superset schemas 源码

  • 2022-10-20
  • 浏览 (399)

superset schemas 代码

文件路径:/superset/charts/schemas.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=too-many-lines
from __future__ import annotations

import inspect
from typing import Any, Dict, Optional, TYPE_CHECKING

from flask_babel import gettext as _
from marshmallow import EXCLUDE, fields, post_load, Schema, validate
from marshmallow.validate import Length, Range
from marshmallow_enum import EnumField

from superset import app
from superset.common.chart_data import ChartDataResultFormat, ChartDataResultType
from superset.db_engine_specs.base import builtin_time_grains
from superset.utils import pandas_postprocessing, schema as utils
from superset.utils.core import (
    AnnotationType,
    DatasourceType,
    FilterOperator,
    PostProcessingBoxplotWhiskerType,
    PostProcessingContributionOrientation,
)

if TYPE_CHECKING:
    from superset.common.query_context import QueryContext
    from superset.common.query_context_factory import QueryContextFactory

config = app.config

#
# RISON/JSON schemas for query parameters
#
get_delete_ids_schema = {"type": "array", "items": {"type": "integer"}}

width_height_schema = {
    "type": "array",
    "items": {"type": "integer"},
}
thumbnail_query_schema = {
    "type": "object",
    "properties": {"force": {"type": "boolean"}},
}
screenshot_query_schema = {
    "type": "object",
    "properties": {
        "force": {"type": "boolean"},
        "window_size": width_height_schema,
        "thumb_size": width_height_schema,
    },
}
get_export_ids_schema = {"type": "array", "items": {"type": "integer"}}

get_fav_star_ids_schema = {"type": "array", "items": {"type": "integer"}}

#
# Column schema descriptions
#
slice_name_description = "The name of the chart."
description_description = "A description of the chart propose."
viz_type_description = "The type of chart visualization used."
owners_description = (
    "Owner are users ids allowed to delete or change this chart. "
    "If left empty you will be one of the owners of the chart."
)
params_description = (
    "Parameters are generated dynamically when clicking the save "
    "or overwrite button in the explore view. "
    "This JSON object for power users who may want to alter specific parameters."
)
query_context_description = (
    "The query context represents the queries that need to run "
    "in order to generate the data the visualization, and in what "
    "format the data should be returned."
)
query_context_generation_description = (
    "The query context generation represents whether the query_context"
    "is user generated or not so that it does not update user modfied"
    "state."
)
cache_timeout_description = (
    "Duration (in seconds) of the caching timeout "
    "for this chart. Note this defaults to the datasource/table"
    " timeout if undefined."
)
datasource_id_description = (
    "The id of the dataset/datasource this new chart will use. "
    "A complete datasource identification needs `datasouce_id` "
    "and `datasource_type`."
)
datasource_uid_description = (
    "The uid of the dataset/datasource this new chart will use. "
    "A complete datasource identification needs `datasouce_uid` "
)
datasource_type_description = (
    "The type of dataset/datasource identified on `datasource_id`."
)
datasource_name_description = "The datasource name."
dashboards_description = "A list of dashboards to include this new chart to."
changed_on_description = "The ISO date that the chart was last changed."
slice_url_description = "The URL of the chart."
form_data_description = (
    "Form data from the Explore controls used to form the chart's data query."
)
description_markeddown_description = "Sanitized HTML version of the chart description."
owners_name_description = "Name of an owner of the chart."
certified_by_description = "Person or group that has certified this chart"
certification_details_description = "Details of the certification"

#
# OpenAPI method specification overrides
#
openapi_spec_methods_override = {
    "get": {"get": {"description": "Get a chart detail information."}},
    "get_list": {
        "get": {
            "description": "Get a list of charts, use Rison or JSON query "
            "parameters for filtering, sorting, pagination and "
            " for selecting specific columns and metadata.",
        }
    },
    "info": {
        "get": {
            "description": "Several metadata information about chart API endpoints.",
        }
    },
    "related": {
        "get": {
            "description": "Get a list of all possible owners for a chart. "
            "Use `owners` has the `column_name` parameter"
        }
    },
}


class ChartEntityResponseSchema(Schema):
    """
    Schema for a chart object
    """

    slice_id = fields.Integer()
    slice_name = fields.String(description=slice_name_description)
    cache_timeout = fields.Integer(description=cache_timeout_description)
    changed_on = fields.String(description=changed_on_description)
    description = fields.String(description=description_description)
    description_markeddown = fields.String(
        description=description_markeddown_description
    )
    form_data = fields.Dict(description=form_data_description)
    slice_url = fields.String(description=slice_url_description)
    certified_by = fields.String(description=certified_by_description)
    certification_details = fields.String(description=certification_details_description)


class ChartPostSchema(Schema):
    """
    Schema to add a new chart.
    """

    slice_name = fields.String(
        description=slice_name_description, required=True, validate=Length(1, 250)
    )
    description = fields.String(description=description_description, allow_none=True)
    viz_type = fields.String(
        description=viz_type_description,
        validate=Length(0, 250),
        example=["bar", "line_multi", "area", "table"],
    )
    owners = fields.List(fields.Integer(description=owners_description))
    params = fields.String(
        description=params_description, allow_none=True, validate=utils.validate_json
    )
    query_context = fields.String(
        description=query_context_description,
        allow_none=True,
        validate=utils.validate_json,
    )
    query_context_generation = fields.Boolean(
        description=query_context_generation_description, allow_none=True
    )
    cache_timeout = fields.Integer(
        description=cache_timeout_description, allow_none=True
    )
    datasource_id = fields.Integer(description=datasource_id_description, required=True)
    datasource_type = fields.String(
        description=datasource_type_description,
        validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
        required=True,
    )
    datasource_name = fields.String(
        description=datasource_name_description, allow_none=True
    )
    dashboards = fields.List(fields.Integer(description=dashboards_description))
    certified_by = fields.String(description=certified_by_description, allow_none=True)
    certification_details = fields.String(
        description=certification_details_description, allow_none=True
    )
    is_managed_externally = fields.Boolean(allow_none=True, default=False)
    external_url = fields.String(allow_none=True)


class ChartPutSchema(Schema):
    """
    Schema to update or patch a chart
    """

    slice_name = fields.String(
        description=slice_name_description, allow_none=True, validate=Length(0, 250)
    )
    description = fields.String(description=description_description, allow_none=True)
    viz_type = fields.String(
        description=viz_type_description,
        allow_none=True,
        validate=Length(0, 250),
        example=["bar", "line_multi", "area", "table"],
    )
    owners = fields.List(fields.Integer(description=owners_description))
    params = fields.String(description=params_description, allow_none=True)
    query_context = fields.String(
        description=query_context_description, allow_none=True
    )
    query_context_generation = fields.Boolean(
        description=query_context_generation_description, allow_none=True
    )
    cache_timeout = fields.Integer(
        description=cache_timeout_description, allow_none=True
    )
    datasource_id = fields.Integer(
        description=datasource_id_description, allow_none=True
    )
    datasource_type = fields.String(
        description=datasource_type_description,
        validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
        allow_none=True,
    )
    dashboards = fields.List(fields.Integer(description=dashboards_description))
    certified_by = fields.String(description=certified_by_description, allow_none=True)
    certification_details = fields.String(
        description=certification_details_description, allow_none=True
    )
    is_managed_externally = fields.Boolean(allow_none=True, default=False)
    external_url = fields.String(allow_none=True)


class ChartGetDatasourceObjectDataResponseSchema(Schema):
    datasource_id = fields.Integer(description="The datasource identifier")
    datasource_type = fields.Integer(description="The datasource type")


class ChartGetDatasourceObjectResponseSchema(Schema):
    label = fields.String(description="The name of the datasource")
    value = fields.Nested(ChartGetDatasourceObjectDataResponseSchema)


class ChartGetDatasourceResponseSchema(Schema):
    count = fields.Integer(description="The total number of datasources")
    result = fields.Nested(ChartGetDatasourceObjectResponseSchema)


class ChartCacheScreenshotResponseSchema(Schema):
    cache_key = fields.String(description="The cache key")
    chart_url = fields.String(description="The url to render the chart")
    image_url = fields.String(description="The url to fetch the screenshot")


class ChartDataColumnSchema(Schema):
    column_name = fields.String(
        description="The name of the target column",
        example="mycol",
    )
    type = fields.String(description="Type of target column", example="BIGINT")


class ChartDataAdhocMetricSchema(Schema):
    """
    Ad-hoc metrics are used to define metrics outside the datasource.
    """

    expressionType = fields.String(
        description="Simple or SQL metric",
        required=True,
        validate=validate.OneOf(choices=("SIMPLE", "SQL")),
        example="SQL",
    )
    aggregate = fields.String(
        description="Aggregation operator. Only required for simple expression types.",
        validate=validate.OneOf(
            choices=("AVG", "COUNT", "COUNT_DISTINCT", "MAX", "MIN", "SUM")
        ),
    )
    column = fields.Nested(ChartDataColumnSchema)
    sqlExpression = fields.String(
        description="The metric as defined by a SQL aggregate expression. "
        "Only required for SQL expression type.",
        example="SUM(weight * observations) / SUM(weight)",
    )
    label = fields.String(
        description="Label for the metric. Is automatically generated unless "
        "hasCustomLabel is true, in which case label must be defined.",
        example="Weighted observations",
    )
    hasCustomLabel = fields.Boolean(
        description="When false, the label will be automatically generated based on "
        "the aggregate expression. When true, a custom label has to be "
        "specified.",
        example=True,
    )
    optionName = fields.String(
        description="Unique identifier. Can be any string value, as long as all "
        "metrics have a unique identifier. If undefined, a random name "
        "will be generated.",
        example="metric_aec60732-fac0-4b17-b736-93f1a5c93e30",
    )
    timeGrain = fields.String(
        description="Optional time grain for temporal filters",
        example="PT1M",
    )
    isExtra = fields.Boolean(
        description="Indicates if the filter has been added by a filter component as "
        "opposed to being a part of the original query."
    )


class ChartDataAggregateConfigField(fields.Dict):
    def __init__(self) -> None:
        super().__init__(
            description="The keys are the name of the aggregate column to be created, "
            "and the values specify the details of how to apply the "
            "aggregation. If an operator requires additional options, "
            "these can be passed here to be unpacked in the operator call. The "
            "following numpy operators are supported: average, argmin, argmax, cumsum, "
            "cumprod, max, mean, median, nansum, nanmin, nanmax, nanmean, nanmedian, "
            "min, percentile, prod, product, std, sum, var. Any options required by "
            "the operator can be passed to the `options` object.\n"
            "\n"
            "In the example, a new column `first_quantile` is created based on values "
            "in the column `my_col` using the `percentile` operator with "
            "the `q=0.25` parameter.",
            example={
                "first_quantile": {
                    "operator": "percentile",
                    "column": "my_col",
                    "options": {"q": 0.25},
                }
            },
        )


class ChartDataPostProcessingOperationOptionsSchema(Schema):
    pass


class ChartDataAggregateOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Aggregate operation config.
    """

    groupby = (
        fields.List(
            fields.String(
                allow_none=False,
                description="Columns by which to group by",
            ),
            minLength=1,
            required=True,
        ),
    )
    aggregates = ChartDataAggregateConfigField()


class ChartDataRollingOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Rolling operation config.
    """

    columns = (
        fields.Dict(
            description="columns on which to perform rolling, mapping source column to "
            "target column. For instance, `{'y': 'y'}` will replace the "
            "column `y` with the rolling value in `y`, while `{'y': 'y2'}` "
            "will add a column `y2` based on rolling values calculated "
            "from `y`, leaving the original column `y` unchanged.",
            example={"weekly_rolling_sales": "sales"},
        ),
    )
    rolling_type = fields.String(
        description="Type of rolling window. Any numpy function will work.",
        validate=validate.OneOf(
            choices=(
                "average",
                "argmin",
                "argmax",
                "cumsum",
                "cumprod",
                "max",
                "mean",
                "median",
                "nansum",
                "nanmin",
                "nanmax",
                "nanmean",
                "nanmedian",
                "nanpercentile",
                "min",
                "percentile",
                "prod",
                "product",
                "std",
                "sum",
                "var",
            )
        ),
        required=True,
        example="percentile",
    )
    window = fields.Integer(
        description="Size of the rolling window in days.",
        required=True,
        example=7,
    )
    rolling_type_options = fields.Dict(
        desctiption="Optional options to pass to rolling method. Needed for "
        "e.g. quantile operation.",
        example={},
    )
    center = fields.Boolean(
        description="Should the label be at the center of the window. Default: `false`",
        example=False,
    )
    win_type = fields.String(
        description="Type of window function. See "
        "[SciPy window functions](https://docs.scipy.org/doc/scipy/reference"
        "/signal.windows.html#module-scipy.signal.windows) "
        "for more details. Some window functions require passing "
        "additional parameters to `rolling_type_options`. For instance, "
        "to use `gaussian`, the parameter `std` needs to be provided.",
        validate=validate.OneOf(
            choices=(
                "boxcar",
                "triang",
                "blackman",
                "hamming",
                "bartlett",
                "parzen",
                "bohman",
                "blackmanharris",
                "nuttall",
                "barthann",
                "kaiser",
                "gaussian",
                "general_gaussian",
                "slepian",
                "exponential",
            )
        ),
    )
    min_periods = fields.Integer(
        description="The minimum amount of periods required for a row to be included "
        "in the result set.",
        example=7,
    )


class ChartDataSelectOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Sort operation config.
    """

    columns = fields.List(
        fields.String(),
        description="Columns which to select from the input data, in the desired "
        "order. If columns are renamed, the original column name should be "
        "referenced here.",
        example=["country", "gender", "age"],
    )
    exclude = fields.List(
        fields.String(),
        description="Columns to exclude from selection.",
        example=["my_temp_column"],
    )
    rename = fields.List(
        fields.Dict(),
        description="columns which to rename, mapping source column to target column. "
        "For instance, `{'y': 'y2'}` will rename the column `y` to `y2`.",
        example=[{"age": "average_age"}],
    )


class ChartDataSortOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Sort operation config.
    """

    columns = fields.Dict(
        description="columns by by which to sort. The key specifies the column name, "
        "value specifies if sorting in ascending order.",
        example={"country": True, "gender": False},
        required=True,
    )
    aggregates = ChartDataAggregateConfigField()


class ChartDataContributionOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Contribution operation config.
    """

    orientation = fields.String(
        description="Should cell values be calculated across the row or column.",
        required=True,
        validate=validate.OneOf(
            choices=[val.value for val in PostProcessingContributionOrientation]
        ),
        example="row",
    )


class ChartDataProphetOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Prophet operation config.
    """

    time_grain = fields.String(
        description="Time grain used to specify time period increments in prediction. "
        "Supports [ISO 8601](https://en.wikipedia.org/wiki/ISO_8601#Durations) "
        "durations.",
        validate=validate.OneOf(
            choices=[
                i
                for i in {**builtin_time_grains, **config["TIME_GRAIN_ADDONS"]}.keys()
                if i
            ]
        ),
        example="P1D",
        required=True,
    )
    periods = fields.Integer(
        descrption="Time periods (in units of `time_grain`) to predict into the future",
        min=0,
        example=7,
        required=True,
    )
    confidence_interval = fields.Float(
        description="Width of predicted confidence interval",
        validate=[
            Range(
                min=0,
                max=1,
                min_inclusive=False,
                max_inclusive=False,
                error=_("`confidence_interval` must be between 0 and 1 (exclusive)"),
            )
        ],
        example=0.8,
        required=True,
    )
    yearly_seasonality = fields.Raw(
        # TODO: add correct union type once supported by Marshmallow
        description="Should yearly seasonality be applied. "
        "An integer value will specify Fourier order of seasonality, `None` will "
        "automatically detect seasonality.",
        example=False,
    )
    weekly_seasonality = fields.Raw(
        # TODO: add correct union type once supported by Marshmallow
        description="Should weekly seasonality be applied. "
        "An integer value will specify Fourier order of seasonality, `None` will "
        "automatically detect seasonality.",
        example=False,
    )
    monthly_seasonality = fields.Raw(
        # TODO: add correct union type once supported by Marshmallow
        description="Should monthly seasonality be applied. "
        "An integer value will specify Fourier order of seasonality, `None` will "
        "automatically detect seasonality.",
        example=False,
    )


class ChartDataBoxplotOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Boxplot operation config.
    """

    groupby = fields.List(
        fields.String(
            description="Columns by which to group the query.",
        ),
        allow_none=True,
    )

    metrics = fields.List(
        fields.Raw(),
        description="Aggregate expressions. Metrics can be passed as both "
        "references to datasource metrics (strings), or ad-hoc metrics"
        "which are defined only within the query object. See "
        "`ChartDataAdhocMetricSchema` for the structure of ad-hoc metrics. "
        "When metrics is undefined or null, the query is executed without a groupby. "
        "However, when metrics is an array (length >= 0), a groupby clause is added to "
        "the query.",
        allow_none=True,
    )

    whisker_type = fields.String(
        description="Whisker type. Any numpy function will work.",
        validate=validate.OneOf(
            choices=([val.value for val in PostProcessingBoxplotWhiskerType])
        ),
        required=True,
        example="tukey",
    )

    percentiles = fields.Tuple(
        (
            fields.Float(
                description="Lower percentile",
                validate=[
                    Range(
                        min=0,
                        max=100,
                        min_inclusive=False,
                        max_inclusive=False,
                        error=_(
                            "lower percentile must be greater than 0 and less "
                            "than 100. Must be lower than upper percentile."
                        ),
                    ),
                ],
            ),
            fields.Float(
                description="Upper percentile",
                validate=[
                    Range(
                        min=0,
                        max=100,
                        min_inclusive=False,
                        max_inclusive=False,
                        error=_(
                            "upper percentile must be greater than 0 and less "
                            "than 100. Must be higher than lower percentile."
                        ),
                    ),
                ],
            ),
        ),
        description="Upper and lower percentiles for percentile whisker type.",
        example=[1, 99],
    )


class ChartDataPivotOptionsSchema(ChartDataPostProcessingOperationOptionsSchema):
    """
    Pivot operation config.
    """

    index = (
        fields.List(
            fields.String(allow_none=False),
            description="Columns to group by on the table index (=rows)",
            minLength=1,
            required=True,
        ),
    )
    columns = fields.List(
        fields.String(allow_none=False),
        description="Columns to group by on the table columns",
    )
    metric_fill_value = fields.Number(
        description="Value to replace missing values with in aggregate calculations.",
    )
    column_fill_value = fields.String(
        description="Value to replace missing pivot columns names with."
    )
    drop_missing_columns = fields.Boolean(
        description="Do not include columns whose entries are all missing "
        "(default: `true`).",
    )
    marginal_distributions = fields.Boolean(
        description="Add totals for row/column. (default: `false`)",
    )
    marginal_distribution_name = fields.String(
        description="Name of marginal distribution row/column. (default: `All`)",
    )
    aggregates = ChartDataAggregateConfigField()


class ChartDataGeohashDecodeOptionsSchema(
    ChartDataPostProcessingOperationOptionsSchema
):
    """
    Geohash decode operation config.
    """

    geohash = fields.String(
        description="Name of source column containing geohash string",
        required=True,
    )
    latitude = fields.String(
        description="Name of target column for decoded latitude",
        required=True,
    )
    longitude = fields.String(
        description="Name of target column for decoded longitude",
        required=True,
    )


class ChartDataGeohashEncodeOptionsSchema(
    ChartDataPostProcessingOperationOptionsSchema
):
    """
    Geohash encode operation config.
    """

    latitude = fields.String(
        description="Name of source latitude column",
        required=True,
    )
    longitude = fields.String(
        description="Name of source longitude column",
        required=True,
    )
    geohash = fields.String(
        description="Name of target column for encoded geohash string",
        required=True,
    )


class ChartDataGeodeticParseOptionsSchema(
    ChartDataPostProcessingOperationOptionsSchema
):
    """
    Geodetic point string parsing operation config.
    """

    geodetic = fields.String(
        description="Name of source column containing geodetic point strings",
        required=True,
    )
    latitude = fields.String(
        description="Name of target column for decoded latitude",
        required=True,
    )
    longitude = fields.String(
        description="Name of target column for decoded longitude",
        required=True,
    )
    altitude = fields.String(
        description="Name of target column for decoded altitude. If omitted, "
        "altitude information in geodetic string is ignored.",
    )


class ChartDataPostProcessingOperationSchema(Schema):
    operation = fields.String(
        description="Post processing operation type",
        required=True,
        validate=validate.OneOf(
            choices=[
                name
                for name, value in inspect.getmembers(
                    pandas_postprocessing, inspect.isfunction
                )
            ]
        ),
        example="aggregate",
    )
    options = fields.Dict(
        description="Options specifying how to perform the operation. Please refer "
        "to the respective post processing operation option schemas. "
        "For example, `ChartDataPostProcessingOperationOptions` specifies "
        "the required options for the pivot operation.",
        example={
            "groupby": ["country", "gender"],
            "aggregates": {
                "age_q1": {
                    "operator": "percentile",
                    "column": "age",
                    "options": {"q": 0.25},
                },
                "age_mean": {
                    "operator": "mean",
                    "column": "age",
                },
            },
        },
    )


class ChartDataFilterSchema(Schema):
    col = fields.Raw(
        description="The column to filter by. Can be either a string (physical or "
        "saved expression) or an object (adhoc column)",
        required=True,
        example="country",
    )
    op = fields.String(  # pylint: disable=invalid-name
        description="The comparison operator.",
        validate=utils.OneOfCaseInsensitive(
            choices=[filter_op.value for filter_op in FilterOperator]
        ),
        required=True,
        example="IN",
    )
    val = fields.Raw(
        description="The value or values to compare against. Can be a string, "
        "integer, decimal, None or list, depending on the operator.",
        allow_none=True,
        example=["China", "France", "Japan"],
    )
    grain = fields.String(
        description="Optional time grain for temporal filters",
        example="PT1M",
    )
    isExtra = fields.Boolean(
        description="Indicates if the filter has been added by a filter component as "
        "opposed to being a part of the original query."
    )


class ChartDataExtrasSchema(Schema):

    relative_start = fields.String(
        description="Start time for relative time deltas. "
        'Default: `config["DEFAULT_RELATIVE_START_TIME"]`',
        validate=validate.OneOf(choices=("today", "now")),
    )
    relative_end = fields.String(
        description="End time for relative time deltas. "
        'Default: `config["DEFAULT_RELATIVE_START_TIME"]`',
        validate=validate.OneOf(choices=("today", "now")),
    )
    where = fields.String(
        description="WHERE clause to be added to queries using AND operator.",
    )
    having = fields.String(
        description="HAVING clause to be added to aggregate queries using "
        "AND operator.",
    )
    having_druid = fields.List(
        fields.Nested(ChartDataFilterSchema),
        description="HAVING filters to be added to legacy Druid datasource queries. "
        "This field is deprecated",
        deprecated=True,
    )
    time_grain_sqla = fields.String(
        description="To what level of granularity should the temporal column be "
        "aggregated. Supports "
        "[ISO 8601](https://en.wikipedia.org/wiki/ISO_8601#Durations) durations.",
        validate=validate.OneOf(
            choices=[
                i
                for i in {**builtin_time_grains, **config["TIME_GRAIN_ADDONS"]}.keys()
                if i
            ]
        ),
        example="P1D",
        allow_none=True,
    )


class AnnotationLayerSchema(Schema):
    annotationType = fields.String(
        description="Type of annotation layer",
        validate=validate.OneOf(choices=[ann.value for ann in AnnotationType]),
    )
    color = fields.String(
        description="Layer color",
        allow_none=True,
    )
    descriptionColumns = fields.List(
        fields.String(),
        description="Columns to use as the description. If none are provided, "
        "all will be shown.",
    )
    hideLine = fields.Boolean(
        description="Should line be hidden. Only applies to line annotations",
        allow_none=True,
    )
    intervalEndColumn = fields.String(
        description=(
            "Column containing end of interval. Only applies to interval layers"
        ),
        allow_none=True,
    )
    name = fields.String(description="Name of layer", required=True)
    opacity = fields.String(
        description="Opacity of layer",
        validate=validate.OneOf(
            choices=("", "opacityLow", "opacityMedium", "opacityHigh"),
        ),
        allow_none=True,
        required=False,
    )
    overrides = fields.Dict(
        keys=fields.String(
            desciption="Name of property to be overridden",
            validate=validate.OneOf(
                choices=("granularity", "time_grain_sqla", "time_range", "time_shift"),
            ),
        ),
        values=fields.Raw(allow_none=True),
        description="which properties should be overridable",
        allow_none=True,
    )
    show = fields.Boolean(description="Should the layer be shown", required=True)
    showLabel = fields.Boolean(
        description="Should the label always be shown",
        allow_none=True,
    )
    showMarkers = fields.Boolean(
        description="Should markers be shown. Only applies to line annotations.",
        required=True,
    )
    sourceType = fields.String(
        description="Type of source for annotation data",
        validate=validate.OneOf(
            choices=(
                "",
                "line",
                "NATIVE",
                "table",
            )
        ),
    )
    style = fields.String(
        description="Line style. Only applies to time-series annotations",
        validate=validate.OneOf(
            choices=(
                "dashed",
                "dotted",
                "solid",
                "longDashed",
            )
        ),
    )
    timeColumn = fields.String(
        description="Column with event date or interval start date",
        allow_none=True,
    )
    titleColumn = fields.String(
        description="Column with title",
        allow_none=True,
    )
    width = fields.Float(
        description="Width of annotation line",
        validate=[
            Range(
                min=0,
                min_inclusive=True,
                error=_("`width` must be greater or equal to 0"),
            )
        ],
    )
    value = fields.Raw(
        description="For formula annotations, this contains the formula. "
        "For other types, this is the primary key of the source object.",
        required=True,
    )


class ChartDataDatasourceSchema(Schema):
    description = "Chart datasource"
    id = fields.Integer(
        description="Datasource id",
        required=True,
    )
    type = fields.String(
        description="Datasource type",
        validate=validate.OneOf(choices=[ds.value for ds in DatasourceType]),
    )


class ChartDataQueryObjectSchema(Schema):
    class Meta:  # pylint: disable=too-few-public-methods
        unknown = EXCLUDE

    datasource = fields.Nested(ChartDataDatasourceSchema, allow_none=True)
    result_type = EnumField(ChartDataResultType, by_value=True, allow_none=True)

    annotation_layers = fields.List(
        fields.Nested(AnnotationLayerSchema),
        description="Annotation layers to apply to chart",
        allow_none=True,
    )
    applied_time_extras = fields.Dict(
        description="A mapping of temporal extras that have been applied to the query",
        allow_none=True,
        example={"__time_range": "1 year ago : now"},
    )
    apply_fetch_values_predicate = fields.Boolean(
        description="Add fetch values predicate (where clause) to query "
        "if defined in datasource",
        allow_none=True,
    )
    filters = fields.List(fields.Nested(ChartDataFilterSchema), allow_none=True)
    granularity = fields.String(
        description="Name of temporal column used for time filtering. For legacy Druid "
        "datasources this defines the time grain.",
        allow_none=True,
    )
    granularity_sqla = fields.String(
        description="Name of temporal column used for time filtering for SQL "
        "datasources. This field is deprecated, use `granularity` "
        "instead.",
        allow_none=True,
        deprecated=True,
    )
    groupby = fields.List(
        fields.Raw(),
        description="Columns by which to group the query. "
        "This field is deprecated, use `columns` instead.",
        allow_none=True,
    )
    metrics = fields.List(
        fields.Raw(),
        description="Aggregate expressions. Metrics can be passed as both "
        "references to datasource metrics (strings), or ad-hoc metrics"
        "which are defined only within the query object. See "
        "`ChartDataAdhocMetricSchema` for the structure of ad-hoc metrics.",
        allow_none=True,
    )
    post_processing = fields.List(
        fields.Nested(ChartDataPostProcessingOperationSchema, allow_none=True),
        allow_none=True,
        description="Post processing operations to be applied to the result set. "
        "Operations are applied to the result set in sequential order.",
    )
    time_range = fields.String(
        description="A time rage, either expressed as a colon separated string "
        "`since : until` or human readable freeform. Valid formats for "
        "`since` and `until` are: \n"
        "- ISO 8601\n"
        "- X days/years/hours/day/year/weeks\n"
        "- X days/years/hours/day/year/weeks ago\n"
        "- X days/years/hours/day/year/weeks from now\n"
        "\n"
        "Additionally, the following freeform can be used:\n"
        "\n"
        "- Last day\n"
        "- Last week\n"
        "- Last month\n"
        "- Last quarter\n"
        "- Last year\n"
        "- No filter\n"
        "- Last X seconds/minutes/hours/days/weeks/months/years\n"
        "- Next X seconds/minutes/hours/days/weeks/months/years\n",
        example="Last week",
        allow_none=True,
    )
    time_shift = fields.String(
        description="A human-readable date/time string. "
        "Please refer to [parsdatetime](https://github.com/bear/parsedatetime) "
        "documentation for details on valid values.",
        allow_none=True,
    )
    is_timeseries = fields.Boolean(
        description="Is the `query_object` a timeseries.",
        allow_none=True,
    )
    series_columns = fields.List(
        fields.Raw(),
        description="Columns to use when limiting series count. "
        "All columns must be present in the `columns` property. "
        "Requires `series_limit` and `series_limit_metric` to be set.",
        allow_none=True,
    )
    series_limit = fields.Integer(
        description="Maximum number of series. "
        "Requires `series` and `series_limit_metric` to be set.",
        allow_none=True,
    )
    series_limit_metric = fields.Raw(
        description="Metric used to limit timeseries queries by. "
        "Requires `series` and `series_limit` to be set.",
        allow_none=True,
    )
    timeseries_limit = fields.Integer(
        description="Maximum row count for timeseries queries. "
        "This field is deprecated, use `series_limit` instead."
        "Default: `0`",
        allow_none=True,
    )
    timeseries_limit_metric = fields.Raw(
        description="Metric used to limit timeseries queries by. "
        "This field is deprecated, use `series_limit_metric` instead.",
        allow_none=True,
    )
    row_limit = fields.Integer(
        description='Maximum row count (0=disabled). Default: `config["ROW_LIMIT"]`',
        allow_none=True,
        validate=[
            Range(min=0, error=_("`row_limit` must be greater than or equal to 0"))
        ],
    )
    row_offset = fields.Integer(
        description="Number of rows to skip. Default: `0`",
        allow_none=True,
        validate=[
            Range(min=0, error=_("`row_offset` must be greater than or equal to 0"))
        ],
    )
    order_desc = fields.Boolean(
        description="Reverse order. Default: `false`",
        allow_none=True,
    )
    extras = fields.Nested(
        ChartDataExtrasSchema,
        description="Extra parameters to add to the query.",
        allow_none=True,
    )
    columns = fields.List(
        fields.Raw(),
        description="Columns which to select in the query.",
        allow_none=True,
    )
    orderby = fields.List(
        fields.Tuple(
            (
                fields.Raw(
                    validate=[
                        Length(min=1, error=_("orderby column must be populated"))
                    ],
                    allow_none=False,
                ),
                fields.Boolean(),
            )
        ),
        description="Expects a list of lists where the first element is the column "
        "name which to sort by, and the second element is a boolean.",
        allow_none=True,
        example=[("my_col_1", False), ("my_col_2", True)],
    )
    where = fields.String(
        description="WHERE clause to be added to queries using AND operator."
        "This field is deprecated and should be passed to `extras`.",
        allow_none=True,
        deprecated=True,
    )
    having = fields.String(
        description="HAVING clause to be added to aggregate queries using "
        "AND operator. This field is deprecated and should be passed "
        "to `extras`.",
        allow_none=True,
        deprecated=True,
    )
    having_filters = fields.List(
        fields.Nested(ChartDataFilterSchema),
        description="HAVING filters to be added to legacy Druid datasource queries. "
        "This field is deprecated and should be passed to `extras` "
        "as `having_druid`.",
        allow_none=True,
        deprecated=True,
    )
    druid_time_origin = fields.String(
        description="Starting point for time grain counting on legacy Druid "
        "datasources. Used to change e.g. Monday/Sunday first-day-of-week. "
        "This field is deprecated and should be passed to `extras` "
        "as `druid_time_origin`.",
        allow_none=True,
        deprecated=True,
    )
    url_params = fields.Dict(
        description="Optional query parameters passed to a dashboard or Explore view",
        keys=fields.String(description="The query parameter"),
        values=fields.String(description="The value of the query parameter"),
        allow_none=True,
    )
    is_rowcount = fields.Boolean(
        description="Should the rowcount of the actual query be returned",
        allow_none=True,
    )
    time_offsets = fields.List(
        fields.String(),
        allow_none=True,
    )


class ChartDataQueryContextSchema(Schema):
    query_context_factory: Optional[QueryContextFactory] = None
    datasource = fields.Nested(ChartDataDatasourceSchema)
    queries = fields.List(fields.Nested(ChartDataQueryObjectSchema))
    custom_cache_timeout = fields.Integer(
        description="Override the default cache timeout",
        required=False,
        allow_none=True,
    )

    force = fields.Boolean(
        description="Should the queries be forced to load from the source. "
        "Default: `false`",
    )

    result_type = EnumField(ChartDataResultType, by_value=True)
    result_format = EnumField(ChartDataResultFormat, by_value=True)

    form_data = fields.Raw(allow_none=True, required=False)

    # pylint: disable=unused-argument
    @post_load
    def make_query_context(self, data: Dict[str, Any], **kwargs: Any) -> QueryContext:
        query_context = self.get_query_context_factory().create(**data)
        return query_context

    def get_query_context_factory(self) -> QueryContextFactory:
        if self.query_context_factory is None:
            # pylint: disable=import-outside-toplevel
            from superset.common.query_context_factory import QueryContextFactory

            self.query_context_factory = QueryContextFactory()
        return self.query_context_factory


class AnnotationDataSchema(Schema):
    columns = fields.List(
        fields.String(),
        description="columns available in the annotation result",
        required=True,
    )
    records = fields.List(
        fields.Dict(
            keys=fields.String(),
        ),
        description="records mapping the column name to it's value",
        required=True,
    )


class ChartDataResponseResult(Schema):
    annotation_data = fields.List(
        fields.Dict(
            keys=fields.String(description="Annotation layer name"),
            values=fields.String(),
        ),
        description="All requested annotation data",
        allow_none=True,
    )
    cache_key = fields.String(
        description="Unique cache key for query object",
        required=True,
        allow_none=True,
    )
    cached_dttm = fields.String(
        description="Cache timestamp",
        required=True,
        allow_none=True,
    )
    cache_timeout = fields.Integer(
        description="Cache timeout in following order: custom timeout, datasource "
        "timeout, cache default timeout, config default cache timeout.",
        required=True,
        allow_none=True,
    )
    error = fields.String(
        description="Error",
        allow_none=True,
    )
    is_cached = fields.Boolean(
        description="Is the result cached",
        required=True,
        allow_none=None,
    )
    query = fields.String(
        description="The executed query statement",
        required=True,
        allow_none=False,
    )
    status = fields.String(
        description="Status of the query",
        validate=validate.OneOf(
            choices=(
                "stopped",
                "failed",
                "pending",
                "running",
                "scheduled",
                "success",
                "timed_out",
            )
        ),
        allow_none=False,
    )
    stacktrace = fields.String(
        desciption="Stacktrace if there was an error",
        allow_none=True,
    )
    rowcount = fields.Integer(
        description="Amount of rows in result set",
        allow_none=False,
    )
    data = fields.List(fields.Dict(), description="A list with results")
    colnames = fields.List(fields.String(), description="A list of column names")
    coltypes = fields.List(
        fields.Integer(), description="A list of generic data types of each column"
    )
    applied_filters = fields.List(
        fields.Dict(), description="A list with applied filters"
    )
    rejected_filters = fields.List(
        fields.Dict(), description="A list with rejected filters"
    )
    from_dttm = fields.Integer(
        desciption="Start timestamp of time range", required=False, allow_none=True
    )
    to_dttm = fields.Integer(
        desciption="End timestamp of time range", required=False, allow_none=True
    )


class ChartDataResponseSchema(Schema):
    result = fields.List(
        fields.Nested(ChartDataResponseResult),
        description="A list of results for each corresponding query in the request.",
    )


class ChartDataAsyncResponseSchema(Schema):
    channel_id = fields.String(
        description="Unique session async channel ID",
        allow_none=False,
    )
    job_id = fields.String(
        description="Unique async job ID",
        allow_none=False,
    )
    user_id = fields.String(
        description="Requesting user ID",
        allow_none=True,
    )
    status = fields.String(
        description="Status value for async job",
        allow_none=False,
    )
    result_url = fields.String(
        description="Unique result URL for fetching async query data",
        allow_none=False,
    )


class ChartFavStarResponseResult(Schema):
    id = fields.Integer(description="The Chart id")
    value = fields.Boolean(description="The FaveStar value")


class GetFavStarIdsSchema(Schema):
    result = fields.List(
        fields.Nested(ChartFavStarResponseResult),
        description="A list of results for each corresponding chart in the request",
    )


class ImportV1ChartSchema(Schema):
    slice_name = fields.String(required=True)
    viz_type = fields.String(required=True)
    params = fields.Dict()
    query_context = fields.String(allow_none=True, validate=utils.validate_json)
    cache_timeout = fields.Integer(allow_none=True)
    uuid = fields.UUID(required=True)
    version = fields.String(required=True)
    dataset_uuid = fields.UUID(required=True)
    is_managed_externally = fields.Boolean(allow_none=True, default=False)
    external_url = fields.String(allow_none=True)


CHART_SCHEMAS = (
    ChartDataQueryContextSchema,
    ChartDataResponseSchema,
    ChartDataAsyncResponseSchema,
    # TODO: These should optimally be included in the QueryContext schema as an `anyOf`
    #  in ChartDataPostPricessingOperation.options, but since `anyOf` is not
    #  by Marshmallow<3, this is not currently possible.
    ChartDataAdhocMetricSchema,
    ChartDataAggregateOptionsSchema,
    ChartDataContributionOptionsSchema,
    ChartDataProphetOptionsSchema,
    ChartDataBoxplotOptionsSchema,
    ChartDataPivotOptionsSchema,
    ChartDataRollingOptionsSchema,
    ChartDataSelectOptionsSchema,
    ChartDataSortOptionsSchema,
    ChartDataGeohashDecodeOptionsSchema,
    ChartDataGeohashEncodeOptionsSchema,
    ChartDataGeodeticParseOptionsSchema,
    ChartEntityResponseSchema,
    ChartGetDatasourceResponseSchema,
    ChartCacheScreenshotResponseSchema,
    GetFavStarIdsSchema,
)

相关信息

superset 源码目录

相关文章

superset init 源码

superset api 源码

superset dao 源码

superset filters 源码

superset post_processing 源码

0  赞