airflow vertex_ai 源码
airflow vertex_ai 代码
文件路径:/airflow/providers/google/cloud/links/vertex_ai.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import TYPE_CHECKING
from airflow.providers.google.cloud.links.base import BaseGoogleLink
if TYPE_CHECKING:
from airflow.utils.context import Context
VERTEX_AI_BASE_LINK = "/vertex-ai"
VERTEX_AI_MODEL_LINK = (
VERTEX_AI_BASE_LINK + "/locations/{region}/models/{model_id}/deploy?project={project_id}"
)
VERTEX_AI_MODEL_LIST_LINK = VERTEX_AI_BASE_LINK + "/models?project={project_id}"
VERTEX_AI_MODEL_EXPORT_LINK = "/storage/browser/{bucket_name}/model-{model_id}?project={project_id}"
VERTEX_AI_TRAINING_LINK = (
VERTEX_AI_BASE_LINK + "/locations/{region}/training/{training_id}/cpu?project={project_id}"
)
VERTEX_AI_TRAINING_PIPELINES_LINK = VERTEX_AI_BASE_LINK + "/training/training-pipelines?project={project_id}"
VERTEX_AI_DATASET_LINK = (
VERTEX_AI_BASE_LINK + "/locations/{region}/datasets/{dataset_id}/analyze?project={project_id}"
)
VERTEX_AI_DATASET_LIST_LINK = VERTEX_AI_BASE_LINK + "/datasets?project={project_id}"
VERTEX_AI_HYPERPARAMETER_TUNING_JOB_LIST_LINK = (
VERTEX_AI_BASE_LINK + "/training/hyperparameter-tuning-jobs?project={project_id}"
)
VERTEX_AI_BATCH_PREDICTION_JOB_LINK = (
VERTEX_AI_BASE_LINK
+ "/locations/{region}/batch-predictions/{batch_prediction_job_id}?project={project_id}"
)
VERTEX_AI_BATCH_PREDICTION_JOB_LIST_LINK = VERTEX_AI_BASE_LINK + "/batch-predictions?project={project_id}"
VERTEX_AI_ENDPOINT_LINK = (
VERTEX_AI_BASE_LINK + "/locations/{region}/endpoints/{endpoint_id}?project={project_id}"
)
VERTEX_AI_ENDPOINT_LIST_LINK = VERTEX_AI_BASE_LINK + "/endpoints?project={project_id}"
class VertexAIModelLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Model link"""
name = "Vertex AI Model"
key = "model_conf"
format_str = VERTEX_AI_MODEL_LINK
@staticmethod
def persist(
context: Context,
task_instance,
model_id: str,
):
task_instance.xcom_push(
context=context,
key=VertexAIModelLink.key,
value={
"model_id": model_id,
"region": task_instance.region,
"project_id": task_instance.project_id,
},
)
class VertexAIModelListLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Models Link"""
name = "Model List"
key = "models_conf"
format_str = VERTEX_AI_MODEL_LIST_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIModelListLink.key,
value={
"project_id": task_instance.project_id,
},
)
class VertexAIModelExportLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Model Export Link"""
name = "Export Model"
key = "export_conf"
format_str = VERTEX_AI_MODEL_EXPORT_LINK
@staticmethod
def extract_bucket_name(config):
"""Returns bucket name from output configuration."""
return config["artifact_destination"]["output_uri_prefix"].rpartition("gs://")[-1]
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIModelExportLink.key,
value={
"project_id": task_instance.project_id,
"model_id": task_instance.model_id,
"bucket_name": VertexAIModelExportLink.extract_bucket_name(task_instance.output_config),
},
)
class VertexAITrainingLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Training link"""
name = "Vertex AI Training"
key = "training_conf"
format_str = VERTEX_AI_TRAINING_LINK
@staticmethod
def persist(
context: Context,
task_instance,
training_id: str,
):
task_instance.xcom_push(
context=context,
key=VertexAITrainingLink.key,
value={
"training_id": training_id,
"region": task_instance.region,
"project_id": task_instance.project_id,
},
)
class VertexAITrainingPipelinesLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Training Pipelines link"""
name = "Vertex AI Training Pipelines"
key = "pipelines_conf"
format_str = VERTEX_AI_TRAINING_PIPELINES_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAITrainingPipelinesLink.key,
value={
"project_id": task_instance.project_id,
},
)
class VertexAIDatasetLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Dataset link"""
name = "Dataset"
key = "dataset_conf"
format_str = VERTEX_AI_DATASET_LINK
@staticmethod
def persist(context: Context, task_instance, dataset_id: str):
task_instance.xcom_push(
context=context,
key=VertexAIDatasetLink.key,
value={
"dataset_id": dataset_id,
"region": task_instance.region,
"project_id": task_instance.project_id,
},
)
class VertexAIDatasetListLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Datasets Link"""
name = "Dataset List"
key = "datasets_conf"
format_str = VERTEX_AI_DATASET_LIST_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIDatasetListLink.key,
value={
"project_id": task_instance.project_id,
},
)
class VertexAIHyperparameterTuningJobListLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI HyperparameterTuningJobs Link"""
name = "Hyperparameter Tuning Job List"
key = "hyperparameter_tuning_jobs_conf"
format_str = VERTEX_AI_HYPERPARAMETER_TUNING_JOB_LIST_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIHyperparameterTuningJobListLink.key,
value={
"project_id": task_instance.project_id,
},
)
class VertexAIBatchPredictionJobLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI BatchPredictionJob link"""
name = "Batch Prediction Job"
key = "batch_prediction_job_conf"
format_str = VERTEX_AI_BATCH_PREDICTION_JOB_LINK
@staticmethod
def persist(
context: Context,
task_instance,
batch_prediction_job_id: str,
):
task_instance.xcom_push(
context=context,
key=VertexAIBatchPredictionJobLink.key,
value={
"batch_prediction_job_id": batch_prediction_job_id,
"region": task_instance.region,
"project_id": task_instance.project_id,
},
)
class VertexAIBatchPredictionJobListLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI BatchPredictionJobList link"""
name = "Batch Prediction Job List"
key = "batch_prediction_jobs_conf"
format_str = VERTEX_AI_BATCH_PREDICTION_JOB_LIST_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIBatchPredictionJobListLink.key,
value={
"project_id": task_instance.project_id,
},
)
class VertexAIEndpointLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI Endpoint link"""
name = "Endpoint"
key = "endpoint_conf"
format_str = VERTEX_AI_ENDPOINT_LINK
@staticmethod
def persist(
context: Context,
task_instance,
endpoint_id: str,
):
task_instance.xcom_push(
context=context,
key=VertexAIEndpointLink.key,
value={
"endpoint_id": endpoint_id,
"region": task_instance.region,
"project_id": task_instance.project_id,
},
)
class VertexAIEndpointListLink(BaseGoogleLink):
"""Helper class for constructing Vertex AI EndpointList link"""
name = "Endpoint List"
key = "endpoints_conf"
format_str = VERTEX_AI_ENDPOINT_LIST_LINK
@staticmethod
def persist(
context: Context,
task_instance,
):
task_instance.xcom_push(
context=context,
key=VertexAIEndpointListLink.key,
value={
"project_id": task_instance.project_id,
},
)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦