spark NettyUtils 源码

  • 2022-10-20
  • 浏览 (389)

spark NettyUtils 代码

文件路径:/common/network-common/src/main/java/org/apache/spark/network/util/NettyUtils.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.network.util;

import java.util.concurrent.ThreadFactory;

import io.netty.buffer.PooledByteBufAllocator;
import io.netty.channel.Channel;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.ServerChannel;
import io.netty.channel.epoll.EpollEventLoopGroup;
import io.netty.channel.epoll.EpollServerSocketChannel;
import io.netty.channel.epoll.EpollSocketChannel;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.util.concurrent.DefaultThreadFactory;
import io.netty.util.internal.PlatformDependent;

/**
 * Utilities for creating various Netty constructs based on whether we're using EPOLL or NIO.
 */
public class NettyUtils {

  /**
   * Specifies an upper bound on the number of Netty threads that Spark requires by default.
   * In practice, only 2-4 cores should be required to transfer roughly 10 Gb/s, and each core
   * that we use will have an initial overhead of roughly 32 MB of off-heap memory, which comes
   * at a premium.
   *
   * Thus, this value should still retain maximum throughput and reduce wasted off-heap memory
   * allocation. It can be overridden by setting the number of serverThreads and clientThreads
   * manually in Spark's configuration.
   */
  private static int MAX_DEFAULT_NETTY_THREADS = 8;

  private static final PooledByteBufAllocator[] _sharedPooledByteBufAllocator =
      new PooledByteBufAllocator[2];

  public static long freeDirectMemory() {
    return PlatformDependent.maxDirectMemory() - PlatformDependent.usedDirectMemory();
  }

  /** Creates a new ThreadFactory which prefixes each thread with the given name. */
  public static ThreadFactory createThreadFactory(String threadPoolPrefix) {
    return new DefaultThreadFactory(threadPoolPrefix, true);
  }

  /** Creates a Netty EventLoopGroup based on the IOMode. */
  public static EventLoopGroup createEventLoop(IOMode mode, int numThreads, String threadPrefix) {
    ThreadFactory threadFactory = createThreadFactory(threadPrefix);

    switch (mode) {
      case NIO:
        return new NioEventLoopGroup(numThreads, threadFactory);
      case EPOLL:
        return new EpollEventLoopGroup(numThreads, threadFactory);
      default:
        throw new IllegalArgumentException("Unknown io mode: " + mode);
    }
  }

  /** Returns the correct (client) SocketChannel class based on IOMode. */
  public static Class<? extends Channel> getClientChannelClass(IOMode mode) {
    switch (mode) {
      case NIO:
        return NioSocketChannel.class;
      case EPOLL:
        return EpollSocketChannel.class;
      default:
        throw new IllegalArgumentException("Unknown io mode: " + mode);
    }
  }

  /** Returns the correct ServerSocketChannel class based on IOMode. */
  public static Class<? extends ServerChannel> getServerChannelClass(IOMode mode) {
    switch (mode) {
      case NIO:
        return NioServerSocketChannel.class;
      case EPOLL:
        return EpollServerSocketChannel.class;
      default:
        throw new IllegalArgumentException("Unknown io mode: " + mode);
    }
  }

  /**
   * Creates a LengthFieldBasedFrameDecoder where the first 8 bytes are the length of the frame.
   * This is used before all decoders.
   */
  public static TransportFrameDecoder createFrameDecoder() {
    return new TransportFrameDecoder();
  }

  /** Returns the remote address on the channel or "&lt;unknown remote&gt;" if none exists. */
  public static String getRemoteAddress(Channel channel) {
    if (channel != null && channel.remoteAddress() != null) {
      return channel.remoteAddress().toString();
    }
    return "<unknown remote>";
  }

  /**
   * Returns the default number of threads for both the Netty client and server thread pools.
   * If numUsableCores is 0, we will use Runtime get an approximate number of available cores.
   */
  public static int defaultNumThreads(int numUsableCores) {
    final int availableCores;
    if (numUsableCores > 0) {
      availableCores = numUsableCores;
    } else {
      availableCores = Runtime.getRuntime().availableProcessors();
    }
    return Math.min(availableCores, MAX_DEFAULT_NETTY_THREADS);
  }

  /**
   * Returns the lazily created shared pooled ByteBuf allocator for the specified allowCache
   * parameter value.
   */
  public static synchronized PooledByteBufAllocator getSharedPooledByteBufAllocator(
      boolean allowDirectBufs,
      boolean allowCache) {
    final int index = allowCache ? 0 : 1;
    if (_sharedPooledByteBufAllocator[index] == null) {
      _sharedPooledByteBufAllocator[index] =
        createPooledByteBufAllocator(
          allowDirectBufs,
          allowCache,
          defaultNumThreads(0));
    }
    return _sharedPooledByteBufAllocator[index];
  }

  /**
   * Create a pooled ByteBuf allocator but disables the thread-local cache. Thread-local caches
   * are disabled for TransportClients because the ByteBufs are allocated by the event loop thread,
   * but released by the executor thread rather than the event loop thread. Those thread-local
   * caches actually delay the recycling of buffers, leading to larger memory usage.
   */
  public static PooledByteBufAllocator createPooledByteBufAllocator(
      boolean allowDirectBufs,
      boolean allowCache,
      int numCores) {
    if (numCores == 0) {
      numCores = Runtime.getRuntime().availableProcessors();
    }
    // SPARK-38541: After upgrade to Netty 4.1.75, there are 2 behavior changes of this method:
    // 1. `PooledByteBufAllocator.defaultMaxOrder()` change from 11 to 9, this means the default
    //    `PooledByteBufAllocator` chunk size reduce from 16 MiB to 4 MiB, we need use
    //    `-Dio.netty.allocator.maxOrder=11` to keep the chunk size of PooledByteBufAllocator
    //    to 16m.
    // 2. `PooledByteBufAllocator.defaultUseCacheForAllThreads()` change from true to false, we need
    //    to use `-Dio.netty.allocator.useCacheForAllThreads=true` to
    //    enable `useCacheForAllThreads`.
    return new PooledByteBufAllocator(
      allowDirectBufs && PlatformDependent.directBufferPreferred(),
      Math.min(PooledByteBufAllocator.defaultNumHeapArena(), numCores),
      Math.min(PooledByteBufAllocator.defaultNumDirectArena(), allowDirectBufs ? numCores : 0),
      PooledByteBufAllocator.defaultPageSize(),
      PooledByteBufAllocator.defaultMaxOrder(),
      allowCache ? PooledByteBufAllocator.defaultSmallCacheSize() : 0,
      allowCache ? PooledByteBufAllocator.defaultNormalCacheSize() : 0,
      allowCache ? PooledByteBufAllocator.defaultUseCacheForAllThreads() : false
    );
  }
}

相关信息

spark 源码目录

相关文章

spark AbstractFileRegion 源码

spark ByteArrayReadableChannel 源码

spark ByteArrayWritableChannel 源码

spark ByteUnit 源码

spark ConfigProvider 源码

spark CryptoUtils 源码

spark DBProvider 源码

spark IOMode 源码

spark JavaUtils 源码

spark LevelDBProvider 源码

0  赞