superset schemas 源码
superset schemas 代码
文件路径:/superset/charts/schemas.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=too-many-lines
from __future__ import annotations
import inspect
from typing import Any, Dict, Optional, TYPE_CHECKING
from flask_babel import gettext as _
from marshmallow import EXCLUDE, fields, post_load, Schema, validate
from marshmallow.validate import Length, Range
from marshmallow_enum import EnumField
from superset import app
from superset.common.chart_data import ChartDataResultFormat, ChartDataResultType
from superset.db_engine_specs.base import builtin_time_grains
from superset.utils import pandas_postprocessing, schema as utils
from superset.utils.core import (
AnnotationType,
DatasourceType,
FilterOperator,
PostProcessingBoxplotWhiskerType,
PostProcessingContributionOrientation,
)
if TYPE_CHECKING:
from superset.common.query_context import QueryContext
from superset.common.query_context_factory import QueryContextFactory
config = app.config
#
# RISON/JSON schemas for query parameters
#
get_delete_ids_schema = {"type": "array", "items": {"type": "integer"}}
width_height_schema = {
"type": "array",
"items": {"type": "integer"},
}
thumbnail_query_schema = {
"type": "object",
"properties": {"force": {"type": "boolean"}},
}
screenshot_query_schema = {
"type": "object",
"properties": {
"force": {"type": "boolean"},
"window_size": width_height_schema,
"thumb_size": width_height_schema,
},
}
get_export_ids_schema = {"type": "array", "items": {"type": "integer"}}
get_fav_star_ids_schema = {"type": "array", "items": {"type": "integer"}}
#
# Column schema descriptions
#
slice_name_description = "The name of the chart."
description_description = "A description of the chart propose."
viz_type_description = "The type of chart visualization used."
owners_description = (
"Owner are users ids allowed to delete or change this chart. "
"If left empty you will be one of the owners of the chart."
)
params_description = (
"Parameters are generated dynamically when clicking the save "
"or overwrite button in the explore view. "
"This JSON object for power users who may want to alter specific parameters."
)
query_context_description = (
"The query context represents the queries that need to run "
"in order to generate the data the visualization, and in what "
"format the data should be returned."
)
query_context_generation_description = (
"The query context generation represents whether the query_context"
"is user generated or not so that it does not update user modfied"
"state."
)
cache_timeout_description = (
"Duration (in seconds) of the caching timeout "
"for this chart. Note this defaults to the datasource/table"
" timeout if undefined."
)
datasource_id_description = (
"The id of the dataset/datasource this new chart will use. "
"A complete datasource identification needs `datasouce_id` "
"and `datasource_type`."
)
datasource_uid_description = (
"The uid of the dataset/datasource this new chart will use. "
"A complete datasource identification needs `datasouce_uid` "
)
datasource_type_description = (
"The type of dataset/datasource identified on `datasource_id`."
)
datasource_name_description = "The datasource name."
dashboards_description = "A list of dashboards to include this new chart to."
changed_on_description = "The ISO date that the chart was last changed."
slice_url_description = "The URL of the chart."
form_data_description = (
"Form data from the Explore controls used to form the chart's data query."
)
description_markeddown_description = "Sanitized HTML version of the chart description."
owners_name_description = "Name of an owner of the chart."
certified_by_description = "Person or group that has certified this chart"
certification_details_description = "Details of the certification"
#
# OpenAPI method specification overrides
#
openapi_spec_methods_override = {
"get": {"get": {"description": "Get a chart detail information."}},
"get_list": {
"get": {
"description": "Get a list of charts, use Rison or JSON query "
"parameters for filtering, sorting, pagination and "
" for selecting specific columns and metadata.",
}
},
"info": {
"get": {
"description": "Several metadata information about chart API endpoints.",
}
},
"related": {
"get": {
"description": "Get a list of all possible owners for a chart. "
"Use `owners` has the `column_name` parameter"
}
},
}
class ChartEntityResponseSchema(Schema):
"""
Schema for a chart object
"""
slice_id = fields.Integer()
slice_name = fields.String(description=slice_name_description)
cache_timeout = fields.Integer(description=cache_timeout_description)
changed_on = fields.String(description=changed_on_description)
description = fields.String(description=description_description)
description_markeddown = fields.String(
description=description_markeddown_description
)
form_data = fields.Dict(description=form_data_description)
slice_url = fields.String(description=slice_url_description)
certified_by = fields.String(description=certified_by_description)
certification_details = fields.String(description=certification_details_description)
class ChartPostSchema(Schema):
"""
Schema to add a new chart.
"""
slice_name = fields.String(
description=slice_name_description, required=True, validate=Length(1, 250)
)
description = fields.String(description=description_description, allow_none=True)
viz_type = fields.String(
description=viz_type_description,
validate=Length(0, 250),
example=["bar", "line_multi", "area", "table"],
)
owners = fields.List(fields.Integer(description=owners_description))
params = fields.String(
description=params_description, allow_none=True, validate=utils.validate_json
)
query_context = fields.String(
description=query_context_description,
allow_none=True,
validate=utils.validate_json,
)
query_context_generation = fields.Boolean(
description=query_context_generation_description, allow_none=True
)
cache_timeout = fields.Integer(
description=cache_timeout_description, allow_none=True
)
datasource_id = fields.Integer(description=datasource_id_description, required=True)
datasource_type = fields.String(
description=datasource_type_description,
validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
required=True,
)
datasource_name = fields.String(
description=datasource_name_description, allow_none=True
)
dashboards = fields.List(fields.Integer(description=dashboards_description))
certified_by = fields.String(description=certified_by_description, allow_none=True)
certification_details = fields.String(
description=certification_details_description, allow_none=True
)
is_managed_externally = fields.Boolean(allow_none=True, default=False)
external_url = fields.String(allow_none=True)
class ChartPutSchema(Schema):
"""
Schema to update or patch a chart
"""
slice_name = fields.String(
description=slice_name_description, allow_none=True, validate=Length(0, 250)
)
description = fields.String(description=description_description, allow_none=True)
viz_type = fields.String(
description=viz_type_description,
allow_none=True,
validate=Length(0, 250),
example=["bar", "line_multi", "area", "table"],
)
owners = fields.List(fields.Integer(description=owners_description))
params = fields.String(description=params_description, allow_none=True)
query_context = fields.String(
description=query_context_description, allow_none=True
)
query_context_generation = fields.Boolean(
description=query_context_generation_description, allow_none=True
)
cache_timeout = fields.Integer(
description=cache_timeout_description, allow_none=True
)
datasource_id = fields.Integer(
description=datasource_id_description, allow_none=True
)
datasource_type = fields.String(
description=datasource_type_description,
validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
allow_none=True,
)
dashboards = fields.List(fields.Integer(description=dashboards_description))
certified_by = fields.String(description=certified_by_description, allow_none=True)
certification_details = fields.String(
description=certification_details_description, allow_none=True
)
is_managed_externally = fields.Boolean(allow_none=True, default=False)
external_url = fields.String(allow_none=True)
class ChartGetDatasourceObjectDataResponseSchema(Schema):
datasource_id = fields.Integer(description="The datasource identifier")
datasource_type = fields.Integer(description="The datasource type")
class ChartGetDatasourceObjectResponseSchema(Schema):
label = fields.String(description="The name of the datasource")
value = fields.Nested(ChartGetDatasourceObjectDataResponseSchema)
class ChartGetDatasourceResponseSchema(Schema):
count = fields.Integer(description="The total number of datasources")
result = fields.Nested(ChartGetDatasourceObjectResponseSchema)
class ChartCacheScreenshotResponseSchema(Schema):
cache_key = fields.String(description="The cache key")
chart_url = fields.String(description="The url to render the chart")
image_url = fields.String(description="The url to fetch the screenshot")
class ChartDataColumnSchema(Schema):
column_name = fields.String(
description="The name of the target column",
example="mycol",
)
type = fields.String(description="Type of target column", example="BIGINT")
class ChartDataAdhocMetricSchema(Schema):
"""
Ad-hoc metrics are used to define metrics outside the datasource.
"""
expressionType = fields.String(
description="Simple or SQL metric",
required=True,
validate=validate.OneOf(choices=("SIMPLE", "SQL")),
example="SQL",
)
aggregate = fields.String(
description="Aggregation operator. Only required for simple expression types.",
validate=validate.OneOf(
choices=("AVG", "COUNT", "COUNT_DISTINCT", "MAX", "MIN", "SUM")
),
)
column = fields.Nested(ChartDataColumnSchema)
sqlExpression = fields.String(
description="The metric as defined by a SQL aggregate expression. "
"Only required for SQL expression type.",
example="SUM(weight * observations) / SUM(weight)",
)
label = fields.String(
description="Label for the metric. Is automatically generated unless "
"hasCustomLabel is true, in which case label must be defined.",
example="Weighted observations",
)
hasCustomLabel = fields.Boolean(
description="When false, the label will be automatically generated based on "
"the aggregate expression. When true, a custom label has to be "
"specified.",
example=True,
)
optionName = fields.String(
description="Unique identifier. Can be any string value, as long as all "
"metrics have a unique identifier. If undefined, a random name "
"will be generated.",
example="metric_aec60732-fac0-4b17-b736-93f1a5c93e30",
)
timeGrain = fields.String(
description="Optional time grain for temporal filters",
example="PT1M",
)
isExtra = fields.Boolean(
description="Indicates if the filter has been added by a filter component as "
"opposed to being a part of the original query."
)
class ChartDataAggregateConfigField(fields.Dict):
def __init__(self) -> None:
super().__init__(
description="The keys are the name of the aggregate column to be created, "
"and the values specify the details of how to apply the "
"aggregation. If an operator requires additional options, "
"these can be passed here to be unpacked in the operator call. The "
"following numpy operators are supported: average, argmin, argmax, cumsum, "
"cumprod, max, mean, median, nansum, nanmin, nanmax, nanmean, nanmedian, "
"min, percentile, prod, product, std, sum, var. Any options required by "
"the operator can be passed to the `options` object.\n"
"\n"
"In the example, a new column `first_quantile` is created based on values "
"in the column `my_col` using the `percentile` operator with "
"the `q=0.25` parameter.",
example={
"first_quantile": {
"operator": "percentile",
"column": "my_col",
"options": {"q": 0.25},
}
},
)
class ChartDataPostProcessingOperationOptionsSchema(Schema):
pass
class ChartDataAggregateOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Aggregate operation config.
"""
groupby = (
fields.List(
fields.String(
allow_none=False,
description="Columns by which to group by",
),
minLength=1,
required=True,
),
)
aggregates = ChartDataAggregateConfigField()
class ChartDataRollingOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Rolling operation config.
"""
columns = (
fields.Dict(
description="columns on which to perform rolling, mapping source column to "
"target column. For instance, `{'y': 'y'}` will replace the "
"column `y` with the rolling value in `y`, while `{'y': 'y2'}` "
"will add a column `y2` based on rolling values calculated "
"from `y`, leaving the original column `y` unchanged.",
example={"weekly_rolling_sales": "sales"},
),
)
rolling_type = fields.String(
description="Type of rolling window. Any numpy function will work.",
validate=validate.OneOf(
choices=(
"average",
"argmin",
"argmax",
"cumsum",
"cumprod",
"max",
"mean",
"median",
"nansum",
"nanmin",
"nanmax",
"nanmean",
"nanmedian",
"nanpercentile",
"min",
"percentile",
"prod",
"product",
"std",
"sum",
"var",
)
),
required=True,
example="percentile",
)
window = fields.Integer(
description="Size of the rolling window in days.",
required=True,
example=7,
)
rolling_type_options = fields.Dict(
desctiption="Optional options to pass to rolling method. Needed for "
"e.g. quantile operation.",
example={},
)
center = fields.Boolean(
description="Should the label be at the center of the window. Default: `false`",
example=False,
)
win_type = fields.String(
description="Type of window function. See "
"[SciPy window functions](https://docs.scipy.org/doc/scipy/reference"
"/signal.windows.html#module-scipy.signal.windows) "
"for more details. Some window functions require passing "
"additional parameters to `rolling_type_options`. For instance, "
"to use `gaussian`, the parameter `std` needs to be provided.",
validate=validate.OneOf(
choices=(
"boxcar",
"triang",
"blackman",
"hamming",
"bartlett",
"parzen",
"bohman",
"blackmanharris",
"nuttall",
"barthann",
"kaiser",
"gaussian",
"general_gaussian",
"slepian",
"exponential",
)
),
)
min_periods = fields.Integer(
description="The minimum amount of periods required for a row to be included "
"in the result set.",
example=7,
)
class ChartDataSelectOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Sort operation config.
"""
columns = fields.List(
fields.String(),
description="Columns which to select from the input data, in the desired "
"order. If columns are renamed, the original column name should be "
"referenced here.",
example=["country", "gender", "age"],
)
exclude = fields.List(
fields.String(),
description="Columns to exclude from selection.",
example=["my_temp_column"],
)
rename = fields.List(
fields.Dict(),
description="columns which to rename, mapping source column to target column. "
"For instance, `{'y': 'y2'}` will rename the column `y` to `y2`.",
example=[{"age": "average_age"}],
)
class ChartDataSortOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Sort operation config.
"""
columns = fields.Dict(
description="columns by by which to sort. The key specifies the column name, "
"value specifies if sorting in ascending order.",
example={"country": True, "gender": False},
required=True,
)
aggregates = ChartDataAggregateConfigField()
class ChartDataContributionOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Contribution operation config.
"""
orientation = fields.String(
description="Should cell values be calculated across the row or column.",
required=True,
validate=validate.OneOf(
choices=[val.value for val in PostProcessingContributionOrientation]
),
example="row",
)
class ChartDataProphetOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Prophet operation config.
"""
time_grain = fields.String(
description="Time grain used to specify time period increments in prediction. "
"Supports [ISO 8601](https://en.wikipedia.org/wiki/ISO_8601#Durations) "
"durations.",
validate=validate.OneOf(
choices=[
i
for i in {**builtin_time_grains, **config["TIME_GRAIN_ADDONS"]}.keys()
if i
]
),
example="P1D",
required=True,
)
periods = fields.Integer(
descrption="Time periods (in units of `time_grain`) to predict into the future",
min=0,
example=7,
required=True,
)
confidence_interval = fields.Float(
description="Width of predicted confidence interval",
validate=[
Range(
min=0,
max=1,
min_inclusive=False,
max_inclusive=False,
error=_("`confidence_interval` must be between 0 and 1 (exclusive)"),
)
],
example=0.8,
required=True,
)
yearly_seasonality = fields.Raw(
# TODO: add correct union type once supported by Marshmallow
description="Should yearly seasonality be applied. "
"An integer value will specify Fourier order of seasonality, `None` will "
"automatically detect seasonality.",
example=False,
)
weekly_seasonality = fields.Raw(
# TODO: add correct union type once supported by Marshmallow
description="Should weekly seasonality be applied. "
"An integer value will specify Fourier order of seasonality, `None` will "
"automatically detect seasonality.",
example=False,
)
monthly_seasonality = fields.Raw(
# TODO: add correct union type once supported by Marshmallow
description="Should monthly seasonality be applied. "
"An integer value will specify Fourier order of seasonality, `None` will "
"automatically detect seasonality.",
example=False,
)
class ChartDataBoxplotOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Boxplot operation config.
"""
groupby = fields.List(
fields.String(
description="Columns by which to group the query.",
),
allow_none=True,
)
metrics = fields.List(
fields.Raw(),
description="Aggregate expressions. Metrics can be passed as both "
"references to datasource metrics (strings), or ad-hoc metrics"
"which are defined only within the query object. See "
"`ChartDataAdhocMetricSchema` for the structure of ad-hoc metrics. "
"When metrics is undefined or null, the query is executed without a groupby. "
"However, when metrics is an array (length >= 0), a groupby clause is added to "
"the query.",
allow_none=True,
)
whisker_type = fields.String(
description="Whisker type. Any numpy function will work.",
validate=validate.OneOf(
choices=([val.value for val in PostProcessingBoxplotWhiskerType])
),
required=True,
example="tukey",
)
percentiles = fields.Tuple(
(
fields.Float(
description="Lower percentile",
validate=[
Range(
min=0,
max=100,
min_inclusive=False,
max_inclusive=False,
error=_(
"lower percentile must be greater than 0 and less "
"than 100. Must be lower than upper percentile."
),
),
],
),
fields.Float(
description="Upper percentile",
validate=[
Range(
min=0,
max=100,
min_inclusive=False,
max_inclusive=False,
error=_(
"upper percentile must be greater than 0 and less "
"than 100. Must be higher than lower percentile."
),
),
],
),
),
description="Upper and lower percentiles for percentile whisker type.",
example=[1, 99],
)
class ChartDataPivotOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
"""
Pivot operation config.
"""
index = (
fields.List(
fields.String(allow_none=False),
description="Columns to group by on the table index (=rows)",
minLength=1,
required=True,
),
)
columns = fields.List(
fields.String(allow_none=False),
description="Columns to group by on the table columns",
)
metric_fill_value = fields.Number(
description="Value to replace missing values with in aggregate calculations.",
)
column_fill_value = fields.String(
description="Value to replace missing pivot columns names with."
)
drop_missing_columns = fields.Boolean(
description="Do not include columns whose entries are all missing "
"(default: `true`).",
)
marginal_distributions = fields.Boolean(
description="Add totals for row/column. (default: `false`)",
)
marginal_distribution_name = fields.String(
description="Name of marginal distribution row/column. (default: `All`)",
)
aggregates = ChartDataAggregateConfigField()
class ChartDataGeohashDecodeOptionsSchema(
ChartDataPostProcessingOperationOptionsSchema
):
"""
Geohash decode operation config.
"""
geohash = fields.String(
description="Name of source column containing geohash string",
required=True,
)
latitude = fields.String(
description="Name of target column for decoded latitude",
required=True,
)
longitude = fields.String(
description="Name of target column for decoded longitude",
required=True,
)
class ChartDataGeohashEncodeOptionsSchema(
ChartDataPostProcessingOperationOptionsSchema
):
"""
Geohash encode operation config.
"""
latitude = fields.String(
description="Name of source latitude column",
required=True,
)
longitude = fields.String(
description="Name of source longitude column",
required=True,
)
geohash = fields.String(
description="Name of target column for encoded geohash string",
required=True,
)
class ChartDataGeodeticParseOptionsSchema(
ChartDataPostProcessingOperationOptionsSchema
):
"""
Geodetic point string parsing operation config.
"""
geodetic = fields.String(
description="Name of source column containing geodetic point strings",
required=True,
)
latitude = fields.String(
description="Name of target column for decoded latitude",
required=True,
)
longitude = fields.String(
description="Name of target column for decoded longitude",
required=True,
)
altitude = fields.String(
description="Name of target column for decoded altitude. If omitted, "
"altitude information in geodetic string is ignored.",
)
class ChartDataPostProcessingOperationSchema(Schema):
operation = fields.String(
description="Post processing operation type",
required=True,
validate=validate.OneOf(
choices=[
name
for name, value in inspect.getmembers(
pandas_postprocessing, inspect.isfunction
)
]
),
example="aggregate",
)
options = fields.Dict(
description="Options specifying how to perform the operation. Please refer "
"to the respective post processing operation option schemas. "
"For example, `ChartDataPostProcessingOperationOptions` specifies "
"the required options for the pivot operation.",
example={
"groupby": ["country", "gender"],
"aggregates": {
"age_q1": {
"operator": "percentile",
"column": "age",
"options": {"q": 0.25},
},
"age_mean": {
"operator": "mean",
"column": "age",
},
},
},
)
class ChartDataFilterSchema(Schema):
col = fields.Raw(
description="The column to filter by. Can be either a string (physical or "
"saved expression) or an object (adhoc column)",
required=True,
example="country",
)
op = fields.String( # pylint: disable=invalid-name
description="The comparison operator.",
validate=utils.OneOfCaseInsensitive(
choices=[filter_op.value for filter_op in FilterOperator]
),
required=True,
example="IN",
)
val = fields.Raw(
description="The value or values to compare against. Can be a string, "
"integer, decimal, None or list, depending on the operator.",
allow_none=True,
example=["China", "France", "Japan"],
)
grain = fields.String(
description="Optional time grain for temporal filters",
example="PT1M",
)
isExtra = fields.Boolean(
description="Indicates if the filter has been added by a filter component as "
"opposed to being a part of the original query."
)
class ChartDataExtrasSchema(Schema):
relative_start = fields.String(
description="Start time for relative time deltas. "
'Default: `config["DEFAULT_RELATIVE_START_TIME"]`',
validate=validate.OneOf(choices=("today", "now")),
)
relative_end = fields.String(
description="End time for relative time deltas. "
'Default: `config["DEFAULT_RELATIVE_START_TIME"]`',
validate=validate.OneOf(choices=("today", "now")),
)
where = fields.String(
description="WHERE clause to be added to queries using AND operator.",
)
having = fields.String(
description="HAVING clause to be added to aggregate queries using "
"AND operator.",
)
having_druid = fields.List(
fields.Nested(ChartDataFilterSchema),
description="HAVING filters to be added to legacy Druid datasource queries. "
"This field is deprecated",
deprecated=True,
)
time_grain_sqla = fields.String(
description="To what level of granularity should the temporal column be "
"aggregated. Supports "
"[ISO 8601](https://en.wikipedia.org/wiki/ISO_8601#Durations) durations.",
validate=validate.OneOf(
choices=[
i
for i in {**builtin_time_grains, **config["TIME_GRAIN_ADDONS"]}.keys()
if i
]
),
example="P1D",
allow_none=True,
)
class AnnotationLayerSchema(Schema):
annotationType = fields.String(
description="Type of annotation layer",
validate=validate.OneOf(choices=[ann.value for ann in AnnotationType]),
)
color = fields.String(
description="Layer color",
allow_none=True,
)
descriptionColumns = fields.List(
fields.String(),
description="Columns to use as the description. If none are provided, "
"all will be shown.",
)
hideLine = fields.Boolean(
description="Should line be hidden. Only applies to line annotations",
allow_none=True,
)
intervalEndColumn = fields.String(
description=(
"Column containing end of interval. Only applies to interval layers"
),
allow_none=True,
)
name = fields.String(description="Name of layer", required=True)
opacity = fields.String(
description="Opacity of layer",
validate=validate.OneOf(
choices=("", "opacityLow", "opacityMedium", "opacityHigh"),
),
allow_none=True,
required=False,
)
overrides = fields.Dict(
keys=fields.String(
desciption="Name of property to be overridden",
validate=validate.OneOf(
choices=("granularity", "time_grain_sqla", "time_range", "time_shift"),
),
),
values=fields.Raw(allow_none=True),
description="which properties should be overridable",
allow_none=True,
)
show = fields.Boolean(description="Should the layer be shown", required=True)
showLabel = fields.Boolean(
description="Should the label always be shown",
allow_none=True,
)
showMarkers = fields.Boolean(
description="Should markers be shown. Only applies to line annotations.",
required=True,
)
sourceType = fields.String(
description="Type of source for annotation data",
validate=validate.OneOf(
choices=(
"",
"line",
"NATIVE",
"table",
)
),
)
style = fields.String(
description="Line style. Only applies to time-series annotations",
validate=validate.OneOf(
choices=(
"dashed",
"dotted",
"solid",
"longDashed",
)
),
)
timeColumn = fields.String(
description="Column with event date or interval start date",
allow_none=True,
)
titleColumn = fields.String(
description="Column with title",
allow_none=True,
)
width = fields.Float(
description="Width of annotation line",
validate=[
Range(
min=0,
min_inclusive=True,
error=_("`width` must be greater or equal to 0"),
)
],
)
value = fields.Raw(
description="For formula annotations, this contains the formula. "
"For other types, this is the primary key of the source object.",
required=True,
)
class ChartDataDatasourceSchema(Schema):
description = "Chart datasource"
id = fields.Integer(
description="Datasource id",
required=True,
)
type = fields.String(
description="Datasource type",
validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
)
class ChartDataQueryObjectSchema(Schema):
class Meta: # pylint: disable=too-few-public-methods
unknown = EXCLUDE
datasource = fields.Nested(ChartDataDatasourceSchema, allow_none=True)
result_type = EnumField(ChartDataResultType, by_value=True, allow_none=True)
annotation_layers = fields.List(
fields.Nested(AnnotationLayerSchema),
description="Annotation layers to apply to chart",
allow_none=True,
)
applied_time_extras = fields.Dict(
description="A mapping of temporal extras that have been applied to the query",
allow_none=True,
example={"__time_range": "1 year ago : now"},
)
apply_fetch_values_predicate = fields.Boolean(
description="Add fetch values predicate (where clause) to query "
"if defined in datasource",
allow_none=True,
)
filters = fields.List(fields.Nested(ChartDataFilterSchema), allow_none=True)
granularity = fields.String(
description="Name of temporal column used for time filtering. For legacy Druid "
"datasources this defines the time grain.",
allow_none=True,
)
granularity_sqla = fields.String(
description="Name of temporal column used for time filtering for SQL "
"datasources. This field is deprecated, use `granularity` "
"instead.",
allow_none=True,
deprecated=True,
)
groupby = fields.List(
fields.Raw(),
description="Columns by which to group the query. "
"This field is deprecated, use `columns` instead.",
allow_none=True,
)
metrics = fields.List(
fields.Raw(),
description="Aggregate expressions. Metrics can be passed as both "
"references to datasource metrics (strings), or ad-hoc metrics"
"which are defined only within the query object. See "
"`ChartDataAdhocMetricSchema` for the structure of ad-hoc metrics.",
allow_none=True,
)
post_processing = fields.List(
fields.Nested(ChartDataPostProcessingOperationSchema, allow_none=True),
allow_none=True,
description="Post processing operations to be applied to the result set. "
"Operations are applied to the result set in sequential order.",
)
time_range = fields.String(
description="A time rage, either expressed as a colon separated string "
"`since : until` or human readable freeform. Valid formats for "
"`since` and `until` are: \n"
"- ISO 8601\n"
"- X days/years/hours/day/year/weeks\n"
"- X days/years/hours/day/year/weeks ago\n"
"- X days/years/hours/day/year/weeks from now\n"
"\n"
"Additionally, the following freeform can be used:\n"
"\n"
"- Last day\n"
"- Last week\n"
"- Last month\n"
"- Last quarter\n"
"- Last year\n"
"- No filter\n"
"- Last X seconds/minutes/hours/days/weeks/months/years\n"
"- Next X seconds/minutes/hours/days/weeks/months/years\n",
example="Last week",
allow_none=True,
)
time_shift = fields.String(
description="A human-readable date/time string. "
"Please refer to [parsdatetime](https://github.com/bear/parsedatetime) "
"documentation for details on valid values.",
allow_none=True,
)
is_timeseries = fields.Boolean(
description="Is the `query_object` a timeseries.",
allow_none=True,
)
series_columns = fields.List(
fields.Raw(),
description="Columns to use when limiting series count. "
"All columns must be present in the `columns` property. "
"Requires `series_limit` and `series_limit_metric` to be set.",
allow_none=True,
)
series_limit = fields.Integer(
description="Maximum number of series. "
"Requires `series` and `series_limit_metric` to be set.",
allow_none=True,
)
series_limit_metric = fields.Raw(
description="Metric used to limit timeseries queries by. "
"Requires `series` and `series_limit` to be set.",
allow_none=True,
)
timeseries_limit = fields.Integer(
description="Maximum row count for timeseries queries. "
"This field is deprecated, use `series_limit` instead."
"Default: `0`",
allow_none=True,
)
timeseries_limit_metric = fields.Raw(
description="Metric used to limit timeseries queries by. "
"This field is deprecated, use `series_limit_metric` instead.",
allow_none=True,
)
row_limit = fields.Integer(
description='Maximum row count (0=disabled). Default: `config["ROW_LIMIT"]`',
allow_none=True,
validate=[
Range(min=0, error=_("`row_limit` must be greater than or equal to 0"))
],
)
row_offset = fields.Integer(
description="Number of rows to skip. Default: `0`",
allow_none=True,
validate=[
Range(min=0, error=_("`row_offset` must be greater than or equal to 0"))
],
)
order_desc = fields.Boolean(
description="Reverse order. Default: `false`",
allow_none=True,
)
extras = fields.Nested(
ChartDataExtrasSchema,
description="Extra parameters to add to the query.",
allow_none=True,
)
columns = fields.List(
fields.Raw(),
description="Columns which to select in the query.",
allow_none=True,
)
orderby = fields.List(
fields.Tuple(
(
fields.Raw(
validate=[
Length(min=1, error=_("orderby column must be populated"))
],
allow_none=False,
),
fields.Boolean(),
)
),
description="Expects a list of lists where the first element is the column "
"name which to sort by, and the second element is a boolean.",
allow_none=True,
example=[("my_col_1", False), ("my_col_2", True)],
)
where = fields.String(
description="WHERE clause to be added to queries using AND operator."
"This field is deprecated and should be passed to `extras`.",
allow_none=True,
deprecated=True,
)
having = fields.String(
description="HAVING clause to be added to aggregate queries using "
"AND operator. This field is deprecated and should be passed "
"to `extras`.",
allow_none=True,
deprecated=True,
)
having_filters = fields.List(
fields.Nested(ChartDataFilterSchema),
description="HAVING filters to be added to legacy Druid datasource queries. "
"This field is deprecated and should be passed to `extras` "
"as `having_druid`.",
allow_none=True,
deprecated=True,
)
druid_time_origin = fields.String(
description="Starting point for time grain counting on legacy Druid "
"datasources. Used to change e.g. Monday/Sunday first-day-of-week. "
"This field is deprecated and should be passed to `extras` "
"as `druid_time_origin`.",
allow_none=True,
deprecated=True,
)
url_params = fields.Dict(
description="Optional query parameters passed to a dashboard or Explore view",
keys=fields.String(description="The query parameter"),
values=fields.String(description="The value of the query parameter"),
allow_none=True,
)
is_rowcount = fields.Boolean(
description="Should the rowcount of the actual query be returned",
allow_none=True,
)
time_offsets = fields.List(
fields.String(),
allow_none=True,
)
class ChartDataQueryContextSchema(Schema):
query_context_factory: Optional[QueryContextFactory] = None
datasource = fields.Nested(ChartDataDatasourceSchema)
queries = fields.List(fields.Nested(ChartDataQueryObjectSchema))
custom_cache_timeout = fields.Integer(
description="Override the default cache timeout",
required=False,
allow_none=True,
)
force = fields.Boolean(
description="Should the queries be forced to load from the source. "
"Default: `false`",
)
result_type = EnumField(ChartDataResultType, by_value=True)
result_format = EnumField(ChartDataResultFormat, by_value=True)
form_data = fields.Raw(allow_none=True, required=False)
# pylint: disable=unused-argument
@post_load
def make_query_context(self, data: Dict[str, Any], **kwargs: Any) -> QueryContext:
query_context = self.get_query_context_factory().create(**data)
return query_context
def get_query_context_factory(self) -> QueryContextFactory:
if self.query_context_factory is None:
# pylint: disable=import-outside-toplevel
from superset.common.query_context_factory import QueryContextFactory
self.query_context_factory = QueryContextFactory()
return self.query_context_factory
class AnnotationDataSchema(Schema):
columns = fields.List(
fields.String(),
description="columns available in the annotation result",
required=True,
)
records = fields.List(
fields.Dict(
keys=fields.String(),
),
description="records mapping the column name to it's value",
required=True,
)
class ChartDataResponseResult(Schema):
annotation_data = fields.List(
fields.Dict(
keys=fields.String(description="Annotation layer name"),
values=fields.String(),
),
description="All requested annotation data",
allow_none=True,
)
cache_key = fields.String(
description="Unique cache key for query object",
required=True,
allow_none=True,
)
cached_dttm = fields.String(
description="Cache timestamp",
required=True,
allow_none=True,
)
cache_timeout = fields.Integer(
description="Cache timeout in following order: custom timeout, datasource "
"timeout, cache default timeout, config default cache timeout.",
required=True,
allow_none=True,
)
error = fields.String(
description="Error",
allow_none=True,
)
is_cached = fields.Boolean(
description="Is the result cached",
required=True,
allow_none=None,
)
query = fields.String(
description="The executed query statement",
required=True,
allow_none=False,
)
status = fields.String(
description="Status of the query",
validate=validate.OneOf(
choices=(
"stopped",
"failed",
"pending",
"running",
"scheduled",
"success",
"timed_out",
)
),
allow_none=False,
)
stacktrace = fields.String(
desciption="Stacktrace if there was an error",
allow_none=True,
)
rowcount = fields.Integer(
description="Amount of rows in result set",
allow_none=False,
)
data = fields.List(fields.Dict(), description="A list with results")
colnames = fields.List(fields.String(), description="A list of column names")
coltypes = fields.List(
fields.Integer(), description="A list of generic data types of each column"
)
applied_filters = fields.List(
fields.Dict(), description="A list with applied filters"
)
rejected_filters = fields.List(
fields.Dict(), description="A list with rejected filters"
)
from_dttm = fields.Integer(
desciption="Start timestamp of time range", required=False, allow_none=True
)
to_dttm = fields.Integer(
desciption="End timestamp of time range", required=False, allow_none=True
)
class ChartDataResponseSchema(Schema):
result = fields.List(
fields.Nested(ChartDataResponseResult),
description="A list of results for each corresponding query in the request.",
)
class ChartDataAsyncResponseSchema(Schema):
channel_id = fields.String(
description="Unique session async channel ID",
allow_none=False,
)
job_id = fields.String(
description="Unique async job ID",
allow_none=False,
)
user_id = fields.String(
description="Requesting user ID",
allow_none=True,
)
status = fields.String(
description="Status value for async job",
allow_none=False,
)
result_url = fields.String(
description="Unique result URL for fetching async query data",
allow_none=False,
)
class ChartFavStarResponseResult(Schema):
id = fields.Integer(description="The Chart id")
value = fields.Boolean(description="The FaveStar value")
class GetFavStarIdsSchema(Schema):
result = fields.List(
fields.Nested(ChartFavStarResponseResult),
description="A list of results for each corresponding chart in the request",
)
class ImportV1ChartSchema(Schema):
slice_name = fields.String(required=True)
viz_type = fields.String(required=True)
params = fields.Dict()
query_context = fields.String(allow_none=True, validate=utils.validate_json)
cache_timeout = fields.Integer(allow_none=True)
uuid = fields.UUID(required=True)
version = fields.String(required=True)
dataset_uuid = fields.UUID(required=True)
is_managed_externally = fields.Boolean(allow_none=True, default=False)
external_url = fields.String(allow_none=True)
CHART_SCHEMAS = (
ChartDataQueryContextSchema,
ChartDataResponseSchema,
ChartDataAsyncResponseSchema,
# TODO: These should optimally be included in the QueryContext schema as an `anyOf`
# in ChartDataPostPricessingOperation.options, but since `anyOf` is not
# by Marshmallow<3, this is not currently possible.
ChartDataAdhocMetricSchema,
ChartDataAggregateOptionsSchema,
ChartDataContributionOptionsSchema,
ChartDataProphetOptionsSchema,
ChartDataBoxplotOptionsSchema,
ChartDataPivotOptionsSchema,
ChartDataRollingOptionsSchema,
ChartDataSelectOptionsSchema,
ChartDataSortOptionsSchema,
ChartDataGeohashDecodeOptionsSchema,
ChartDataGeohashEncodeOptionsSchema,
ChartDataGeodeticParseOptionsSchema,
ChartEntityResponseSchema,
ChartGetDatasourceResponseSchema,
ChartCacheScreenshotResponseSchema,
GetFavStarIdsSchema,
)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦