tidb evaluator 源码
tidb evaluator 代码
文件路径:/expression/evaluator.go
// Copyright 2018 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/util/chunk"
)
type columnEvaluator struct {
inputIdxToOutputIdxes map[int][]int
}
// run evaluates "Column" expressions.
// NOTE: It should be called after all the other expressions are evaluated
//
// since it will change the content of the input Chunk.
func (e *columnEvaluator) run(ctx sessionctx.Context, input, output *chunk.Chunk) error {
for inputIdx, outputIdxes := range e.inputIdxToOutputIdxes {
if err := output.SwapColumn(outputIdxes[0], input, inputIdx); err != nil {
return err
}
for i, length := 1, len(outputIdxes); i < length; i++ {
output.MakeRef(outputIdxes[0], outputIdxes[i])
}
}
return nil
}
type defaultEvaluator struct {
outputIdxes []int
exprs []Expression
vectorizable bool
}
func (e *defaultEvaluator) run(ctx sessionctx.Context, input, output *chunk.Chunk) error {
iter := chunk.NewIterator4Chunk(input)
if e.vectorizable {
for i := range e.outputIdxes {
if ctx.GetSessionVars().EnableVectorizedExpression && e.exprs[i].Vectorized() {
if err := evalOneVec(ctx, e.exprs[i], input, output, e.outputIdxes[i]); err != nil {
return err
}
continue
}
err := evalOneColumn(ctx, e.exprs[i], iter, output, e.outputIdxes[i])
if err != nil {
return err
}
}
return nil
}
for row := iter.Begin(); row != iter.End(); row = iter.Next() {
for i := range e.outputIdxes {
err := evalOneCell(ctx, e.exprs[i], row, output, e.outputIdxes[i])
if err != nil {
return err
}
}
}
return nil
}
// EvaluatorSuite is responsible for the evaluation of a list of expressions.
// It separates them to "column" and "other" expressions and evaluates "other"
// expressions before "column" expressions.
type EvaluatorSuite struct {
*columnEvaluator // Evaluator for column expressions.
*defaultEvaluator // Evaluator for other expressions.
}
// NewEvaluatorSuite creates an EvaluatorSuite to evaluate all the exprs.
// avoidColumnEvaluator can be removed after column pool is supported.
func NewEvaluatorSuite(exprs []Expression, avoidColumnEvaluator bool) *EvaluatorSuite {
e := &EvaluatorSuite{}
for i := 0; i < len(exprs); i++ {
if col, isCol := exprs[i].(*Column); isCol && !avoidColumnEvaluator {
if e.columnEvaluator == nil {
e.columnEvaluator = &columnEvaluator{inputIdxToOutputIdxes: make(map[int][]int)}
}
inputIdx, outputIdx := col.Index, i
e.columnEvaluator.inputIdxToOutputIdxes[inputIdx] = append(e.columnEvaluator.inputIdxToOutputIdxes[inputIdx], outputIdx)
continue
}
if e.defaultEvaluator == nil {
e.defaultEvaluator = &defaultEvaluator{
outputIdxes: make([]int, 0, len(exprs)),
exprs: make([]Expression, 0, len(exprs)),
}
}
e.defaultEvaluator.exprs = append(e.defaultEvaluator.exprs, exprs[i])
e.defaultEvaluator.outputIdxes = append(e.defaultEvaluator.outputIdxes, i)
}
if e.defaultEvaluator != nil {
e.defaultEvaluator.vectorizable = Vectorizable(e.defaultEvaluator.exprs)
}
return e
}
// Vectorizable checks whether this EvaluatorSuite can use vectorizd execution mode.
func (e *EvaluatorSuite) Vectorizable() bool {
return e.defaultEvaluator == nil || e.defaultEvaluator.vectorizable
}
// Run evaluates all the expressions hold by this EvaluatorSuite.
// NOTE: "defaultEvaluator" must be evaluated before "columnEvaluator".
func (e *EvaluatorSuite) Run(ctx sessionctx.Context, input, output *chunk.Chunk) error {
if e.defaultEvaluator != nil {
err := e.defaultEvaluator.run(ctx, input, output)
if err != nil {
return err
}
}
if e.columnEvaluator != nil {
return e.columnEvaluator.run(ctx, input, output)
}
return nil
}
相关信息
相关文章
tidb builtin_arithmetic_vec 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦