hadoop PipesMapRunner 源码
haddop PipesMapRunner 代码
文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapred/pipes/PipesMapRunner.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred.pipes;
import java.io.IOException;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapRunner;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SkipBadRecords;
import org.apache.hadoop.mapreduce.MRJobConfig;
/**
* An adaptor to run a C++ mapper.
*/
class PipesMapRunner<K1 extends WritableComparable, V1 extends Writable,
K2 extends WritableComparable, V2 extends Writable>
extends MapRunner<K1, V1, K2, V2> {
private JobConf job;
/**
* Get the new configuration.
* @param job the job's configuration
*/
public void configure(JobConf job) {
this.job = job;
//disable the auto increment of the counter. For pipes, no of processed
//records could be different(equal or less) than the no of records input.
SkipBadRecords.setAutoIncrMapperProcCount(job, false);
}
/**
* Run the map task.
* @param input the set of inputs
* @param output the object to collect the outputs of the map
* @param reporter the object to update with status
*/
@SuppressWarnings("unchecked")
public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,
Reporter reporter) throws IOException {
Application<K1, V1, K2, V2> application = null;
try {
RecordReader<FloatWritable, NullWritable> fakeInput =
(!Submitter.getIsJavaRecordReader(job) &&
!Submitter.getIsJavaMapper(job)) ?
(RecordReader<FloatWritable, NullWritable>) input : null;
application = new Application<K1, V1, K2, V2>(job, fakeInput, output,
reporter,
(Class<? extends K2>) job.getOutputKeyClass(),
(Class<? extends V2>) job.getOutputValueClass());
} catch (InterruptedException ie) {
throw new RuntimeException("interrupted", ie);
}
DownwardProtocol<K1, V1> downlink = application.getDownlink();
boolean isJavaInput = Submitter.getIsJavaRecordReader(job);
downlink.runMap(reporter.getInputSplit(),
job.getNumReduceTasks(), isJavaInput);
boolean skipping = job.getBoolean(MRJobConfig.SKIP_RECORDS, false);
try {
if (isJavaInput) {
// allocate key & value instances that are re-used for all entries
K1 key = input.createKey();
V1 value = input.createValue();
downlink.setInputTypes(key.getClass().getName(),
value.getClass().getName());
while (input.next(key, value)) {
// map pair to output
downlink.mapItem(key, value);
if(skipping) {
//flush the streams on every record input if running in skip mode
//so that we don't buffer other records surrounding a bad record.
downlink.flush();
}
}
downlink.endOfInput();
}
application.waitForFinish();
} catch (Throwable t) {
application.abort(t);
} finally {
application.cleanup();
}
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦