spark PeriodicRDDCheckpointer 源码

  • 2022-10-20
  • 浏览 (367)

spark PeriodicRDDCheckpointer 代码

文件路径:/core/src/main/scala/org/apache/spark/rdd/util/PeriodicRDDCheckpointer.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.rdd.util

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.PeriodicCheckpointer


/**
 * This class helps with persisting and checkpointing RDDs.
 * Specifically, it automatically handles persisting and (optionally) checkpointing, as well as
 * unpersisting and removing checkpoint files.
 *
 * Users should call update() when a new RDD has been created,
 * before the RDD has been materialized.  After updating [[PeriodicRDDCheckpointer]], users are
 * responsible for materializing the RDD to ensure that persisting and checkpointing actually
 * occur.
 *
 * When update() is called, this does the following:
 *  - Persist new RDD (if not yet persisted), and put in queue of persisted RDDs.
 *  - Unpersist RDDs from queue until there are at most 3 persisted RDDs.
 *  - If using checkpointing and the checkpoint interval has been reached,
 *     - Checkpoint the new RDD, and put in a queue of checkpointed RDDs.
 *     - Remove older checkpoints.
 *
 * WARNINGS:
 *  - This class should NOT be copied (since copies may conflict on which RDDs should be
 *    checkpointed).
 *  - This class removes checkpoint files once later RDDs have been checkpointed.
 *    However, references to the older RDDs will still return isCheckpointed = true.
 *
 * Example usage:
 * {{{
 *  val (rdd1, rdd2, rdd3, ...) = ...
 *  val cp = new PeriodicRDDCheckpointer(2, sc)
 *  cp.update(rdd1)
 *  rdd1.count();
 *  // persisted: rdd1
 *  cp.update(rdd2)
 *  rdd2.count();
 *  // persisted: rdd1, rdd2
 *  // checkpointed: rdd2
 *  cp.update(rdd3)
 *  rdd3.count();
 *  // persisted: rdd1, rdd2, rdd3
 *  // checkpointed: rdd2
 *  cp.update(rdd4)
 *  rdd4.count();
 *  // persisted: rdd2, rdd3, rdd4
 *  // checkpointed: rdd4
 *  cp.update(rdd5)
 *  rdd5.count();
 *  // persisted: rdd3, rdd4, rdd5
 *  // checkpointed: rdd4
 * }}}
 *
 * @param checkpointInterval  RDDs will be checkpointed at this interval
 * @tparam T  RDD element type
 */
private[spark] class PeriodicRDDCheckpointer[T](
    checkpointInterval: Int,
    sc: SparkContext,
    storageLevel: StorageLevel)
  extends PeriodicCheckpointer[RDD[T]](checkpointInterval, sc) {
  require(storageLevel != StorageLevel.NONE)

  def this(checkpointInterval: Int, sc: SparkContext) =
    this(checkpointInterval, sc, StorageLevel.MEMORY_ONLY)

  override protected def checkpoint(data: RDD[T]): Unit = data.checkpoint()

  override protected def isCheckpointed(data: RDD[T]): Boolean = data.isCheckpointed

  override protected def persist(data: RDD[T]): Unit = {
    if (data.getStorageLevel == StorageLevel.NONE) {
      data.persist(storageLevel)
    }
  }

  override protected def unpersist(data: RDD[T]): Unit = data.unpersist()

  override protected def getCheckpointFiles(data: RDD[T]): Iterable[String] = {
    data.getCheckpointFile.map(x => x)
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞