airflow hive 源码
airflow hive 代码
文件路径:/airflow/providers/apache/hive/operators/hive.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import os
import re
from typing import TYPE_CHECKING, Any, Sequence
from airflow.configuration import conf
from airflow.models import BaseOperator
from airflow.providers.apache.hive.hooks.hive import HiveCliHook
from airflow.utils import operator_helpers
from airflow.utils.operator_helpers import context_to_airflow_vars
if TYPE_CHECKING:
from airflow.utils.context import Context
class HiveOperator(BaseOperator):
"""
Executes hql code or hive script in a specific Hive database.
:param hql: the hql to be executed. Note that you may also use
a relative path from the dag file of a (template) hive
script. (templated)
:param hive_cli_conn_id: Reference to the
:ref:`Hive CLI connection id <howto/connection:hive_cli>`. (templated)
:param hiveconfs: if defined, these key value pairs will be passed
to hive as ``-hiveconf "key"="value"``
:param hiveconf_jinja_translate: when True, hiveconf-type templating
${var} gets translated into jinja-type templating {{ var }} and
${hiveconf:var} gets translated into jinja-type templating {{ var }}.
Note that you may want to use this along with the
``DAG(user_defined_macros=myargs)`` parameter. View the DAG
object documentation for more details.
:param script_begin_tag: If defined, the operator will get rid of the
part of the script before the first occurrence of `script_begin_tag`
:param run_as_owner: Run HQL code as a DAG's owner.
:param mapred_queue: queue used by the Hadoop CapacityScheduler. (templated)
:param mapred_queue_priority: priority within CapacityScheduler queue.
Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW
:param mapred_job_name: This name will appear in the jobtracker.
This can make monitoring easier.
"""
template_fields: Sequence[str] = (
'hql',
'schema',
'hive_cli_conn_id',
'mapred_queue',
'hiveconfs',
'mapred_job_name',
'mapred_queue_priority',
)
template_ext: Sequence[str] = (
'.hql',
'.sql',
)
template_fields_renderers = {'hql': 'hql'}
ui_color = '#f0e4ec'
def __init__(
self,
*,
hql: str,
hive_cli_conn_id: str = 'hive_cli_default',
schema: str = 'default',
hiveconfs: dict[Any, Any] | None = None,
hiveconf_jinja_translate: bool = False,
script_begin_tag: str | None = None,
run_as_owner: bool = False,
mapred_queue: str | None = None,
mapred_queue_priority: str | None = None,
mapred_job_name: str | None = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.hql = hql
self.hive_cli_conn_id = hive_cli_conn_id
self.schema = schema
self.hiveconfs = hiveconfs or {}
self.hiveconf_jinja_translate = hiveconf_jinja_translate
self.script_begin_tag = script_begin_tag
self.run_as = None
if run_as_owner:
self.run_as = self.dag.owner
self.mapred_queue = mapred_queue
self.mapred_queue_priority = mapred_queue_priority
self.mapred_job_name = mapred_job_name
job_name_template = conf.get(
'hive',
'mapred_job_name_template',
fallback="Airflow HiveOperator task for {hostname}.{dag_id}.{task_id}.{execution_date}",
)
if job_name_template is None:
raise ValueError("Job name template should be set !")
self.mapred_job_name_template: str = job_name_template
# assigned lazily - just for consistency we can create the attribute with a
# `None` initial value, later it will be populated by the execute method.
# This also makes `on_kill` implementation consistent since it assumes `self.hook`
# is defined.
self.hook: HiveCliHook | None = None
def get_hook(self) -> HiveCliHook:
"""Get Hive cli hook"""
return HiveCliHook(
hive_cli_conn_id=self.hive_cli_conn_id,
run_as=self.run_as,
mapred_queue=self.mapred_queue,
mapred_queue_priority=self.mapred_queue_priority,
mapred_job_name=self.mapred_job_name,
)
def prepare_template(self) -> None:
if self.hiveconf_jinja_translate:
self.hql = re.sub(r"(\$\{(hiveconf:)?([ a-zA-Z0-9_]*)\})", r"{{ \g<3> }}", self.hql)
if self.script_begin_tag and self.script_begin_tag in self.hql:
self.hql = "\n".join(self.hql.split(self.script_begin_tag)[1:])
def execute(self, context: Context) -> None:
self.log.info('Executing: %s', self.hql)
self.hook = self.get_hook()
# set the mapred_job_name if it's not set with dag, task, execution time info
if not self.mapred_job_name:
ti = context['ti']
self.hook.mapred_job_name = self.mapred_job_name_template.format(
dag_id=ti.dag_id,
task_id=ti.task_id,
execution_date=ti.execution_date.isoformat(),
hostname=ti.hostname.split('.')[0],
)
if self.hiveconf_jinja_translate:
self.hiveconfs = context_to_airflow_vars(context)
else:
self.hiveconfs.update(context_to_airflow_vars(context))
self.log.info('Passing HiveConf: %s', self.hiveconfs)
self.hook.run_cli(hql=self.hql, schema=self.schema, hive_conf=self.hiveconfs)
def dry_run(self) -> None:
# Reset airflow environment variables to prevent
# existing env vars from impacting behavior.
self.clear_airflow_vars()
self.hook = self.get_hook()
self.hook.test_hql(hql=self.hql)
def on_kill(self) -> None:
if self.hook:
self.hook.kill()
def clear_airflow_vars(self) -> None:
"""Reset airflow environment variables to prevent existing ones from impacting behavior."""
blank_env_vars = {
value['env_var_format']: '' for value in operator_helpers.AIRFLOW_VAR_NAME_FORMAT_MAPPING.values()
}
os.environ.update(blank_env_vars)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦