spark ExecutorAllocationManager 源码

  • 2022-10-20
  • 浏览 (332)

spark ExecutorAllocationManager 代码

文件路径:/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark

import java.util.concurrent.TimeUnit

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.util.control.NonFatal

import com.codahale.metrics.{Counter, Gauge, MetricRegistry}

import org.apache.spark.internal.{config, Logging}
import org.apache.spark.internal.config._
import org.apache.spark.internal.config.DECOMMISSION_ENABLED
import org.apache.spark.internal.config.Tests.TEST_DYNAMIC_ALLOCATION_SCHEDULE_ENABLED
import org.apache.spark.metrics.source.Source
import org.apache.spark.resource.ResourceProfile.UNKNOWN_RESOURCE_PROFILE_ID
import org.apache.spark.resource.ResourceProfileManager
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.dynalloc.ExecutorMonitor
import org.apache.spark.util.{Clock, SystemClock, ThreadUtils, Utils}

/**
 * An agent that dynamically allocates and removes executors based on the workload.
 *
 * The ExecutorAllocationManager maintains a moving target number of executors, for each
 * ResourceProfile, which is periodically synced to the cluster manager. The target starts
 * at a configured initial value and changes with the number of pending and running tasks.
 *
 * Decreasing the target number of executors happens when the current target is more than needed to
 * handle the current load. The target number of executors is always truncated to the number of
 * executors that could run all current running and pending tasks at once.
 *
 * Increasing the target number of executors happens in response to backlogged tasks waiting to be
 * scheduled. If the scheduler queue is not drained in M seconds, then new executors are added. If
 * the queue persists for another N seconds, then more executors are added and so on. The number
 * added in each round increases exponentially from the previous round until an upper bound has been
 * reached. The upper bound is based both on a configured property and on the current number of
 * running and pending tasks, as described above.
 *
 * The rationale for the exponential increase is twofold: (1) Executors should be added slowly
 * in the beginning in case the number of extra executors needed turns out to be small. Otherwise,
 * we may add more executors than we need just to remove them later. (2) Executors should be added
 * quickly over time in case the maximum number of executors is very high. Otherwise, it will take
 * a long time to ramp up under heavy workloads.
 *
 * The remove policy is simpler and is applied on each ResourceProfile separately. If an executor
 * for that ResourceProfile has been idle for K seconds and the number of executors is more
 * then what is needed for that ResourceProfile, meaning there are not enough tasks that could use
 * the executor, then it is removed. Note that an executor caching any data
 * blocks will be removed if it has been idle for more than L seconds.
 *
 * There is no retry logic in either case because we make the assumption that the cluster manager
 * will eventually fulfill all requests it receives asynchronously.
 *
 * The relevant Spark properties are below. Each of these properties applies separately to
 * every ResourceProfile. So if you set a minimum number of executors, that is a minimum
 * for each ResourceProfile.
 *
 *   spark.dynamicAllocation.enabled - Whether this feature is enabled
 *   spark.dynamicAllocation.minExecutors - Lower bound on the number of executors
 *   spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors
 *   spark.dynamicAllocation.initialExecutors - Number of executors to start with
 *
 *   spark.dynamicAllocation.executorAllocationRatio -
 *     This is used to reduce the parallelism of the dynamic allocation that can waste
 *     resources when tasks are small
 *
 *   spark.dynamicAllocation.schedulerBacklogTimeout (M) -
 *     If there are backlogged tasks for this duration, add new executors
 *
 *   spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N) -
 *     If the backlog is sustained for this duration, add more executors
 *     This is used only after the initial backlog timeout is exceeded
 *
 *   spark.dynamicAllocation.executorIdleTimeout (K) -
 *     If an executor without caching any data blocks has been idle for this duration, remove it
 *
 *   spark.dynamicAllocation.cachedExecutorIdleTimeout (L) -
 *     If an executor with caching data blocks has been idle for more than this duration,
 *     the executor will be removed
 *
 */
private[spark] class ExecutorAllocationManager(
    client: ExecutorAllocationClient,
    listenerBus: LiveListenerBus,
    conf: SparkConf,
    cleaner: Option[ContextCleaner] = None,
    clock: Clock = new SystemClock(),
    resourceProfileManager: ResourceProfileManager)
  extends Logging {

  allocationManager =>

  import ExecutorAllocationManager._

  // Lower and upper bounds on the number of executors.
  private val minNumExecutors = conf.get(DYN_ALLOCATION_MIN_EXECUTORS)
  private val maxNumExecutors = conf.get(DYN_ALLOCATION_MAX_EXECUTORS)
  private val initialNumExecutors = Utils.getDynamicAllocationInitialExecutors(conf)

  // How long there must be backlogged tasks for before an addition is triggered (seconds)
  private val schedulerBacklogTimeoutS = conf.get(DYN_ALLOCATION_SCHEDULER_BACKLOG_TIMEOUT)

  // Same as above, but used only after `schedulerBacklogTimeoutS` is exceeded
  private val sustainedSchedulerBacklogTimeoutS =
    conf.get(DYN_ALLOCATION_SUSTAINED_SCHEDULER_BACKLOG_TIMEOUT)

  // During testing, the methods to actually kill and add executors are mocked out
  private val testing = conf.get(DYN_ALLOCATION_TESTING)

  private val executorAllocationRatio =
    conf.get(DYN_ALLOCATION_EXECUTOR_ALLOCATION_RATIO)

  private val decommissionEnabled = conf.get(DECOMMISSION_ENABLED)

  private val defaultProfileId = resourceProfileManager.defaultResourceProfile.id

  validateSettings()

  // Number of executors to add for each ResourceProfile in the next round
  private[spark] val numExecutorsToAddPerResourceProfileId = new mutable.HashMap[Int, Int]
  numExecutorsToAddPerResourceProfileId(defaultProfileId) = 1

  // The desired number of executors at this moment in time. If all our executors were to die, this
  // is the number of executors we would immediately want from the cluster manager.
  // Note every profile will be allowed to have initial number,
  // we may want to make this configurable per Profile in the future
  private[spark] val numExecutorsTargetPerResourceProfileId = new mutable.HashMap[Int, Int]
  numExecutorsTargetPerResourceProfileId(defaultProfileId) = initialNumExecutors

  // A timestamp of when an addition should be triggered, or NOT_SET if it is not set
  // This is set when pending tasks are added but not scheduled yet
  private var addTime: Long = NOT_SET

  // Polling loop interval (ms)
  private val intervalMillis: Long = 100

  // Listener for Spark events that impact the allocation policy
  val listener = new ExecutorAllocationListener

  // Executor that handles the scheduling task.
  private val executor =
    ThreadUtils.newDaemonSingleThreadScheduledExecutor("spark-dynamic-executor-allocation")

  // Metric source for ExecutorAllocationManager to expose internal status to MetricsSystem.
  val executorAllocationManagerSource = new ExecutorAllocationManagerSource(this)

  val executorMonitor =
    new ExecutorMonitor(conf, client, listenerBus, clock, executorAllocationManagerSource)

  // Whether we are still waiting for the initial set of executors to be allocated.
  // While this is true, we will not cancel outstanding executor requests. This is
  // set to false when:
  //   (1) a stage is submitted, or
  //   (2) an executor idle timeout has elapsed.
  @volatile private var initializing: Boolean = true

  // Number of locality aware tasks for each ResourceProfile, used for executor placement.
  private var numLocalityAwareTasksPerResourceProfileId = new mutable.HashMap[Int, Int]
  numLocalityAwareTasksPerResourceProfileId(defaultProfileId) = 0

  // ResourceProfile id to Host to possible task running on it, used for executor placement.
  private var rpIdToHostToLocalTaskCount: Map[Int, Map[String, Int]] = Map.empty

  /**
   * Verify that the settings specified through the config are valid.
   * If not, throw an appropriate exception.
   */
  private def validateSettings(): Unit = {
    if (minNumExecutors < 0 || maxNumExecutors < 0) {
      throw new SparkException(
        s"${DYN_ALLOCATION_MIN_EXECUTORS.key} and ${DYN_ALLOCATION_MAX_EXECUTORS.key} must be " +
          "positive!")
    }
    if (maxNumExecutors == 0) {
      throw new SparkException(s"${DYN_ALLOCATION_MAX_EXECUTORS.key} cannot be 0!")
    }
    if (minNumExecutors > maxNumExecutors) {
      throw new SparkException(s"${DYN_ALLOCATION_MIN_EXECUTORS.key} ($minNumExecutors) must " +
        s"be less than or equal to ${DYN_ALLOCATION_MAX_EXECUTORS.key} ($maxNumExecutors)!")
    }
    if (schedulerBacklogTimeoutS <= 0) {
      throw new SparkException(s"${DYN_ALLOCATION_SCHEDULER_BACKLOG_TIMEOUT.key} must be > 0!")
    }
    if (sustainedSchedulerBacklogTimeoutS <= 0) {
      throw new SparkException(
        s"s${DYN_ALLOCATION_SUSTAINED_SCHEDULER_BACKLOG_TIMEOUT.key} must be > 0!")
    }
    if (!conf.get(config.SHUFFLE_SERVICE_ENABLED)) {
      if (conf.get(config.DYN_ALLOCATION_SHUFFLE_TRACKING_ENABLED)) {
        logInfo("Dynamic allocation is enabled without a shuffle service.")
      } else if (decommissionEnabled &&
          conf.get(config.STORAGE_DECOMMISSION_SHUFFLE_BLOCKS_ENABLED)) {
        logInfo("Shuffle data decommission is enabled without a shuffle service.")
      } else if (!testing) {
        throw new SparkException("Dynamic allocation of executors requires the external " +
          "shuffle service. You may enable this through spark.shuffle.service.enabled.")
      }
    }

    if (executorAllocationRatio > 1.0 || executorAllocationRatio <= 0.0) {
      throw new SparkException(
        s"${DYN_ALLOCATION_EXECUTOR_ALLOCATION_RATIO.key} must be > 0 and <= 1.0")
    }
  }

  /**
   * Register for scheduler callbacks to decide when to add and remove executors, and start
   * the scheduling task.
   */
  def start(): Unit = {
    listenerBus.addToManagementQueue(listener)
    listenerBus.addToManagementQueue(executorMonitor)
    cleaner.foreach(_.attachListener(executorMonitor))

    val scheduleTask = new Runnable() {
      override def run(): Unit = Utils.tryLog(schedule())
    }

    if (!testing || conf.get(TEST_DYNAMIC_ALLOCATION_SCHEDULE_ENABLED)) {
      executor.scheduleWithFixedDelay(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
    }

    // copy the maps inside synchronize to ensure not being modified
    val (numExecutorsTarget, numLocalityAware) = synchronized {
      val numTarget = numExecutorsTargetPerResourceProfileId.toMap
      val numLocality = numLocalityAwareTasksPerResourceProfileId.toMap
      (numTarget, numLocality)
    }

    client.requestTotalExecutors(numExecutorsTarget, numLocalityAware, rpIdToHostToLocalTaskCount)
  }

  /**
   * Stop the allocation manager.
   */
  def stop(): Unit = {
    executor.shutdown()
    executor.awaitTermination(10, TimeUnit.SECONDS)
  }

  /**
   * Reset the allocation manager when the cluster manager loses track of the driver's state.
   * This is currently only done in YARN client mode, when the AM is restarted.
   *
   * This method forgets about any state about existing executors, and forces the scheduler to
   * re-evaluate the number of needed executors the next time it's run.
   */
  def reset(): Unit = synchronized {
    addTime = 0L
    numExecutorsTargetPerResourceProfileId.keys.foreach { rpId =>
      numExecutorsTargetPerResourceProfileId(rpId) = initialNumExecutors
    }
    numExecutorsToAddPerResourceProfileId.keys.foreach { rpId =>
      numExecutorsToAddPerResourceProfileId(rpId) = 1
    }
    executorMonitor.reset()
  }

  /**
   * The maximum number of executors, for the ResourceProfile id passed in, that we would need
   * under the current load to satisfy all running and pending tasks, rounded up.
   */
  private[spark] def maxNumExecutorsNeededPerResourceProfile(rpId: Int): Int = {
    val pendingTask = listener.pendingTasksPerResourceProfile(rpId)
    val pendingSpeculative = listener.pendingSpeculativeTasksPerResourceProfile(rpId)
    val unschedulableTaskSets = listener.pendingUnschedulableTaskSetsPerResourceProfile(rpId)
    val running = listener.totalRunningTasksPerResourceProfile(rpId)
    val numRunningOrPendingTasks = pendingTask + pendingSpeculative + running
    val rp = resourceProfileManager.resourceProfileFromId(rpId)
    val tasksPerExecutor = rp.maxTasksPerExecutor(conf)
    logDebug(s"max needed for rpId: $rpId numpending: $numRunningOrPendingTasks," +
      s" tasksperexecutor: $tasksPerExecutor")
    val maxNeeded = math.ceil(numRunningOrPendingTasks * executorAllocationRatio /
      tasksPerExecutor).toInt

    val maxNeededWithSpeculationLocalityOffset =
      if (tasksPerExecutor > 1 && maxNeeded == 1 && pendingSpeculative > 0) {
      // If we have pending speculative tasks and only need a single executor, allocate one more
      // to satisfy the locality requirements of speculation
      maxNeeded + 1
    } else {
      maxNeeded
    }

    if (unschedulableTaskSets > 0) {
      // Request additional executors to account for task sets having tasks that are unschedulable
      // due to executors excluded for failures when the active executor count has already reached
      // the max needed which we would normally get.
      val maxNeededForUnschedulables = math.ceil(unschedulableTaskSets * executorAllocationRatio /
        tasksPerExecutor).toInt
      math.max(maxNeededWithSpeculationLocalityOffset,
        executorMonitor.executorCountWithResourceProfile(rpId) + maxNeededForUnschedulables)
    } else {
      maxNeededWithSpeculationLocalityOffset
    }
  }

  private def totalRunningTasksPerResourceProfile(id: Int): Int = synchronized {
    listener.totalRunningTasksPerResourceProfile(id)
  }

  /**
   * This is called at a fixed interval to regulate the number of pending executor requests
   * and number of executors running.
   *
   * First, adjust our requested executors based on the add time and our current needs.
   * Then, if the remove time for an existing executor has expired, kill the executor.
   *
   * This is factored out into its own method for testing.
   */
  private def schedule(): Unit = synchronized {
    val executorIdsToBeRemoved = executorMonitor.timedOutExecutors()
    if (executorIdsToBeRemoved.nonEmpty) {
      initializing = false
    }

    // Update executor target number only after initializing flag is unset
    updateAndSyncNumExecutorsTarget(clock.nanoTime())
    if (executorIdsToBeRemoved.nonEmpty) {
      removeExecutors(executorIdsToBeRemoved)
    }
  }

  /**
   * Updates our target number of executors for each ResourceProfile and then syncs the result
   * with the cluster manager.
   *
   * Check to see whether our existing allocation and the requests we've made previously exceed our
   * current needs. If so, truncate our target and let the cluster manager know so that it can
   * cancel pending requests that are unneeded.
   *
   * If not, and the add time has expired, see if we can request new executors and refresh the add
   * time.
   *
   * @return the delta in the target number of executors.
   */
  private def updateAndSyncNumExecutorsTarget(now: Long): Int = synchronized {
    if (initializing) {
      // Do not change our target while we are still initializing,
      // Otherwise the first job may have to ramp up unnecessarily
      0
    } else {
      val updatesNeeded = new mutable.HashMap[Int, ExecutorAllocationManager.TargetNumUpdates]

      // Update targets for all ResourceProfiles then do a single request to the cluster manager
      numExecutorsTargetPerResourceProfileId.foreach { case (rpId, targetExecs) =>
        val maxNeeded = maxNumExecutorsNeededPerResourceProfile(rpId)
        if (maxNeeded < targetExecs) {
          // The target number exceeds the number we actually need, so stop adding new
          // executors and inform the cluster manager to cancel the extra pending requests

          // We lower the target number of executors but don't actively kill any yet.  Killing is
          // controlled separately by an idle timeout.  It's still helpful to reduce
          // the target number in case an executor just happens to get lost (e.g., bad hardware,
          // or the cluster manager preempts it) -- in that case, there is no point in trying
          // to immediately  get a new executor, since we wouldn't even use it yet.
          decrementExecutorsFromTarget(maxNeeded, rpId, updatesNeeded)
        } else if (addTime != NOT_SET && now >= addTime) {
          addExecutorsToTarget(maxNeeded, rpId, updatesNeeded)
        }
      }
      doUpdateRequest(updatesNeeded.toMap, now)
    }
  }

  private def addExecutorsToTarget(
      maxNeeded: Int,
      rpId: Int,
      updatesNeeded: mutable.HashMap[Int, ExecutorAllocationManager.TargetNumUpdates]): Int = {
    updateTargetExecs(addExecutors, maxNeeded, rpId, updatesNeeded)
  }

  private def decrementExecutorsFromTarget(
      maxNeeded: Int,
      rpId: Int,
      updatesNeeded: mutable.HashMap[Int, ExecutorAllocationManager.TargetNumUpdates]): Int = {
    updateTargetExecs(decrementExecutors, maxNeeded, rpId, updatesNeeded)
  }

  private def updateTargetExecs(
      updateTargetFn: (Int, Int) => Int,
      maxNeeded: Int,
      rpId: Int,
      updatesNeeded: mutable.HashMap[Int, ExecutorAllocationManager.TargetNumUpdates]): Int = {
    val oldNumExecutorsTarget = numExecutorsTargetPerResourceProfileId(rpId)
    // update the target number (add or remove)
    val delta = updateTargetFn(maxNeeded, rpId)
    if (delta != 0) {
      updatesNeeded(rpId) = ExecutorAllocationManager.TargetNumUpdates(delta, oldNumExecutorsTarget)
    }
    delta
  }

  private def doUpdateRequest(
      updates: Map[Int, ExecutorAllocationManager.TargetNumUpdates],
      now: Long): Int = {
    // Only call cluster manager if target has changed.
    if (updates.size > 0) {
      val requestAcknowledged = try {
        logDebug("requesting updates: " + updates)
        testing ||
          client.requestTotalExecutors(
            numExecutorsTargetPerResourceProfileId.toMap,
            numLocalityAwareTasksPerResourceProfileId.toMap,
            rpIdToHostToLocalTaskCount)
      } catch {
        case NonFatal(e) =>
          // Use INFO level so the error it doesn't show up by default in shells.
          // Errors here are more commonly caused by YARN AM restarts, which is a recoverable
          // issue, and generate a lot of noisy output.
          logInfo("Error reaching cluster manager.", e)
          false
      }
      if (requestAcknowledged) {
        // have to go through all resource profiles that changed
        var totalDelta = 0
        updates.foreach { case (rpId, targetNum) =>
          val delta = targetNum.delta
          totalDelta += delta
          if (delta > 0) {
            val executorsString = "executor" + { if (delta > 1) "s" else "" }
            logInfo(s"Requesting $delta new $executorsString because tasks are backlogged " +
              s"(new desired total will be ${numExecutorsTargetPerResourceProfileId(rpId)} " +
              s"for resource profile id: ${rpId})")
            numExecutorsToAddPerResourceProfileId(rpId) =
              if (delta == numExecutorsToAddPerResourceProfileId(rpId)) {
                numExecutorsToAddPerResourceProfileId(rpId) * 2
              } else {
                1
              }
            logDebug(s"Starting timer to add more executors (to " +
              s"expire in $sustainedSchedulerBacklogTimeoutS seconds)")
            addTime = now + TimeUnit.SECONDS.toNanos(sustainedSchedulerBacklogTimeoutS)
          } else {
            logDebug(s"Lowering target number of executors to" +
              s" ${numExecutorsTargetPerResourceProfileId(rpId)} (previously " +
              s"${targetNum.oldNumExecutorsTarget} for resource profile id: ${rpId}) " +
              "because not all requested executors " +
              "are actually needed")
          }
        }
        totalDelta
      } else {
        // request was for all profiles so we have to go through all to reset to old num
        updates.foreach { case (rpId, targetNum) =>
          logWarning("Unable to reach the cluster manager to request more executors!")
          numExecutorsTargetPerResourceProfileId(rpId) = targetNum.oldNumExecutorsTarget
        }
        0
      }
    } else {
      logDebug("No change in number of executors")
      0
    }
  }

  private def decrementExecutors(maxNeeded: Int, rpId: Int): Int = {
    val oldNumExecutorsTarget = numExecutorsTargetPerResourceProfileId(rpId)
    numExecutorsTargetPerResourceProfileId(rpId) = math.max(maxNeeded, minNumExecutors)
    numExecutorsToAddPerResourceProfileId(rpId) = 1
    numExecutorsTargetPerResourceProfileId(rpId) - oldNumExecutorsTarget
  }

  /**
   * Update the target number of executors and figure out how many to add.
   * If the cap on the number of executors is reached, give up and reset the
   * number of executors to add next round instead of continuing to double it.
   *
   * @param maxNumExecutorsNeeded the maximum number of executors all currently running or pending
   *                              tasks could fill
   * @param rpId                  the ResourceProfile id of the executors
   * @return the number of additional executors actually requested.
   */
  private def addExecutors(maxNumExecutorsNeeded: Int, rpId: Int): Int = {
    val oldNumExecutorsTarget = numExecutorsTargetPerResourceProfileId(rpId)
    // Do not request more executors if it would put our target over the upper bound
    // this is doing a max check per ResourceProfile
    if (oldNumExecutorsTarget >= maxNumExecutors) {
      logDebug("Not adding executors because our current target total " +
        s"is already ${oldNumExecutorsTarget} (limit $maxNumExecutors)")
      numExecutorsToAddPerResourceProfileId(rpId) = 1
      return 0
    }
    // There's no point in wasting time ramping up to the number of executors we already have, so
    // make sure our target is at least as much as our current allocation:
    var numExecutorsTarget = math.max(numExecutorsTargetPerResourceProfileId(rpId),
        executorMonitor.executorCountWithResourceProfile(rpId))
    // Boost our target with the number to add for this round:
    numExecutorsTarget += numExecutorsToAddPerResourceProfileId(rpId)
    // Ensure that our target doesn't exceed what we need at the present moment:
    numExecutorsTarget = math.min(numExecutorsTarget, maxNumExecutorsNeeded)
    // Ensure that our target fits within configured bounds:
    numExecutorsTarget = math.max(math.min(numExecutorsTarget, maxNumExecutors), minNumExecutors)
    val delta = numExecutorsTarget - oldNumExecutorsTarget
    numExecutorsTargetPerResourceProfileId(rpId) = numExecutorsTarget

    // If our target has not changed, do not send a message
    // to the cluster manager and reset our exponential growth
    if (delta == 0) {
      numExecutorsToAddPerResourceProfileId(rpId) = 1
    }
    delta
  }

  /**
   * Request the cluster manager to remove the given executors.
   * Returns the list of executors which are removed.
   */
  private def removeExecutors(executors: Seq[(String, Int)]): Seq[String] = synchronized {
    val executorIdsToBeRemoved = new ArrayBuffer[String]
    logDebug(s"Request to remove executorIds: ${executors.mkString(", ")}")
    val numExecutorsTotalPerRpId = mutable.Map[Int, Int]()
    executors.foreach { case (executorIdToBeRemoved, rpId) =>
      if (rpId == UNKNOWN_RESOURCE_PROFILE_ID) {
        if (testing) {
          throw new SparkException("ResourceProfile Id was UNKNOWN, this is not expected")
        }
        logWarning(s"Not removing executor $executorIdToBeRemoved because the " +
          "ResourceProfile was UNKNOWN!")
      } else {
        // get the running total as we remove or initialize it to the count - pendingRemoval
        val newExecutorTotal = numExecutorsTotalPerRpId.getOrElseUpdate(rpId,
          (executorMonitor.executorCountWithResourceProfile(rpId) -
            executorMonitor.pendingRemovalCountPerResourceProfileId(rpId) -
            executorMonitor.decommissioningPerResourceProfileId(rpId)
          ))
        if (newExecutorTotal - 1 < minNumExecutors) {
          logDebug(s"Not removing idle executor $executorIdToBeRemoved because there " +
            s"are only $newExecutorTotal executor(s) left (minimum number of executor limit " +
            s"$minNumExecutors)")
        } else if (newExecutorTotal - 1 < numExecutorsTargetPerResourceProfileId(rpId)) {
          logDebug(s"Not removing idle executor $executorIdToBeRemoved because there " +
            s"are only $newExecutorTotal executor(s) left (number of executor " +
            s"target ${numExecutorsTargetPerResourceProfileId(rpId)})")
        } else {
          executorIdsToBeRemoved += executorIdToBeRemoved
          numExecutorsTotalPerRpId(rpId) -= 1
        }
      }
    }

    if (executorIdsToBeRemoved.isEmpty) {
      return Seq.empty[String]
    }

    // Send a request to the backend to kill this executor(s)
    val executorsRemoved = if (testing) {
      executorIdsToBeRemoved
    } else {
      // We don't want to change our target number of executors, because we already did that
      // when the task backlog decreased.
      if (decommissionEnabled) {
        val executorIdsWithoutHostLoss = executorIdsToBeRemoved.toSeq.map(
          id => (id, ExecutorDecommissionInfo("spark scale down"))).toArray
        client.decommissionExecutors(
          executorIdsWithoutHostLoss,
          adjustTargetNumExecutors = false,
          triggeredByExecutor = false)
      } else {
        client.killExecutors(executorIdsToBeRemoved.toSeq, adjustTargetNumExecutors = false,
          countFailures = false, force = false)
      }
    }

    // [SPARK-21834] killExecutors api reduces the target number of executors.
    // So we need to update the target with desired value.
    client.requestTotalExecutors(
      numExecutorsTargetPerResourceProfileId.toMap,
      numLocalityAwareTasksPerResourceProfileId.toMap,
      rpIdToHostToLocalTaskCount)

    // reset the newExecutorTotal to the existing number of executors
    if (testing || executorsRemoved.nonEmpty) {
      if (decommissionEnabled) {
        executorMonitor.executorsDecommissioned(executorsRemoved.toSeq)
      } else {
        executorMonitor.executorsKilled(executorsRemoved.toSeq)
      }
      logInfo(s"Executors ${executorsRemoved.mkString(",")} removed due to idle timeout.")
      executorsRemoved.toSeq
    } else {
      logWarning(s"Unable to reach the cluster manager to kill executor/s " +
        s"${executorIdsToBeRemoved.mkString(",")} or no executor eligible to kill!")
      Seq.empty[String]
    }
  }

  /**
   * Callback invoked when the scheduler receives new pending tasks.
   * This sets a time in the future that decides when executors should be added
   * if it is not already set.
   */
  private def onSchedulerBacklogged(): Unit = synchronized {
    if (addTime == NOT_SET) {
      logDebug(s"Starting timer to add executors because pending tasks " +
        s"are building up (to expire in $schedulerBacklogTimeoutS seconds)")
      addTime = clock.nanoTime() + TimeUnit.SECONDS.toNanos(schedulerBacklogTimeoutS)
    }
  }

  /**
   * Callback invoked when the scheduler queue is drained.
   * This resets all variables used for adding executors.
   */
  private def onSchedulerQueueEmpty(): Unit = synchronized {
    logDebug("Clearing timer to add executors because there are no more pending tasks")
    addTime = NOT_SET
    numExecutorsToAddPerResourceProfileId.transform { case (_, _) => 1 }
  }

  private case class StageAttempt(stageId: Int, stageAttemptId: Int) {
    override def toString: String = s"Stage $stageId (Attempt $stageAttemptId)"
  }

  /**
   * A listener that notifies the given allocation manager of when to add and remove executors.
   *
   * This class is intentionally conservative in its assumptions about the relative ordering
   * and consistency of events returned by the listener.
   */
  private[spark] class ExecutorAllocationListener extends SparkListener {

    private val stageAttemptToNumTasks = new mutable.HashMap[StageAttempt, Int]
    // Number of running tasks per stageAttempt including speculative tasks.
    // Should be 0 when no stages are active.
    private val stageAttemptToNumRunningTask = new mutable.HashMap[StageAttempt, Int]
    private val stageAttemptToTaskIndices = new mutable.HashMap[StageAttempt, mutable.HashSet[Int]]
    // Number of speculative tasks pending/running in each stageAttempt
    private val stageAttemptToNumSpeculativeTasks = new mutable.HashMap[StageAttempt, Int]
    // The speculative tasks started in each stageAttempt
    private val stageAttemptToSpeculativeTaskIndices =
      new mutable.HashMap[StageAttempt, mutable.HashSet[Int]]

    private val resourceProfileIdToStageAttempt =
      new mutable.HashMap[Int, mutable.Set[StageAttempt]]

    // Keep track of unschedulable task sets because of executor/node exclusions from too many task
    // failures. This is a Set of StageAttempt's because we'll only take the last unschedulable task
    // in a taskset although there can be more. This is done in order to avoid costly loops in the
    // scheduling. Check TaskSetManager#getCompletelyExcludedTaskIfAny for more details.
    private val unschedulableTaskSets = new mutable.HashSet[StageAttempt]

    // stageAttempt to tuple (the number of task with locality preferences, a map where each pair
    // is a node and the number of tasks that would like to be scheduled on that node, and
    // the resource profile id) map,
    // maintain the executor placement hints for each stageAttempt used by resource framework
    // to better place the executors.
    private val stageAttemptToExecutorPlacementHints =
      new mutable.HashMap[StageAttempt, (Int, Map[String, Int], Int)]

    override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = {
      initializing = false
      val stageId = stageSubmitted.stageInfo.stageId
      val stageAttemptId = stageSubmitted.stageInfo.attemptNumber()
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      val numTasks = stageSubmitted.stageInfo.numTasks
      allocationManager.synchronized {
        stageAttemptToNumTasks(stageAttempt) = numTasks
        allocationManager.onSchedulerBacklogged()
        // need to keep stage task requirements to ask for the right containers
        val profId = stageSubmitted.stageInfo.resourceProfileId
        logDebug(s"Stage resource profile id is: $profId with numTasks: $numTasks")
        resourceProfileIdToStageAttempt.getOrElseUpdate(
          profId, new mutable.HashSet[StageAttempt]) += stageAttempt
        numExecutorsToAddPerResourceProfileId.getOrElseUpdate(profId, 1)

        // Compute the number of tasks requested by the stage on each host
        var numTasksPending = 0
        val hostToLocalTaskCountPerStage = new mutable.HashMap[String, Int]()
        stageSubmitted.stageInfo.taskLocalityPreferences.foreach { locality =>
          if (!locality.isEmpty) {
            numTasksPending += 1
            locality.foreach { location =>
              val count = hostToLocalTaskCountPerStage.getOrElse(location.host, 0) + 1
              hostToLocalTaskCountPerStage(location.host) = count
            }
          }
        }
        stageAttemptToExecutorPlacementHints.put(stageAttempt,
          (numTasksPending, hostToLocalTaskCountPerStage.toMap, profId))
        // Update the executor placement hints
        updateExecutorPlacementHints()

        if (!numExecutorsTargetPerResourceProfileId.contains(profId)) {
          numExecutorsTargetPerResourceProfileId.put(profId, initialNumExecutors)
          if (initialNumExecutors > 0) {
            logDebug(s"requesting executors, rpId: $profId, initial number is $initialNumExecutors")
            // we need to trigger a schedule since we add an initial number here.
            client.requestTotalExecutors(
              numExecutorsTargetPerResourceProfileId.toMap,
              numLocalityAwareTasksPerResourceProfileId.toMap,
              rpIdToHostToLocalTaskCount)
          }
        }
      }
    }

    override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = {
      val stageId = stageCompleted.stageInfo.stageId
      val stageAttemptId = stageCompleted.stageInfo.attemptNumber()
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      allocationManager.synchronized {
        // do NOT remove stageAttempt from stageAttemptToNumRunningTask
        // because the attempt may still have running tasks,
        // even after another attempt for the stage is submitted.
        stageAttemptToNumTasks -= stageAttempt
        stageAttemptToNumSpeculativeTasks -= stageAttempt
        stageAttemptToTaskIndices -= stageAttempt
        stageAttemptToSpeculativeTaskIndices -= stageAttempt
        stageAttemptToExecutorPlacementHints -= stageAttempt
        removeStageFromResourceProfileIfUnused(stageAttempt)

        // Update the executor placement hints
        updateExecutorPlacementHints()

        // If this is the last stage with pending tasks, mark the scheduler queue as empty
        // This is needed in case the stage is aborted for any reason
        if (stageAttemptToNumTasks.isEmpty && stageAttemptToNumSpeculativeTasks.isEmpty) {
          allocationManager.onSchedulerQueueEmpty()
        }
      }
    }

    override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = {
      val stageId = taskStart.stageId
      val stageAttemptId = taskStart.stageAttemptId
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      val taskIndex = taskStart.taskInfo.index
      allocationManager.synchronized {
        stageAttemptToNumRunningTask(stageAttempt) =
          stageAttemptToNumRunningTask.getOrElse(stageAttempt, 0) + 1
        // If this is the last pending task, mark the scheduler queue as empty
        if (taskStart.taskInfo.speculative) {
          stageAttemptToSpeculativeTaskIndices.getOrElseUpdate(stageAttempt,
            new mutable.HashSet[Int]) += taskIndex
        } else {
          stageAttemptToTaskIndices.getOrElseUpdate(stageAttempt,
            new mutable.HashSet[Int]) += taskIndex
        }
        if (!hasPendingTasks) {
          allocationManager.onSchedulerQueueEmpty()
        }
      }
    }

    override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
      val stageId = taskEnd.stageId
      val stageAttemptId = taskEnd.stageAttemptId
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      val taskIndex = taskEnd.taskInfo.index
      allocationManager.synchronized {
        if (stageAttemptToNumRunningTask.contains(stageAttempt)) {
          stageAttemptToNumRunningTask(stageAttempt) -= 1
          if (stageAttemptToNumRunningTask(stageAttempt) == 0) {
            stageAttemptToNumRunningTask -= stageAttempt
            removeStageFromResourceProfileIfUnused(stageAttempt)
          }
        }
        if (taskEnd.taskInfo.speculative) {
          stageAttemptToSpeculativeTaskIndices.get(stageAttempt).foreach {_.remove{taskIndex}}
          // If the previous task attempt succeeded first and it was the last task in a stage,
          // the stage may have been removed before handing this speculative TaskEnd event.
          if (stageAttemptToNumSpeculativeTasks.contains(stageAttempt)) {
            stageAttemptToNumSpeculativeTasks(stageAttempt) -= 1
          }
        }

        taskEnd.reason match {
          case Success | _: TaskKilled =>
          case _ =>
            if (!hasPendingTasks) {
              // If the task failed (not intentionally killed), we expect it to be resubmitted
              // later. To ensure we have enough resources to run the resubmitted task, we need to
              // mark the scheduler as backlogged again if it's not already marked as such
              // (SPARK-8366)
              allocationManager.onSchedulerBacklogged()
            }
            if (!taskEnd.taskInfo.speculative) {
              // If a non-speculative task is intentionally killed, it means the speculative task
              // has succeeded, and no further task of this task index will be resubmitted. In this
              // case, the task index is completed and we shouldn't remove it from
              // stageAttemptToTaskIndices. Otherwise, we will have a pending non-speculative task
              // for the task index (SPARK-30511)
              stageAttemptToTaskIndices.get(stageAttempt).foreach {_.remove(taskIndex)}
            }
        }
      }
    }

    override def onSpeculativeTaskSubmitted(speculativeTask: SparkListenerSpeculativeTaskSubmitted)
      : Unit = {
      val stageId = speculativeTask.stageId
      val stageAttemptId = speculativeTask.stageAttemptId
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      allocationManager.synchronized {
        stageAttemptToNumSpeculativeTasks(stageAttempt) =
          stageAttemptToNumSpeculativeTasks.getOrElse(stageAttempt, 0) + 1
        allocationManager.onSchedulerBacklogged()
      }
    }

    override def onUnschedulableTaskSetAdded(
        unschedulableTaskSetAdded: SparkListenerUnschedulableTaskSetAdded): Unit = {
      val stageId = unschedulableTaskSetAdded.stageId
      val stageAttemptId = unschedulableTaskSetAdded.stageAttemptId
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      allocationManager.synchronized {
        unschedulableTaskSets.add(stageAttempt)
        allocationManager.onSchedulerBacklogged()
      }
    }

    override def onUnschedulableTaskSetRemoved(
        unschedulableTaskSetRemoved: SparkListenerUnschedulableTaskSetRemoved): Unit = {
      val stageId = unschedulableTaskSetRemoved.stageId
      val stageAttemptId = unschedulableTaskSetRemoved.stageAttemptId
      val stageAttempt = StageAttempt(stageId, stageAttemptId)
      allocationManager.synchronized {
        // Clear unschedulableTaskSets since atleast one task becomes schedulable now
        unschedulableTaskSets.remove(stageAttempt)
        removeStageFromResourceProfileIfUnused(stageAttempt)
      }
    }

    def removeStageFromResourceProfileIfUnused(stageAttempt: StageAttempt): Unit = {
      if (!stageAttemptToNumRunningTask.contains(stageAttempt) &&
          !stageAttemptToNumTasks.contains(stageAttempt) &&
          !stageAttemptToNumSpeculativeTasks.contains(stageAttempt) &&
          !stageAttemptToTaskIndices.contains(stageAttempt) &&
          !stageAttemptToSpeculativeTaskIndices.contains(stageAttempt)
      ) {
        val rpForStage = resourceProfileIdToStageAttempt.filter { case (k, v) =>
          v.contains(stageAttempt)
        }.keys
        if (rpForStage.size == 1) {
          // be careful about the removal from here due to late tasks, make sure stage is
          // really complete and no tasks left
          resourceProfileIdToStageAttempt(rpForStage.head) -= stageAttempt
        } else {
          logWarning(s"Should have exactly one resource profile for stage $stageAttempt," +
              s" but have $rpForStage")
        }
      }
    }

    /**
     * An estimate of the total number of pending tasks remaining for currently running stages. Does
     * not account for tasks which may have failed and been resubmitted.
     *
     * Note: This is not thread-safe without the caller owning the `allocationManager` lock.
     */
    def pendingTasksPerResourceProfile(rpId: Int): Int = {
      val attempts = resourceProfileIdToStageAttempt.getOrElse(rpId, Set.empty).toSeq
      attempts.map(attempt => getPendingTaskSum(attempt)).sum
    }

    def hasPendingRegularTasks: Boolean = {
      val attemptSets = resourceProfileIdToStageAttempt.values
      attemptSets.exists(attempts => attempts.exists(getPendingTaskSum(_) > 0))
    }

    private def getPendingTaskSum(attempt: StageAttempt): Int = {
      val numTotalTasks = stageAttemptToNumTasks.getOrElse(attempt, 0)
      val numRunning = stageAttemptToTaskIndices.get(attempt).map(_.size).getOrElse(0)
      numTotalTasks - numRunning
    }

    def pendingSpeculativeTasksPerResourceProfile(rp: Int): Int = {
      val attempts = resourceProfileIdToStageAttempt.getOrElse(rp, Set.empty).toSeq
      attempts.map(attempt => getPendingSpeculativeTaskSum(attempt)).sum
    }

    def hasPendingSpeculativeTasks: Boolean = {
      val attemptSets = resourceProfileIdToStageAttempt.values
      attemptSets.exists { attempts =>
        attempts.exists(getPendingSpeculativeTaskSum(_) > 0)
      }
    }

    private def getPendingSpeculativeTaskSum(attempt: StageAttempt): Int = {
      val numTotalTasks = stageAttemptToNumSpeculativeTasks.getOrElse(attempt, 0)
      val numRunning = stageAttemptToSpeculativeTaskIndices.get(attempt).map(_.size).getOrElse(0)
      numTotalTasks - numRunning
    }

    /**
     * Currently we only know when a task set has an unschedulable task, we don't know
     * the exact number and since the allocation manager isn't tied closely with the scheduler,
     * we use the number of tasks sets that are unschedulable as a heuristic to add more executors.
     */
    def pendingUnschedulableTaskSetsPerResourceProfile(rp: Int): Int = {
      val attempts = resourceProfileIdToStageAttempt.getOrElse(rp, Set.empty).toSeq
      attempts.count(attempt => unschedulableTaskSets.contains(attempt))
    }

    def hasPendingTasks: Boolean = {
      hasPendingSpeculativeTasks || hasPendingRegularTasks
    }

    def totalRunningTasksPerResourceProfile(rp: Int): Int = {
      val attempts = resourceProfileIdToStageAttempt.getOrElse(rp, Set.empty).toSeq
      // attempts is a Set, change to Seq so we keep all values
      attempts.map { attempt =>
        stageAttemptToNumRunningTask.getOrElse(attempt, 0)
      }.sum
    }

    /**
     * Update the Executor placement hints (the number of tasks with locality preferences,
     * a map where each pair is a node and the number of tasks that would like to be scheduled
     * on that node).
     *
     * These hints are updated when stages arrive and complete, so are not up-to-date at task
     * granularity within stages.
     */
    def updateExecutorPlacementHints(): Unit = {
      val localityAwareTasksPerResourceProfileId = new mutable.HashMap[Int, Int]

      // ResourceProfile id => map[host, count]
      val rplocalityToCount = new mutable.HashMap[Int, mutable.HashMap[String, Int]]()
      stageAttemptToExecutorPlacementHints.values.foreach {
        case (numTasksPending, localities, rpId) =>
          val rpNumPending =
            localityAwareTasksPerResourceProfileId.getOrElse(rpId, 0)
          localityAwareTasksPerResourceProfileId(rpId) = rpNumPending + numTasksPending
          localities.foreach { case (hostname, count) =>
            val rpBasedHostToCount =
              rplocalityToCount.getOrElseUpdate(rpId, new mutable.HashMap[String, Int])
            val newUpdated = rpBasedHostToCount.getOrElse(hostname, 0) + count
            rpBasedHostToCount(hostname) = newUpdated
          }
      }

      allocationManager.numLocalityAwareTasksPerResourceProfileId =
        localityAwareTasksPerResourceProfileId
      allocationManager.rpIdToHostToLocalTaskCount =
        rplocalityToCount.map { case (k, v) => (k, v.toMap)}.toMap
    }
  }
}

/**
 * Metric source for ExecutorAllocationManager to expose its internal executor allocation
 * status to MetricsSystem.
 * Note: These metrics heavily rely on the internal implementation of
 * ExecutorAllocationManager, metrics or value of metrics will be changed when internal
 * implementation is changed, so these metrics are not stable across Spark version.
 */
private[spark] class ExecutorAllocationManagerSource(
    executorAllocationManager: ExecutorAllocationManager) extends Source {
  val sourceName = "ExecutorAllocationManager"
  val metricRegistry = new MetricRegistry()

  private def registerGauge[T](name: String, value: => T, defaultValue: T): Unit = {
    metricRegistry.register(MetricRegistry.name("executors", name), new Gauge[T] {
      override def getValue: T = synchronized { Option(value).getOrElse(defaultValue) }
    })
  }

  private def getCounter(name: String): Counter = {
    metricRegistry.counter(MetricRegistry.name("executors", name))
  }

  val gracefullyDecommissioned: Counter = getCounter("numberExecutorsGracefullyDecommissioned")
  val decommissionUnfinished: Counter = getCounter("numberExecutorsDecommissionUnfinished")
  val driverKilled: Counter = getCounter("numberExecutorsKilledByDriver")
  val exitedUnexpectedly: Counter = getCounter("numberExecutorsExitedUnexpectedly")

  // The metrics are going to return the sum for all the different ResourceProfiles.
  registerGauge("numberExecutorsToAdd",
    executorAllocationManager.numExecutorsToAddPerResourceProfileId.values.sum, 0)
  registerGauge("numberExecutorsPendingToRemove",
    executorAllocationManager.executorMonitor.pendingRemovalCount, 0)
  registerGauge("numberAllExecutors",
    executorAllocationManager.executorMonitor.executorCount, 0)
  registerGauge("numberTargetExecutors",
    executorAllocationManager.numExecutorsTargetPerResourceProfileId.values.sum, 0)
  registerGauge("numberMaxNeededExecutors",
    executorAllocationManager.numExecutorsTargetPerResourceProfileId.keys
      .map(executorAllocationManager.maxNumExecutorsNeededPerResourceProfile(_)).sum, 0)
  registerGauge("numberDecommissioningExecutors",
    executorAllocationManager.executorMonitor.decommissioningCount, 0)
}

private object ExecutorAllocationManager {
  val NOT_SET = Long.MaxValue

  // helper case class for requesting executors, here to be visible for testing
  private[spark] case class TargetNumUpdates(delta: Int, oldNumExecutorsTarget: Int)

}

相关信息

spark 源码目录

相关文章

spark Aggregator 源码

spark BarrierCoordinator 源码

spark BarrierTaskContext 源码

spark BarrierTaskInfo 源码

spark ContextAwareIterator 源码

spark ContextCleaner 源码

spark Dependency 源码

spark ErrorClassesJSONReader 源码

spark ExecutorAllocationClient 源码

spark FutureAction 源码

0  赞