superset multiformat_time_series 源码
superset multiformat_time_series 代码
文件路径:/superset/examples/multiformat_time_series.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Dict, Optional, Tuple
import pandas as pd
from sqlalchemy import BigInteger, Date, DateTime, inspect, String
from superset import app, db
from superset.models.slice import Slice
from superset.utils.core import DatasourceType
from ..utils.database import get_example_database
from .helpers import (
get_example_url,
get_slice_json,
get_table_connector_registry,
merge_slice,
misc_dash_slices,
)
def load_multiformat_time_series( # pylint: disable=too-many-locals
only_metadata: bool = False, force: bool = False
) -> None:
"""Loading time series data from a zip file in the repo"""
tbl_name = "multiformat_time_series"
database = get_example_database()
engine = database.get_sqla_engine()
schema = inspect(engine).default_schema_name
table_exists = database.has_table_by_name(tbl_name)
if not only_metadata and (not table_exists or force):
url = get_example_url("multiformat_time_series.json.gz")
pdf = pd.read_json(url, compression="gzip")
# TODO(bkyryliuk): move load examples data into the pytest fixture
if database.backend == "presto":
pdf.ds = pd.to_datetime(pdf.ds, unit="s")
pdf.ds = pdf.ds.dt.strftime("%Y-%m-%d")
pdf.ds2 = pd.to_datetime(pdf.ds2, unit="s")
pdf.ds2 = pdf.ds2.dt.strftime("%Y-%m-%d %H:%M%:%S")
else:
pdf.ds = pd.to_datetime(pdf.ds, unit="s")
pdf.ds2 = pd.to_datetime(pdf.ds2, unit="s")
pdf.to_sql(
tbl_name,
engine,
schema=schema,
if_exists="replace",
chunksize=500,
dtype={
"ds": String(255) if database.backend == "presto" else Date,
"ds2": String(255) if database.backend == "presto" else DateTime,
"epoch_s": BigInteger,
"epoch_ms": BigInteger,
"string0": String(100),
"string1": String(100),
"string2": String(100),
"string3": String(100),
},
index=False,
)
print("Done loading table!")
print("-" * 80)
print(f"Creating table [{tbl_name}] reference")
table = get_table_connector_registry()
obj = db.session.query(table).filter_by(table_name=tbl_name).first()
if not obj:
obj = table(table_name=tbl_name, schema=schema)
obj.main_dttm_col = "ds"
obj.database = database
obj.filter_select_enabled = True
dttm_and_expr_dict: Dict[str, Tuple[Optional[str], None]] = {
"ds": (None, None),
"ds2": (None, None),
"epoch_s": ("epoch_s", None),
"epoch_ms": ("epoch_ms", None),
"string2": ("%Y%m%d-%H%M%S", None),
"string1": ("%Y-%m-%d^%H:%M:%S", None),
"string0": ("%Y-%m-%d %H:%M:%S.%f", None),
"string3": ("%Y/%m/%d%H:%M:%S.%f", None),
}
for col in obj.columns:
dttm_and_expr = dttm_and_expr_dict[col.column_name]
col.python_date_format = dttm_and_expr[0]
col.dbatabase_expr = dttm_and_expr[1]
col.is_dttm = True
db.session.merge(obj)
db.session.commit()
obj.fetch_metadata()
tbl = obj
print("Creating Heatmap charts")
for i, col in enumerate(tbl.columns):
slice_data = {
"metrics": ["count"],
"granularity_sqla": col.column_name,
"row_limit": app.config["ROW_LIMIT"],
"since": "2015",
"until": "2016",
"viz_type": "cal_heatmap",
"domain_granularity": "month",
"subdomain_granularity": "day",
}
slc = Slice(
slice_name=f"Calendar Heatmap multiformat {i}",
viz_type="cal_heatmap",
datasource_type=DatasourceType.TABLE,
datasource_id=tbl.id,
params=get_slice_json(slice_data),
)
merge_slice(slc)
misc_dash_slices.add("Calendar Heatmap multiformat 0")
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦