tidb scalar_function 源码
tidb scalar_function 代码
文件路径:/expression/scalar_function.go
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"bytes"
"fmt"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/hack"
)
// ScalarFunction is the function that returns a value.
type ScalarFunction struct {
FuncName model.CIStr
// RetType is the type that ScalarFunction returns.
// TODO: Implement type inference here, now we use ast's return type temporarily.
RetType *types.FieldType
Function builtinFunc
hashcode []byte
}
// VecEvalInt evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalInt(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalInt(input, result)
}
// VecEvalReal evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalReal(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalReal(input, result)
}
// VecEvalString evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalString(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalString(input, result)
}
// VecEvalDecimal evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalDecimal(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalDecimal(input, result)
}
// VecEvalTime evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalTime(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalTime(input, result)
}
// VecEvalDuration evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalDuration(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalDuration(input, result)
}
// VecEvalJSON evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalJSON(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalJSON(input, result)
}
// GetArgs gets arguments of function.
func (sf *ScalarFunction) GetArgs() []Expression {
return sf.Function.getArgs()
}
// Vectorized returns if this expression supports vectorized evaluation.
func (sf *ScalarFunction) Vectorized() bool {
return sf.Function.vectorized() && sf.Function.isChildrenVectorized()
}
// SupportReverseEval returns if this expression supports reversed evaluation.
func (sf *ScalarFunction) SupportReverseEval() bool {
switch sf.RetType.GetType() {
case mysql.TypeShort, mysql.TypeLong, mysql.TypeLonglong,
mysql.TypeFloat, mysql.TypeDouble, mysql.TypeNewDecimal:
return sf.Function.supportReverseEval() && sf.Function.isChildrenReversed()
}
return false
}
// ReverseEval evaluates the only one column value with given function result.
func (sf *ScalarFunction) ReverseEval(sc *stmtctx.StatementContext, res types.Datum, rType types.RoundingType) (val types.Datum, err error) {
return sf.Function.reverseEval(sc, res, rType)
}
// GetCtx gets the context of function.
func (sf *ScalarFunction) GetCtx() sessionctx.Context {
return sf.Function.getCtx()
}
// String implements fmt.Stringer interface.
func (sf *ScalarFunction) String() string {
var buffer bytes.Buffer
fmt.Fprintf(&buffer, "%s(", sf.FuncName.L)
switch sf.FuncName.L {
case ast.Cast:
for _, arg := range sf.GetArgs() {
buffer.WriteString(arg.String())
buffer.WriteString(", ")
buffer.WriteString(sf.RetType.String())
}
default:
for i, arg := range sf.GetArgs() {
buffer.WriteString(arg.String())
if i+1 != len(sf.GetArgs()) {
buffer.WriteString(", ")
}
}
}
buffer.WriteString(")")
return buffer.String()
}
// MarshalJSON implements json.Marshaler interface.
func (sf *ScalarFunction) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf("%q", sf)), nil
}
// typeInferForNull infers the NULL constants field type and set the field type
// of NULL constant same as other non-null operands.
func typeInferForNull(args []Expression) {
if len(args) < 2 {
return
}
var isNull = func(expr Expression) bool {
cons, ok := expr.(*Constant)
return ok && cons.RetType.GetType() == mysql.TypeNull && cons.Value.IsNull()
}
// Infer the actual field type of the NULL constant.
var retFieldTp *types.FieldType
var hasNullArg bool
for i := len(args) - 1; i >= 0; i-- {
isNullArg := isNull(args[i])
if !isNullArg && retFieldTp == nil {
retFieldTp = args[i].GetType()
}
hasNullArg = hasNullArg || isNullArg
// Break if there are both NULL and non-NULL expression
if hasNullArg && retFieldTp != nil {
break
}
}
if !hasNullArg || retFieldTp == nil {
return
}
for _, arg := range args {
if isNull(arg) {
*arg.GetType() = *retFieldTp
arg.GetType().DelFlag(mysql.NotNullFlag) // Remove NotNullFlag of NullConst
}
}
}
// newFunctionImpl creates a new scalar function or constant.
// fold: 1 means folding constants, while 0 means not,
// -1 means try to fold constants if without errors/warnings, otherwise not.
func newFunctionImpl(ctx sessionctx.Context, fold int, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
if retType == nil {
return nil, errors.Errorf("RetType cannot be nil for ScalarFunction")
}
switch funcName {
case ast.Cast:
return BuildCastFunction(ctx, args[0], retType), nil
case ast.GetVar:
return BuildGetVarFunction(ctx, args[0], retType)
case InternalFuncFromBinary:
return BuildFromBinaryFunction(ctx, args[0], retType), nil
case InternalFuncToBinary:
return BuildToBinaryFunction(ctx, args[0]), nil
case ast.Sysdate:
if ctx.GetSessionVars().SysdateIsNow {
funcName = ast.Now
}
}
fc, ok := funcs[funcName]
if !ok {
db := ctx.GetSessionVars().CurrentDB
if db == "" {
return nil, errors.Trace(ErrNoDB)
}
return nil, errFunctionNotExists.GenWithStackByArgs("FUNCTION", db+"."+funcName)
}
noopFuncsMode := ctx.GetSessionVars().NoopFuncsMode
if noopFuncsMode != variable.OnInt {
if _, ok := noopFuncs[funcName]; ok {
err := ErrFunctionsNoopImpl.GenWithStackByArgs(funcName)
if noopFuncsMode == variable.OffInt {
return nil, err
}
// NoopFuncsMode is Warn, append an error
ctx.GetSessionVars().StmtCtx.AppendWarning(err)
}
}
funcArgs := make([]Expression, len(args))
copy(funcArgs, args)
switch funcName {
case ast.If, ast.Ifnull, ast.Nullif:
// Do nothing. Because it will call InferType4ControlFuncs.
default:
typeInferForNull(funcArgs)
}
f, err := fc.getFunction(ctx, funcArgs)
if err != nil {
return nil, err
}
if builtinRetTp := f.getRetTp(); builtinRetTp.GetType() != mysql.TypeUnspecified || retType.GetType() == mysql.TypeUnspecified {
retType = builtinRetTp
}
sf := &ScalarFunction{
FuncName: model.NewCIStr(funcName),
RetType: retType,
Function: f,
}
if fold == 1 {
return FoldConstant(sf), nil
} else if fold == -1 {
// try to fold constants, and return the original function if errors/warnings occur
sc := ctx.GetSessionVars().StmtCtx
beforeWarns := sc.WarningCount()
newSf := FoldConstant(sf)
afterWarns := sc.WarningCount()
if afterWarns > beforeWarns {
sc.TruncateWarnings(int(beforeWarns))
return sf, nil
}
return newSf, nil
}
return sf, nil
}
// NewFunction creates a new scalar function or constant via a constant folding.
func NewFunction(ctx sessionctx.Context, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, 1, funcName, retType, args...)
}
// NewFunctionBase creates a new scalar function with no constant folding.
func NewFunctionBase(ctx sessionctx.Context, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, 0, funcName, retType, args...)
}
// NewFunctionTryFold creates a new scalar function with trying constant folding.
func NewFunctionTryFold(ctx sessionctx.Context, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, -1, funcName, retType, args...)
}
// NewFunctionInternal is similar to NewFunction, but do not returns error, should only be used internally.
func NewFunctionInternal(ctx sessionctx.Context, funcName string, retType *types.FieldType, args ...Expression) Expression {
expr, err := NewFunction(ctx, funcName, retType, args...)
terror.Log(err)
return expr
}
// ScalarFuncs2Exprs converts []*ScalarFunction to []Expression.
func ScalarFuncs2Exprs(funcs []*ScalarFunction) []Expression {
result := make([]Expression, 0, len(funcs))
for _, col := range funcs {
result = append(result, col)
}
return result
}
// Clone implements Expression interface.
func (sf *ScalarFunction) Clone() Expression {
c := &ScalarFunction{
FuncName: sf.FuncName,
RetType: sf.RetType,
Function: sf.Function.Clone(),
hashcode: sf.hashcode,
}
c.SetCharsetAndCollation(sf.CharsetAndCollation())
c.SetCoercibility(sf.Coercibility())
c.SetRepertoire(sf.Repertoire())
return c
}
// GetType implements Expression interface.
func (sf *ScalarFunction) GetType() *types.FieldType {
return sf.RetType
}
// Equal implements Expression interface.
func (sf *ScalarFunction) Equal(ctx sessionctx.Context, e Expression) bool {
fun, ok := e.(*ScalarFunction)
if !ok {
return false
}
if sf.FuncName.L != fun.FuncName.L {
return false
}
return sf.Function.equal(fun.Function)
}
// IsCorrelated implements Expression interface.
func (sf *ScalarFunction) IsCorrelated() bool {
for _, arg := range sf.GetArgs() {
if arg.IsCorrelated() {
return true
}
}
return false
}
// ConstItem implements Expression interface.
func (sf *ScalarFunction) ConstItem(sc *stmtctx.StatementContext) bool {
// Note: some unfoldable functions are deterministic, we use unFoldableFunctions here for simplification.
if _, ok := unFoldableFunctions[sf.FuncName.L]; ok {
return false
}
for _, arg := range sf.GetArgs() {
if !arg.ConstItem(sc) {
return false
}
}
return true
}
// Decorrelate implements Expression interface.
func (sf *ScalarFunction) Decorrelate(schema *Schema) Expression {
for i, arg := range sf.GetArgs() {
sf.GetArgs()[i] = arg.Decorrelate(schema)
}
return sf
}
// Eval implements Expression interface.
func (sf *ScalarFunction) Eval(row chunk.Row) (d types.Datum, err error) {
var (
res interface{}
isNull bool
)
switch tp, evalType := sf.GetType(), sf.GetType().EvalType(); evalType {
case types.ETInt:
var intRes int64
intRes, isNull, err = sf.EvalInt(sf.GetCtx(), row)
if mysql.HasUnsignedFlag(tp.GetFlag()) {
res = uint64(intRes)
} else {
res = intRes
}
case types.ETReal:
res, isNull, err = sf.EvalReal(sf.GetCtx(), row)
case types.ETDecimal:
res, isNull, err = sf.EvalDecimal(sf.GetCtx(), row)
case types.ETDatetime, types.ETTimestamp:
res, isNull, err = sf.EvalTime(sf.GetCtx(), row)
case types.ETDuration:
res, isNull, err = sf.EvalDuration(sf.GetCtx(), row)
case types.ETJson:
res, isNull, err = sf.EvalJSON(sf.GetCtx(), row)
case types.ETString:
var str string
str, isNull, err = sf.EvalString(sf.GetCtx(), row)
if !isNull && err == nil && tp.GetType() == mysql.TypeEnum {
res, err = types.ParseEnum(tp.GetElems(), str, tp.GetCollate())
if ctx := sf.GetCtx(); ctx != nil {
if sc := ctx.GetSessionVars().StmtCtx; sc != nil {
err = sc.HandleTruncate(err)
}
}
} else {
res = str
}
}
if isNull || err != nil {
d.SetNull()
return d, err
}
d.SetValue(res, sf.RetType)
return
}
// EvalInt implements Expression interface.
func (sf *ScalarFunction) EvalInt(ctx sessionctx.Context, row chunk.Row) (int64, bool, error) {
if f, ok := sf.Function.(builtinFuncNew); ok {
return f.evalIntWithCtx(ctx, row)
}
return sf.Function.evalInt(row)
}
// EvalReal implements Expression interface.
func (sf *ScalarFunction) EvalReal(ctx sessionctx.Context, row chunk.Row) (float64, bool, error) {
return sf.Function.evalReal(row)
}
// EvalDecimal implements Expression interface.
func (sf *ScalarFunction) EvalDecimal(ctx sessionctx.Context, row chunk.Row) (*types.MyDecimal, bool, error) {
return sf.Function.evalDecimal(row)
}
// EvalString implements Expression interface.
func (sf *ScalarFunction) EvalString(ctx sessionctx.Context, row chunk.Row) (string, bool, error) {
return sf.Function.evalString(row)
}
// EvalTime implements Expression interface.
func (sf *ScalarFunction) EvalTime(ctx sessionctx.Context, row chunk.Row) (types.Time, bool, error) {
return sf.Function.evalTime(row)
}
// EvalDuration implements Expression interface.
func (sf *ScalarFunction) EvalDuration(ctx sessionctx.Context, row chunk.Row) (types.Duration, bool, error) {
return sf.Function.evalDuration(row)
}
// EvalJSON implements Expression interface.
func (sf *ScalarFunction) EvalJSON(ctx sessionctx.Context, row chunk.Row) (types.BinaryJSON, bool, error) {
return sf.Function.evalJSON(row)
}
// HashCode implements Expression interface.
func (sf *ScalarFunction) HashCode(sc *stmtctx.StatementContext) []byte {
if len(sf.hashcode) > 0 {
return sf.hashcode
}
ReHashCode(sf, sc)
return sf.hashcode
}
// ReHashCode is used after we change the argument in place.
func ReHashCode(sf *ScalarFunction, sc *stmtctx.StatementContext) {
sf.hashcode = sf.hashcode[:0]
sf.hashcode = append(sf.hashcode, scalarFunctionFlag)
sf.hashcode = codec.EncodeCompactBytes(sf.hashcode, hack.Slice(sf.FuncName.L))
for _, arg := range sf.GetArgs() {
sf.hashcode = append(sf.hashcode, arg.HashCode(sc)...)
}
// Cast is a special case. The RetType should also be considered as an argument.
// Please see `newFunctionImpl()` for detail.
if sf.FuncName.L == ast.Cast {
evalTp := sf.RetType.EvalType()
sf.hashcode = append(sf.hashcode, byte(evalTp))
}
}
// ResolveIndices implements Expression interface.
func (sf *ScalarFunction) ResolveIndices(schema *Schema) (Expression, error) {
newSf := sf.Clone()
err := newSf.resolveIndices(schema)
return newSf, err
}
func (sf *ScalarFunction) resolveIndices(schema *Schema) error {
for _, arg := range sf.GetArgs() {
err := arg.resolveIndices(schema)
if err != nil {
return err
}
}
return nil
}
// ResolveIndicesByVirtualExpr implements Expression interface.
func (sf *ScalarFunction) ResolveIndicesByVirtualExpr(schema *Schema) (Expression, bool) {
newSf := sf.Clone()
isOK := newSf.resolveIndicesByVirtualExpr(schema)
return newSf, isOK
}
func (sf *ScalarFunction) resolveIndicesByVirtualExpr(schema *Schema) bool {
for _, arg := range sf.GetArgs() {
isOk := arg.resolveIndicesByVirtualExpr(schema)
if !isOk {
return false
}
}
return true
}
// RemapColumn remaps columns with provided mapping and returns new expression
func (sf *ScalarFunction) RemapColumn(m map[int64]*Column) (Expression, error) {
newSf, ok := sf.Clone().(*ScalarFunction)
if !ok {
return nil, errors.New("failed to cast to scalar function")
}
for i, arg := range sf.GetArgs() {
newArg, err := arg.RemapColumn(m)
if err != nil {
return nil, err
}
newSf.GetArgs()[i] = newArg
}
// clear hash code
newSf.hashcode = nil
return newSf, nil
}
// GetSingleColumn returns (Col, Desc) when the ScalarFunction is equivalent to (Col, Desc)
// when used as a sort key, otherwise returns (nil, false).
//
// Can only handle:
// - ast.Plus
// - ast.Minus
// - ast.UnaryMinus
func (sf *ScalarFunction) GetSingleColumn(reverse bool) (*Column, bool) {
switch sf.FuncName.String() {
case ast.Plus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp, reverse
case *ScalarFunction:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp.GetSingleColumn(reverse)
case *Constant:
switch rtp := args[1].(type) {
case *Column:
return rtp, reverse
case *ScalarFunction:
return rtp.GetSingleColumn(reverse)
}
}
return nil, false
case ast.Minus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp, reverse
case *ScalarFunction:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp.GetSingleColumn(reverse)
case *Constant:
switch rtp := args[1].(type) {
case *Column:
return rtp, !reverse
case *ScalarFunction:
return rtp.GetSingleColumn(!reverse)
}
}
return nil, false
case ast.UnaryMinus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
return tp, !reverse
case *ScalarFunction:
return tp.GetSingleColumn(!reverse)
}
return nil, false
}
return nil, false
}
// Coercibility returns the coercibility value which is used to check collations.
func (sf *ScalarFunction) Coercibility() Coercibility {
if !sf.Function.HasCoercibility() {
sf.SetCoercibility(deriveCoercibilityForScalarFunc(sf))
}
return sf.Function.Coercibility()
}
// HasCoercibility ...
func (sf *ScalarFunction) HasCoercibility() bool {
return sf.Function.HasCoercibility()
}
// SetCoercibility sets a specified coercibility for this expression.
func (sf *ScalarFunction) SetCoercibility(val Coercibility) {
sf.Function.SetCoercibility(val)
}
// CharsetAndCollation gets charset and collation.
func (sf *ScalarFunction) CharsetAndCollation() (string, string) {
return sf.Function.CharsetAndCollation()
}
// SetCharsetAndCollation sets charset and collation.
func (sf *ScalarFunction) SetCharsetAndCollation(chs, coll string) {
sf.Function.SetCharsetAndCollation(chs, coll)
}
// Repertoire returns the repertoire value which is used to check collations.
func (sf *ScalarFunction) Repertoire() Repertoire {
return sf.Function.Repertoire()
}
// SetRepertoire sets a specified repertoire for this expression.
func (sf *ScalarFunction) SetRepertoire(r Repertoire) {
sf.Function.SetRepertoire(r)
}
const emptyScalarFunctionSize = int64(unsafe.Sizeof(ScalarFunction{}))
// MemoryUsage return the memory usage of ScalarFunction
func (sf *ScalarFunction) MemoryUsage() (sum int64) {
if sf == nil {
return
}
sum = emptyScalarFunctionSize + int64(len(sf.FuncName.L)+len(sf.FuncName.O)) + sf.RetType.MemoryUsage() +
int64(cap(sf.hashcode)) + sf.Function.MemoryUsage()
return sum
}
相关信息
相关文章
tidb builtin_arithmetic_vec 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦