spark PrometheusResource 源码
spark PrometheusResource 代码
文件路径:/core/src/main/scala/org/apache/spark/status/api/v1/PrometheusResource.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.status.api.v1
import javax.ws.rs._
import javax.ws.rs.core.MediaType
import org.eclipse.jetty.servlet.{ServletContextHandler, ServletHolder}
import org.glassfish.jersey.server.ServerProperties
import org.glassfish.jersey.servlet.ServletContainer
import org.apache.spark.{SPARK_REVISION, SPARK_VERSION_SHORT}
import org.apache.spark.annotation.Experimental
import org.apache.spark.ui.SparkUI
/**
* :: Experimental ::
* This aims to expose Executor metrics like REST API which is documented in
*
* https://spark.apache.org/docs/3.0.0/monitoring.html#executor-metrics
*
* Note that this is based on ExecutorSummary which is different from ExecutorSource.
*/
@Experimental
@Path("/executors")
private[v1] class PrometheusResource extends ApiRequestContext {
@GET
@Path("prometheus")
@Produces(Array(MediaType.TEXT_PLAIN))
def executors(): String = {
val sb = new StringBuilder
sb.append(s"""spark_info{version="$SPARK_VERSION_SHORT", revision="$SPARK_REVISION"} 1.0\n""")
val store = uiRoot.asInstanceOf[SparkUI].store
store.executorList(true).foreach { executor =>
val prefix = "metrics_executor_"
val labels = Seq(
"application_id" -> store.applicationInfo.id,
"application_name" -> store.applicationInfo.name,
"executor_id" -> executor.id
).map { case (k, v) => s"""$k="$v"""" }.mkString("{", ", ", "}")
sb.append(s"${prefix}rddBlocks$labels ${executor.rddBlocks}\n")
sb.append(s"${prefix}memoryUsed_bytes$labels ${executor.memoryUsed}\n")
sb.append(s"${prefix}diskUsed_bytes$labels ${executor.diskUsed}\n")
sb.append(s"${prefix}totalCores$labels ${executor.totalCores}\n")
sb.append(s"${prefix}maxTasks$labels ${executor.maxTasks}\n")
sb.append(s"${prefix}activeTasks$labels ${executor.activeTasks}\n")
sb.append(s"${prefix}failedTasks_total$labels ${executor.failedTasks}\n")
sb.append(s"${prefix}completedTasks_total$labels ${executor.completedTasks}\n")
sb.append(s"${prefix}totalTasks_total$labels ${executor.totalTasks}\n")
sb.append(s"${prefix}totalDuration_seconds_total$labels ${executor.totalDuration * 0.001}\n")
sb.append(s"${prefix}totalGCTime_seconds_total$labels ${executor.totalGCTime * 0.001}\n")
sb.append(s"${prefix}totalInputBytes_bytes_total$labels ${executor.totalInputBytes}\n")
sb.append(s"${prefix}totalShuffleRead_bytes_total$labels ${executor.totalShuffleRead}\n")
sb.append(s"${prefix}totalShuffleWrite_bytes_total$labels ${executor.totalShuffleWrite}\n")
sb.append(s"${prefix}maxMemory_bytes$labels ${executor.maxMemory}\n")
executor.executorLogs.foreach { case (k, v) => }
executor.memoryMetrics.foreach { m =>
sb.append(s"${prefix}usedOnHeapStorageMemory_bytes$labels ${m.usedOnHeapStorageMemory}\n")
sb.append(s"${prefix}usedOffHeapStorageMemory_bytes$labels ${m.usedOffHeapStorageMemory}\n")
sb.append(s"${prefix}totalOnHeapStorageMemory_bytes$labels ${m.totalOnHeapStorageMemory}\n")
sb.append(s"${prefix}totalOffHeapStorageMemory_bytes$labels " +
s"${m.totalOffHeapStorageMemory}\n")
}
executor.peakMemoryMetrics.foreach { m =>
val names = Array(
"JVMHeapMemory",
"JVMOffHeapMemory",
"OnHeapExecutionMemory",
"OffHeapExecutionMemory",
"OnHeapStorageMemory",
"OffHeapStorageMemory",
"OnHeapUnifiedMemory",
"OffHeapUnifiedMemory",
"DirectPoolMemory",
"MappedPoolMemory",
"ProcessTreeJVMVMemory",
"ProcessTreeJVMRSSMemory",
"ProcessTreePythonVMemory",
"ProcessTreePythonRSSMemory",
"ProcessTreeOtherVMemory",
"ProcessTreeOtherRSSMemory"
)
names.foreach { name =>
sb.append(s"$prefix${name}_bytes$labels ${m.getMetricValue(name)}\n")
}
Seq("MinorGCCount", "MajorGCCount").foreach { name =>
sb.append(s"$prefix${name}_total$labels ${m.getMetricValue(name)}\n")
}
Seq("MinorGCTime", "MajorGCTime").foreach { name =>
sb.append(s"$prefix${name}_seconds_total$labels ${m.getMetricValue(name) * 0.001}\n")
}
}
}
sb.toString
}
}
private[spark] object PrometheusResource {
def getServletHandler(uiRoot: UIRoot): ServletContextHandler = {
val jerseyContext = new ServletContextHandler(ServletContextHandler.NO_SESSIONS)
jerseyContext.setContextPath("/metrics")
val holder: ServletHolder = new ServletHolder(classOf[ServletContainer])
holder.setInitParameter(ServerProperties.PROVIDER_PACKAGES, "org.apache.spark.status.api.v1")
UIRootFromServletContext.setUiRoot(jerseyContext, uiRoot)
jerseyContext.addServlet(holder, "/*")
jerseyContext
}
}
相关信息
相关文章
spark ApplicationListResource 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦