spark RawTextHelper 源码
spark RawTextHelper 代码
文件路径:/streaming/src/main/scala/org/apache/spark/streaming/util/RawTextHelper.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.streaming.util
import org.apache.spark.SparkContext
import org.apache.spark.util.collection.OpenHashMap
private[streaming]
object RawTextHelper {
/**
* Splits lines and counts the words.
*/
def splitAndCountPartitions(iter: Iterator[String]): Iterator[(String, Long)] = {
val map = new OpenHashMap[String, Long]
var i = 0
var j = 0
while (iter.hasNext) {
val s = iter.next()
i = 0
while (i < s.length) {
j = i
while (j < s.length && s.charAt(j) != ' ') {
j += 1
}
if (j > i) {
val w = s.substring(i, j)
map.changeValue(w, 1L, _ + 1L)
}
i = j
while (i < s.length && s.charAt(i) == ' ') {
i += 1
}
}
map.iterator.map {
case (k, v) => (k, v)
}
}
map.iterator.map{case (k, v) => (k, v)}
}
/**
* Gets the top k words in terms of word counts. Assumes that each word exists only once
* in the `data` iterator (that is, the counts have been reduced).
*/
def topK(data: Iterator[(String, Long)], k: Int): Iterator[(String, Long)] = {
val taken = new Array[(String, Long)](k)
var i = 0
var len = 0
var value: (String, Long) = null
var swap: (String, Long) = null
var count = 0
while(data.hasNext) {
value = data.next()
if (value != null) {
count += 1
if (len == 0) {
taken(0) = value
len = 1
} else if (len < k || value._2 > taken(len - 1)._2) {
if (len < k) {
len += 1
}
taken(len - 1) = value
i = len - 1
while(i > 0 && taken(i - 1)._2 < taken(i)._2) {
swap = taken(i)
taken(i) = taken(i-1)
taken(i - 1) = swap
i -= 1
}
}
}
}
taken.iterator
}
/**
* Warms up the SparkContext in master and executor by running tasks to force JIT kick in
* before real workload starts.
*/
def warmUp(sc: SparkContext): Unit = {
for (i <- 0 to 1) {
sc.parallelize(1 to 200000, 1000)
.map(_ % 1331).map(_.toString)
.mapPartitions(splitAndCountPartitions).reduceByKey(_ + _, 10)
.count()
}
}
def add(v1: Long, v2: Long): Long = {
v1 + v2
}
def subtract(v1: Long, v2: Long): Long = {
v1 - v2
}
def max(v1: Long, v2: Long): Long = math.max(v1, v2)
}
相关信息
相关文章
spark FileBasedWriteAheadLog 源码
spark FileBasedWriteAheadLogRandomReader 源码
spark FileBasedWriteAheadLogReader 源码
spark FileBasedWriteAheadLogSegment 源码
spark FileBasedWriteAheadLogWriter 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦