[Byte]]()
  private val decompressCache = new mutable.HashMap[ByteBuffer, Schema]()

  /** Reuses the same datum reader/writer since the same schema will be used many times */
  private val writerCache = new mutable.HashMap[Schema, DatumWriter[_]]()
  private val readerCache = new mutable.HashMap[Schema, DatumReader[_]]()

  /** Fingerprinting is very expensive so this alleviates most of the work */
  private val fingerprintCache = new mutable.HashMap[Schema, Long]()
  private val schemaCache = new mutable.HashMap[Long, Schema]()

  // GenericAvroSerializer can't take a SparkConf in the constructor b/c then it would become
  // a member of KryoSerializer, which would make KryoSerializer not Serializable.  We make
  // the codec lazy here just b/c in some unit tests, we use a KryoSerializer w/out having
  // the SparkEnv set (note those tests would fail if they tried to serialize avro data).
  private lazy val codec = CompressionCodec.createCodec(SparkEnv.get.conf)

  /**
   * Used to compress Schemas when they are being sent over the wire.
   * The compression results are memoized to reduce the compression time since the
   * same schema is compressed many times over
   */
  def compress(schema: Schema): Array[Byte] = compressCache.getOrElseUpdate(schema, {
    val bos = new ByteArrayOutputStream()
    val out = codec.compressedOutputStream(bos)
    Utils.tryWithSafeFinally {
      out.write(schema.toString.getBytes(StandardCharsets.UTF_8))
    } {
      out.close()
    }
    bos.toByteArray
  })

  /**
   * Decompresses the schema into the actual in-memory object. Keeps an internal cache of already
   * seen values so to limit the number of times that decompression has to be done.
   */
  def decompress(schemaBytes: ByteBuffer): Schema = decompressCache.getOrElseUpdate(schemaBytes, {
    val bis = new ByteArrayInputStream(
      schemaBytes.array(),
      schemaBytes.arrayOffset() + schemaBytes.position(),
      schemaBytes.remaining())
    val in = codec.compressedInputStream(bis)
    val bytes = Utils.tryWithSafeFinally {
      IOUtils.toByteArray(in)
    } {
      in.close()
    }
    new Schema.Parser().setValidateDefaults(false).parse(new String(bytes, StandardCharsets.UTF_8))
  })

  /**
   * Serializes a generic container to the given output stream. It caches a lot of the internal
   * data as to not redo work
   */
  def serializeDatum(datum: D, output: KryoOutput): Unit = {
    val encoder = EncoderFactory.get.binaryEncoder(output, null)
    val schema = datum.getSchema
    val fingerprint = fingerprintCache.getOrElseUpdate(schema, {
      SchemaNormalization.parsingFingerprint64(schema)
    })
    schemas.get(fingerprint) match {
      case Some(_) =>
        output.writeBoolean(true)
        output.writeLong(fingerprint)
      case None =>
        output.writeBoolean(false)
        val compressedSchema = compress(schema)
        output.writeInt(compressedSchema.length)
        output.writeBytes(compressedSchema)
    }

    writerCache.getOrElseUpdate(schema, GenericData.get.createDatumWriter(schema))
      .asInstanceOf[DatumWriter[D]]
      .write(datum, encoder)
    encoder.flush()
  }

  /**
   * Deserializes generic containers into their in-memory form. There is internal
   * state to keep a cache of already seen schemas and datum readers.
   */
  def deserializeDatum(input: KryoInput): D = {
    val schema = {
      if (input.readBoolean()) {
        val fingerprint = input.readLong()
        schemaCache.getOrElseUpdate(fingerprint, {
          schemas.get(fingerprint) match {
            case Some(s) => new Schema.Parser().setValidateDefaults(false).parse(s)
            case None =>
              throw new SparkException(
                "Error reading attempting to read avro data -- encountered an unknown " +
                  s"fingerprint: $fingerprint, not sure what schema to use.  This could happen " +
                  "if you registered additional schemas after starting your spark context.")
          }
        })
      } else {
        val length = input.readInt()
        decompress(ByteBuffer.wrap(input.readBytes(length)))
      }
    }
    val decoder = DecoderFactory.get.directBinaryDecoder(input, null)
    readerCache.getOrElseUpdate(schema, GenericData.get.createDatumReader(schema))
      .asInstanceOf[DatumReader[D]]
      .read(null.asInstanceOf[D], decoder)
  }

  override def write(kryo: Kryo, output: KryoOutput, datum: D): Unit =
    serializeDatum(datum, output)

  override def read(kryo: Kryo, input: KryoInput, datumClass: Class[D]): D =
    deserializeDatum(input)
}

相关信息

spark 源码目录

相关文章

spark JavaSerializer 源码

spark KryoSerializer 源码

spark SerializationDebugger 源码

spark Serializer 源码

spark SerializerManager 源码

spark package-info 源码

spark package 源码

0  赞