kafka Frequencies 源码

  • 2022-10-20
  • 浏览 (538)

kafka Frequencies 代码

文件路径:/clients/src/main/java/org/apache/kafka/common/metrics/stats/Frequencies.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.common.metrics.stats;

import org.apache.kafka.common.MetricName;
import org.apache.kafka.common.metrics.CompoundStat;
import org.apache.kafka.common.metrics.Measurable;
import org.apache.kafka.common.metrics.MetricConfig;
import org.apache.kafka.common.metrics.stats.Histogram.BinScheme;
import org.apache.kafka.common.metrics.stats.Histogram.ConstantBinScheme;

import java.util.ArrayList;
import java.util.List;

/**
 * A {@link CompoundStat} that represents a normalized distribution with a {@link Frequency} metric for each
 * bucketed value. The values of the {@link Frequency} metrics specify the frequency of the center value appearing
 * relative to the total number of values recorded.
 * <p>
 * For example, consider a component that records failure or success of an operation using boolean values, with
 * one metric to capture the percentage of operations that failed another to capture the percentage of operations
 * that succeeded.
 * <p>
 * This can be accomplish by created a {@link org.apache.kafka.common.metrics.Sensor Sensor} to record the values,
 * with 0.0 for false and 1.0 for true. Then, create a single {@link Frequencies} object that has two
 * {@link Frequency} metrics: one centered around 0.0 and another centered around 1.0. The {@link Frequencies}
 * object is a {@link CompoundStat}, and so it can be {@link org.apache.kafka.common.metrics.Sensor#add(CompoundStat)
 * added directly to a Sensor} so the metrics are created automatically.
 */
public class Frequencies extends SampledStat implements CompoundStat {

    /**
     * Create a Frequencies instance with metrics for the frequency of a boolean sensor that records 0.0 for
     * false and 1.0 for true.
     *
     * @param falseMetricName the name of the metric capturing the frequency of failures; may be null if not needed
     * @param trueMetricName  the name of the metric capturing the frequency of successes; may be null if not needed
     * @return the Frequencies instance; never null
     * @throws IllegalArgumentException if both {@code falseMetricName} and {@code trueMetricName} are null
     */
    public static Frequencies forBooleanValues(MetricName falseMetricName, MetricName trueMetricName) {
        List<Frequency> frequencies = new ArrayList<>();
        if (falseMetricName != null) {
            frequencies.add(new Frequency(falseMetricName, 0.0));
        }
        if (trueMetricName != null) {
            frequencies.add(new Frequency(trueMetricName, 1.0));
        }
        if (frequencies.isEmpty()) {
            throw new IllegalArgumentException("Must specify at least one metric name");
        }
        Frequency[] frequencyArray = frequencies.toArray(new Frequency[0]);
        return new Frequencies(2, 0.0, 1.0, frequencyArray);
    }

    private final Frequency[] frequencies;
    private final BinScheme binScheme;

    /**
     * Create a Frequencies that captures the values in the specified range into the given number of buckets,
     * where the buckets are centered around the minimum, maximum, and intermediate values.
     *
     * @param buckets     the number of buckets; must be at least 1
     * @param min         the minimum value to be captured
     * @param max         the maximum value to be captured
     * @param frequencies the list of {@link Frequency} metrics, which at most should be one per bucket centered
     *                    on the bucket's value, though not every bucket need to correspond to a metric if the
     *                    value is not needed
     * @throws IllegalArgumentException if any of the {@link Frequency} objects do not have a
     *                                  {@link Frequency#centerValue() center value} within the specified range
     */
    public Frequencies(int buckets, double min, double max, Frequency... frequencies) {
        super(0.0); // initial value is unused by this implementation
        if (max < min) {
            throw new IllegalArgumentException("The maximum value " + max
                                                       + " must be greater than the minimum value " + min);
        }
        if (buckets < 1) {
            throw new IllegalArgumentException("Must be at least 1 bucket");
        }
        if (buckets < frequencies.length) {
            throw new IllegalArgumentException("More frequencies than buckets");
        }
        this.frequencies = frequencies;
        for (Frequency freq : frequencies) {
            if (min > freq.centerValue() || max < freq.centerValue()) {
                throw new IllegalArgumentException("The frequency centered at '" + freq.centerValue()
                                                           + "' is not within the range [" + min + "," + max + "]");
            }
        }
        double halfBucketWidth = (max - min) / (buckets - 1) / 2.0;
        this.binScheme = new ConstantBinScheme(buckets, min - halfBucketWidth, max + halfBucketWidth);
    }

    @Override
    public List<NamedMeasurable> stats() {
        List<NamedMeasurable> ms = new ArrayList<>(frequencies.length);
        for (Frequency frequency : frequencies) {
            final double center = frequency.centerValue();
            ms.add(new NamedMeasurable(frequency.name(), new Measurable() {
                public double measure(MetricConfig config, long now) {
                    return frequency(config, now, center);
                }
            }));
        }
        return ms;
    }

    /**
     * Return the computed frequency describing the number of occurrences of the values in the bucket for the given
     * center point, relative to the total number of occurrences in the samples.
     *
     * @param config      the metric configuration
     * @param now         the current time in milliseconds
     * @param centerValue the value corresponding to the center point of the bucket
     * @return the frequency of the values in the bucket relative to the total number of samples
     */
    public double frequency(MetricConfig config, long now, double centerValue) {
        purgeObsoleteSamples(config, now);
        long totalCount = 0;
        for (Sample sample : samples) {
            totalCount += sample.eventCount;
        }
        if (totalCount == 0) {
            return 0.0d;
        }
        // Add up all of the counts in the bin corresponding to the center value
        float count = 0.0f;
        int binNum = binScheme.toBin(centerValue);
        for (Sample s : samples) {
            HistogramSample sample = (HistogramSample) s;
            float[] hist = sample.histogram.counts();
            count += hist[binNum];
        }
        // Compute the ratio of counts to total counts
        return count / (double) totalCount;
    }

    double totalCount() {
        long count = 0;
        for (Sample sample : samples) {
            count += sample.eventCount;
        }
        return count;
    }

    @Override
    public double combine(List<Sample> samples, MetricConfig config, long now) {
        return totalCount();
    }

    @Override
    protected HistogramSample newSample(long timeMs) {
        return new HistogramSample(binScheme, timeMs);
    }

    @Override
    protected void update(Sample sample, MetricConfig config, double value, long timeMs) {
        HistogramSample hist = (HistogramSample) sample;
        hist.histogram.record(value);
    }

    private static class HistogramSample extends SampledStat.Sample {

        private final Histogram histogram;

        private HistogramSample(BinScheme scheme, long now) {
            super(0.0, now);
            histogram = new Histogram(scheme);
        }

        @Override
        public void reset(long now) {
            super.reset(now);
            histogram.clear();
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka Avg 源码

kafka CumulativeCount 源码

kafka CumulativeSum 源码

kafka Frequency 源码

kafka Histogram 源码

kafka Max 源码

kafka Meter 源码

kafka Min 源码

kafka Percentile 源码

kafka Percentiles 源码

0  赞