spark RawTextHelper 源码

  • 2022-10-20
  • 浏览 (884)

spark RawTextHelper 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/util/RawTextHelper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.util

import org.apache.spark.SparkContext
import org.apache.spark.util.collection.OpenHashMap

private[streaming]
object RawTextHelper {

  /**
   * Splits lines and counts the words.
   */
  def splitAndCountPartitions(iter: Iterator[String]): Iterator[(String, Long)] = {
    val map = new OpenHashMap[String, Long]
    var i = 0
    var j = 0
    while (iter.hasNext) {
      val s = iter.next()
      i = 0
      while (i < s.length) {
        j = i
        while (j < s.length && s.charAt(j) != ' ') {
          j += 1
        }
        if (j > i) {
          val w = s.substring(i, j)
          map.changeValue(w, 1L, _ + 1L)
        }
        i = j
        while (i < s.length && s.charAt(i) == ' ') {
          i += 1
        }
      }
      map.iterator.map {
        case (k, v) => (k, v)
      }
    }
    map.iterator.map{case (k, v) => (k, v)}
  }

  /**
   * Gets the top k words in terms of word counts. Assumes that each word exists only once
   * in the `data` iterator (that is, the counts have been reduced).
   */
  def topK(data: Iterator[(String, Long)], k: Int): Iterator[(String, Long)] = {
    val taken = new Array[(String, Long)](k)

    var i = 0
    var len = 0
    var value: (String, Long) = null
    var swap: (String, Long) = null
    var count = 0

    while(data.hasNext) {
      value = data.next()
      if (value != null) {
        count += 1
        if (len == 0) {
          taken(0) = value
          len = 1
        } else if (len < k || value._2 > taken(len - 1)._2) {
          if (len < k) {
            len += 1
          }
          taken(len - 1) = value
          i = len - 1
          while(i > 0 && taken(i - 1)._2 < taken(i)._2) {
            swap = taken(i)
            taken(i) = taken(i-1)
            taken(i - 1) = swap
            i -= 1
          }
        }
      }
    }
    taken.iterator
  }

  /**
   * Warms up the SparkContext in master and executor by running tasks to force JIT kick in
   * before real workload starts.
   */
  def warmUp(sc: SparkContext): Unit = {
    for (i <- 0 to 1) {
      sc.parallelize(1 to 200000, 1000)
        .map(_ % 1331).map(_.toString)
        .mapPartitions(splitAndCountPartitions).reduceByKey(_ + _, 10)
        .count()
    }
  }

  def add(v1: Long, v2: Long): Long = {
    v1 + v2
  }

  def subtract(v1: Long, v2: Long): Long = {
    v1 - v2
  }

  def max(v1: Long, v2: Long): Long = math.max(v1, v2)
}

相关信息

spark 源码目录

相关文章

spark BatchedWriteAheadLog 源码

spark FileBasedWriteAheadLog 源码

spark FileBasedWriteAheadLogRandomReader 源码

spark FileBasedWriteAheadLogReader 源码

spark FileBasedWriteAheadLogSegment 源码

spark FileBasedWriteAheadLogWriter 源码

spark HdfsUtils 源码

spark RateLimitedOutputStream 源码

spark RawTextSender 源码

spark RecurringTimer 源码

0  赞