greenplumn pathnodes 源码

  • 2022-08-18
  • 浏览 (185)

greenplumn pathnodes 代码

文件路径:/src/include/nodes/pathnodes.h

/*-------------------------------------------------------------------------
 *
 * pathnodes.h
 *	  Definitions for planner's internal data structures, especially Paths.
 *
 *
 * Portions Copyright (c) 2005-2010, Greenplum inc
 * Portions Copyright (c) 2012-Present VMware, Inc. or its affiliates.
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * src/include/nodes/pathnodes.h
 *
 *-------------------------------------------------------------------------
 */
#ifndef PATHNODES_H
#define PATHNODES_H

#include "access/sdir.h"
#include "fmgr.h"
#include "lib/stringinfo.h"
#include "nodes/params.h"
#include "nodes/parsenodes.h"
#include "nodes/plannodes.h"
#include "nodes/primnodes.h"
#include "storage/block.h"
#include "nodes/plannerconfig.h"
#include "cdb/cdbpathlocus.h"
#include "foreign/foreign.h"


/*
 * Relids
 *		Set of relation identifiers (indexes into the rangetable).
 */
typedef Bitmapset *Relids;

/*
 * Estimated costs
 */
typedef double EstimatedBytes;  /* an estimated number of bytes */

/*
 * When looking for a "cheapest path", this enum specifies whether we want
 * cheapest startup cost or cheapest total cost.
 */
typedef enum CostSelector
{
	STARTUP_COST, TOTAL_COST
} CostSelector;

/*
 * The cost estimate produced by cost_qual_eval() includes both a one-time
 * (startup) cost, and a per-tuple cost.
 */
typedef struct QualCost
{
	Cost		startup;		/* one-time cost */
	Cost		per_tuple;		/* per-evaluation cost */
} QualCost;

/*
 * Costing aggregate function execution requires these statistics about
 * the aggregates to be executed by a given Agg node.  Note that the costs
 * include the execution costs of the aggregates' argument expressions as
 * well as the aggregate functions themselves.  Also, the fields must be
 * defined so that initializing the struct to zeroes with memset is correct.
 */
typedef struct AggClauseCosts
{
	int			numAggs;		/* total number of aggregate functions */
	int			numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
	int			numPureOrderedAggs; /* CDB: number that use ORDER BY/WITHIN GROUP, not counting DISTINCT */
	bool		hasNonCombine;	/* CDB: any agg func w/o a combine func? */
	bool		hasNonPartial;	/* does any agg not support partial mode? */
	bool		hasNonSerial;	/* is any partial agg non-serializable? */
	QualCost	transCost;		/* total per-input-row execution costs */
	QualCost	finalCost;		/* total per-aggregated-row costs */
	Size		transitionSpace;	/* space for pass-by-ref transition data */

	List	   *distinctAggrefs;	/* CDB: List of Aggrfefs with aggdistinct */
} AggClauseCosts;

/*
 * This enum identifies the different types of "upper" (post-scan/join)
 * relations that we might deal with during planning.
 */
typedef enum UpperRelationKind
{
	UPPERREL_SETOP,				/* result of UNION/INTERSECT/EXCEPT, if any */
	UPPERREL_PARTIAL_GROUP_AGG, /* result of partial grouping/aggregation, if
								 * any */
	UPPERREL_GROUP_AGG,			/* result of grouping/aggregation, if any */
	UPPERREL_CDB_FIRST_STAGE_GROUP_AGG,
	UPPERREL_WINDOW,			/* result of window functions, if any */
	UPPERREL_DISTINCT,			/* result of "SELECT DISTINCT", if any */
	UPPERREL_CDB_FIRST_STAGE_DISTINCT,
	UPPERREL_ORDERED,			/* result of ORDER BY, if any */
	UPPERREL_FINAL				/* result of any remaining top-level actions */
	/* NB: UPPERREL_FINAL must be last enum entry; it's used to size arrays */
} UpperRelationKind;

/*
 * This enum identifies which type of relation is being planned through the
 * inheritance planner.  INHKIND_NONE indicates the inheritance planner
 * was not used.
 */
typedef enum InheritanceKind
{
	INHKIND_NONE,
	INHKIND_INHERITED,
	INHKIND_PARTITIONED
} InheritanceKind;

/*
 * ApplyShareInputContext is used in different stages of ShareInputScan
 * processing. This is mostly used as working area during the stages, but
 * some information is also carried through multiple stages.
 */
typedef struct ApplyShareInputContextPerShare
{
	int			producer_slice_id;
	Bitmapset  *participant_slices;
} ApplyShareInputContextPerShare;

typedef struct ApplyShareInputContext
{
	/* curr_rtable is used by all stages when traversing into subqueries */
	List	   *curr_rtable;

	/*
	 * Populated in dag_to_tree() (or collect_shareinput_producers() for ORCA),
	 * used in replace_shareinput_targetlists()
	 */
	Plan	  **shared_plans;
	int			shared_input_count;

	/*
	 * State for replace_shareinput_targetlists()
	 */
	int		   *share_refcounts;
	int			share_refcounts_sz;		/* allocated sized of 'share_refcounts' */

	/*
	 * State for apply_sharinput_xslice() walkers.
	 */
	PlanSlice  *slices;			/* root->glob->slices */
	List	   *motStack;		/* stack of motionIds leading to current node */
	ApplyShareInputContextPerShare *shared_inputs; /* one for each share */
	Bitmapset  *qdShares;		/* share_ids that are referenced from QD slices */

} ApplyShareInputContext;

/*----------
 * PlannerGlobal
 *		Global information for planning/optimization
 *
 * PlannerGlobal holds state for an entire planner invocation; this state
 * is shared across all levels of sub-Queries that exist in the command being
 * planned.
 *----------
 */
typedef struct PlannerGlobal
{
	NodeTag		type;

	ParamListInfo boundParams;	/* Param values provided to planner() */

	List	   *subplans;		/* Plans for SubPlan nodes */

	List	   *subroots;		/* PlannerInfos for SubPlan nodes */

	int		   *subplan_sliceIds;	/* slice IDs for SubPlan nodes. */

	Bitmapset  *rewindPlanIDs;	/* indices of subplans that require REWIND */

	List	   *finalrtable;	/* "flat" rangetable for executor */

	List	   *finalrowmarks;	/* "flat" list of PlanRowMarks */

	List	   *resultRelations;	/* "flat" list of integer RT indexes */

	List	   *rootResultRelations;	/* "flat" list of integer RT indexes */

	List	   *relationOids;	/* OIDs of relations the plan depends on */

	List	   *invalItems;		/* other dependencies, as PlanInvalItems */

	List	   *paramExecTypes; /* type OIDs for PARAM_EXEC Params */

	Index		lastPHId;		/* highest PlaceHolderVar ID assigned */

	Index		lastRowMarkId;	/* highest PlanRowMark ID assigned */

	int			lastPlanNodeId; /* highest plan node ID assigned */

	bool		transientPlan;	/* redo plan when TransactionXmin changes? */
	bool		oneoffPlan;		/* redo plan on every execution? */
	Oid			simplyUpdatableRel; /* if valid, query can be used with CURRENT OF for this rel */

	ApplyShareInputContext share;	/* workspace for GPDB plan sharing */

	bool		dependsOnRole;	/* is plan specific to current role? */

	bool		parallelModeOK; /* parallel mode potentially OK? */

	bool		parallelModeNeeded; /* parallel mode actually required? */

	char		maxParallelHazard;	/* worst PROPARALLEL hazard level */

	PartitionDirectory partition_directory; /* partition descriptors */

	/* GPDB: flags to support COPY's IGNORE EXTERNAL PARTITIONS option. */
	bool		skip_foreign_partitions;	/* don't expand foreign partitions */
	bool		foreign_partition_was_skipped; /* foreign partition was skipped */
	bool		is_parallel_cursor;

	/*
	 * Slice table. Built by cdbllize_build_slice_table() near the end of
	 * planning, and copied to the final PlannedStmt.
	 */
	int			numSlices;
	struct PlanSlice *slices;

} PlannerGlobal;

/*----------
 * PlannerInfo
 *		Per-query information for planning/optimization
 *
 * This struct is conventionally called "root" in all the planner routines.
 * It holds links to all of the planner's working state, in addition to the
 * original Query.  Note that at present the planner extensively modifies
 * the passed-in Query data structure; someday that should stop.
 *
 * For reasons explained in optimizer/optimizer.h, we define the typedef
 * either here or in that header, whichever is read first.
 *----------
 */
#ifndef HAVE_PLANNERINFO_TYPEDEF
typedef struct PlannerInfo PlannerInfo;
#define HAVE_PLANNERINFO_TYPEDEF 1
#endif

struct PlannerInfo
{
	NodeTag		type;

	Query	   *parse;			/* the Query being planned */

	PlannerGlobal *glob;		/* global info for current planner run */

	Index		query_level;	/* 1 at the outermost Query */

	PlannerInfo *parent_root;	/* NULL at outermost Query */

	/*
	 * plan_params contains the expressions that this query level needs to
	 * make available to a lower query level that is currently being planned.
	 * outer_params contains the paramIds of PARAM_EXEC Params that outer
	 * query levels will make available to this query level.
	 */
	List	   *plan_params;	/* list of PlannerParamItems, see below */
	Bitmapset  *outer_params;

	/*
	 * simple_rel_array holds pointers to "base rels" and "other rels" (see
	 * comments for RelOptInfo for more info).  It is indexed by rangetable
	 * index (so entry 0 is always wasted).  Entries can be NULL when an RTE
	 * does not correspond to a base relation, such as a join RTE or an
	 * unreferenced view RTE; or if the RelOptInfo hasn't been made yet.
	 */
	struct RelOptInfo **simple_rel_array;	/* All 1-rel RelOptInfos */
	int			simple_rel_array_size;	/* allocated size of array */

	/*
	 * simple_rte_array is the same length as simple_rel_array and holds
	 * pointers to the associated rangetable entries.  This lets us avoid
	 * rt_fetch(), which can be a bit slow once large inheritance sets have
	 * been expanded.
	 */
	RangeTblEntry **simple_rte_array;	/* rangetable as an array */

	/*
	 * append_rel_array is the same length as the above arrays, and holds
	 * pointers to the corresponding AppendRelInfo entry indexed by
	 * child_relid, or NULL if none.  The array itself is not allocated if
	 * append_rel_list is empty.
	 */
	struct AppendRelInfo **append_rel_array;

	/*
	 * all_baserels is a Relids set of all base relids (but not "other"
	 * relids) in the query; that is, the Relids identifier of the final join
	 * we need to form.  This is computed in make_one_rel, just before we
	 * start making Paths.
	 */
	Relids		all_baserels;

	/*
	 * nullable_baserels is a Relids set of base relids that are nullable by
	 * some outer join in the jointree; these are rels that are potentially
	 * nullable below the WHERE clause, SELECT targetlist, etc.  This is
	 * computed in deconstruct_jointree.
	 */
	Relids		nullable_baserels;

	/*
	 * join_rel_list is a list of all join-relation RelOptInfos we have
	 * considered in this planning run.  For small problems we just scan the
	 * list to do lookups, but when there are many join relations we build a
	 * hash table for faster lookups.  The hash table is present and valid
	 * when join_rel_hash is not NULL.  Note that we still maintain the list
	 * even when using the hash table for lookups; this simplifies life for
	 * GEQO.
	 */
	List	   *join_rel_list;	/* list of join-relation RelOptInfos */
	struct HTAB *join_rel_hash; /* optional hashtable for join relations */

	/*
	 * When doing a dynamic-programming-style join search, join_rel_level[k]
	 * is a list of all join-relation RelOptInfos of level k, and
	 * join_cur_level is the current level.  New join-relation RelOptInfos are
	 * automatically added to the join_rel_level[join_cur_level] list.
	 * join_rel_level is NULL if not in use.
	 */
	List	  **join_rel_level; /* lists of join-relation RelOptInfos */
	int			join_cur_level; /* index of list being extended */

	List	   *init_plans;		/* init SubPlans for query */

	List	   *cte_plan_ids;	/* per-CTE-item list of subplan IDs */

	List	   *multiexpr_params;	/* List of Lists of Params for MULTIEXPR
									 * subquery outputs */

	List	   *eq_classes;		/* list of active EquivalenceClasses */

	List	   *non_eq_clauses;	/* list of non-equivalence clauses */

	List	   *canon_pathkeys; /* list of "canonical" PathKeys */

	List       *list_cteplaninfo; /* list of CtePlannerInfo, one for each CTE */

	/*
	 * Outer join info
	 */
	List	   *left_join_clauses;	/* list of RestrictInfos for mergejoinable
									 * outer join clauses w/nonnullable var on
									 * left */

	List	   *right_join_clauses; /* list of RestrictInfos for mergejoinable
									 * outer join clauses w/nonnullable var on
									 * right */

	List	   *full_join_clauses;	/* list of RestrictInfos for mergejoinable
									 * full join clauses */

	List	   *join_info_list; /* list of SpecialJoinInfos */

	/*
	 * Note: for AppendRelInfos describing partitions of a partitioned table,
	 * we guarantee that partitions that come earlier in the partitioned
	 * table's PartitionDesc will appear earlier in append_rel_list.
	 */
	List	   *append_rel_list;	/* list of AppendRelInfos */

	List	   *rowMarks;		/* list of PlanRowMarks */

	List	   *placeholder_list;	/* list of PlaceHolderInfos */

	List	   *fkey_list;		/* list of ForeignKeyOptInfos */

	List	   *query_pathkeys; /* desired pathkeys for query_planner() */

	List	   *group_pathkeys; /* groupClause pathkeys, if any */
	List	   *window_pathkeys;	/* pathkeys of bottom window, if any */
	List	   *distinct_pathkeys;	/* distinctClause pathkeys, if any */
	List	   *sort_pathkeys;	/* sortClause pathkeys, if any */

	List	   *part_schemes;	/* Canonicalised partition schemes used in the
								 * query. */

	/* hint on where the result of the query will be needed. Null if not known */
	CdbPathLocus final_locus;

	List	   *initial_rels;	/* RelOptInfos we are now trying to join */

	/* Use fetch_upper_rel() to get any particular upper rel */
	List	   *upper_rels[UPPERREL_FINAL + 1]; /* upper-rel RelOptInfos */

	/* Result tlists chosen by grouping_planner for upper-stage processing */
	struct PathTarget *upper_targets[UPPERREL_FINAL + 1];

	/*
	 * The fully-processed targetlist is kept here.  It differs from
	 * parse->targetList in that (for INSERT and UPDATE) it's been reordered
	 * to match the target table, and defaults have been filled in.  Also,
	 * additional resjunk targets may be present.  preprocess_targetlist()
	 * does most of this work, but note that more resjunk targets can get
	 * added during appendrel expansion.  (Hence, upper_targets mustn't get
	 * set up till after that.)
	 */
	List	   *processed_tlist;

	/* Fields filled during create_plan() for use in setrefs.c */
	AttrNumber *grouping_map;	/* for GroupingFunc fixup */
	int			grouping_map_size;
	List	   *minmax_aggs;	/* List of MinMaxAggInfos */

	MemoryContext planner_cxt;	/* context holding PlannerInfo */

	double		total_table_pages;	/* # of pages in all non-dummy tables of
									 * query */

	double		tuple_fraction; /* tuple_fraction passed to query_planner */
	double		limit_tuples;	/* limit_tuples passed to query_planner */

	Index		qual_security_level;	/* minimum security_level for quals */
	/* Note: qual_security_level is zero if there are no securityQuals */

	InheritanceKind inhTargetKind;	/* indicates if the target relation is an
									 * inheritance child or partition or a
									 * partitioned table */
	bool		hasJoinRTEs;	/* true if any RTEs are RTE_JOIN kind */
	bool		hasLateralRTEs; /* true if any RTEs are marked LATERAL */
	bool		hasHavingQual;	/* true if havingQual was non-null */
	bool		hasPseudoConstantQuals; /* true if any RestrictInfo has
										 * pseudoconstant = true */
	bool		hasRecursion;	/* true if planning a recursive WITH item */

	/* These fields are used only when hasRecursion is true: */
	int			wt_param_id;	/* PARAM_EXEC ID for the work table */
	struct Path *non_recursive_path;	/* a path for non-recursive term */

	/* These fields are workspace for createplan.c */
	Relids		curOuterRels;	/* outer rels above current node */
	List	   *curOuterParams; /* not-yet-assigned NestLoopParams */
	int			numMotions;

	PlanSlice  *curSlice;

	PlannerConfig *config;		/* Planner configuration */

	/*
	 * Join pruning bookkeeping for create_plan(). Stack of candidate joins
	 * above current node that can be used for join partition pruning.
	 *
	 * GPDB_13_MERGE_FIXME: this is currently used as a stack with
	 * lcons() and list_delete_first(). With v13 and commits 1cff1b95ab
	 * and d97b714a21, we should use lappend() and list_delete_last()
	 * instead, for performance.
	 */
	List	   *partition_selector_candidates;

	/* optional private data for join_search_hook, e.g., GEQO */
	void	   *join_search_private;

	/* Does this query modify any partition key columns? */
	bool		partColsUpdated;

	int			upd_del_replicated_table;
	bool		is_split_update;	/* true if UPDATE that modifies
									 * distribution key columns */
	bool		is_correlated_subplan; /* true for correlated subqueries nested within subplans */
};

/*
 * CtePlanInfo
 *    Information for subplans that are associated with a CTE.
 */
typedef struct CtePlanInfo
{
	/*
	 * A subplan, prepared for sharing among many CTE references by
	 * prepare_plan_for_sharing(), that implements the CTE. NULL if the
	 * CTE is not shared among references.
	 */
	Plan *shared_plan;

	/*
	 * The subroot corresponding to the subplan.
	 */
	PlannerInfo *subroot;
} CtePlanInfo;

/*
 * This is used in create_plan_recurse() to keep track of joins above
 * the current node that could be used for join partition pruning.
 */
typedef struct
{
	List	   *joinrestrictinfo;

	PlanSlice  *slice;			/* slice containing the join */

	Relids		inner_relids;	/* rels on the inner side of the join
								 * that can provide vars for pruning */

	List	   *selectors;	/* list of PartitionSelectorInfos */

} PartitionSelectorCandidateInfo;

typedef struct
{
	/* Has this selector been connected to an Append node? */
	int			paramid;
	struct PartitionPruneInfo *part_prune_info;
} PartitionSelectorInfo;


/*
 * In places where it's known that simple_rte_array[] must have been prepared
 * already, we just index into it to fetch RTEs.  In code that might be
 * executed before or after entering query_planner(), use this macro.
 */
#define planner_rt_fetch(rti, root) \
	((root)->simple_rte_array ? (root)->simple_rte_array[rti] : \
	 rt_fetch(rti, (root)->parse->rtable))

/*
 * If multiple relations are partitioned the same way, all such partitions
 * will have a pointer to the same PartitionScheme.  A list of PartitionScheme
 * objects is attached to the PlannerInfo.  By design, the partition scheme
 * incorporates only the general properties of the partition method (LIST vs.
 * RANGE, number of partitioning columns and the type information for each)
 * and not the specific bounds.
 *
 * We store the opclass-declared input data types instead of the partition key
 * datatypes since the former rather than the latter are used to compare
 * partition bounds. Since partition key data types and the opclass declared
 * input data types are expected to be binary compatible (per ResolveOpClass),
 * both of those should have same byval and length properties.
 */
typedef struct PartitionSchemeData
{
	char		strategy;		/* partition strategy */
	int16		partnatts;		/* number of partition attributes */
	Oid		   *partopfamily;	/* OIDs of operator families */
	Oid		   *partopcintype;	/* OIDs of opclass declared input data types */
	Oid		   *partcollation;	/* OIDs of partitioning collations */

	/* Cached information about partition key data types. */
	int16	   *parttyplen;
	bool	   *parttypbyval;

	/* Cached information about partition comparison functions. */
	FmgrInfo   *partsupfunc;
}			PartitionSchemeData;

typedef struct PartitionSchemeData *PartitionScheme;

/*
 * Fetch the Plan associated with a SubPlan node during planning.
 */
static inline struct Plan *planner_subplan_get_plan(struct PlannerInfo *root, SubPlan *subplan) 
{
	return (Plan *) list_nth(root->glob->subplans, subplan->plan_id - 1);
}

/**
 * Fetch the root (PlannerInfo) for a subplan
 */
static inline struct PlannerInfo *planner_subplan_get_root(struct PlannerInfo *root, SubPlan *subplan)
{
	return (PlannerInfo *) list_nth(root->glob->subroots, subplan->plan_id - 1);
}

/*
 * Rewrite the Plan associated with a SubPlan node during planning.
 */
static inline void planner_subplan_put_plan(struct PlannerInfo *root, SubPlan *subplan, Plan *plan) 
{
	ListCell *cell = list_nth_cell(root->glob->subplans, subplan->plan_id-1);
	cell->data.ptr_value = plan;
}

/*----------
 * RelOptInfo
 *		Per-relation information for planning/optimization
 *
 * For planning purposes, a "base rel" is either a plain relation (a table)
 * or the output of a sub-SELECT or function that appears in the range table.
 * In either case it is uniquely identified by an RT index.  A "joinrel"
 * is the joining of two or more base rels.  A joinrel is identified by
 * the set of RT indexes for its component baserels.  We create RelOptInfo
 * nodes for each baserel and joinrel, and store them in the PlannerInfo's
 * simple_rel_array and join_rel_list respectively.
 *
 * Note that there is only one joinrel for any given set of component
 * baserels, no matter what order we assemble them in; so an unordered
 * set is the right datatype to identify it with.
 *
 * We also have "other rels", which are like base rels in that they refer to
 * single RT indexes; but they are not part of the join tree, and are given
 * a different RelOptKind to identify them.
 * Currently the only kind of otherrels are those made for member relations
 * of an "append relation", that is an inheritance set or UNION ALL subquery.
 * An append relation has a parent RTE that is a base rel, which represents
 * the entire append relation.  The member RTEs are otherrels.  The parent
 * is present in the query join tree but the members are not.  The member
 * RTEs and otherrels are used to plan the scans of the individual tables or
 * subqueries of the append set; then the parent baserel is given Append
 * and/or MergeAppend paths comprising the best paths for the individual
 * member rels.  (See comments for AppendRelInfo for more information.)
 *
 * At one time we also made otherrels to represent join RTEs, for use in
 * handling join alias Vars.  Currently this is not needed because all join
 * alias Vars are expanded to non-aliased form during preprocess_expression.
 *
 * We also have relations representing joins between child relations of
 * different partitioned tables. These relations are not added to
 * join_rel_level lists as they are not joined directly by the dynamic
 * programming algorithm.
 *
 * There is also a RelOptKind for "upper" relations, which are RelOptInfos
 * that describe post-scan/join processing steps, such as aggregation.
 * Many of the fields in these RelOptInfos are meaningless, but their Path
 * fields always hold Paths showing ways to do that processing step.
 *
 * Lastly, there is a RelOptKind for "dead" relations, which are base rels
 * that we have proven we don't need to join after all.
 *
 * Parts of this data structure are specific to various scan and join
 * mechanisms.  It didn't seem worth creating new node types for them.
 *
 *		relids - Set of base-relation identifiers; it is a base relation
 *				if there is just one, a join relation if more than one
 *		rows - estimated number of tuples in the relation after restriction
 *			   clauses have been applied (ie, output rows of a plan for it)
 *		consider_startup - true if there is any value in keeping plain paths for
 *						   this rel on the basis of having cheap startup cost
 *		consider_param_startup - the same for parameterized paths
 *		reltarget - Default Path output tlist for this rel; normally contains
 *					Var and PlaceHolderVar nodes for the values we need to
 *					output from this relation.
 *					List is in no particular order, but all rels of an
 *					appendrel set must use corresponding orders.
 *					NOTE: in an appendrel child relation, may contain
 *					arbitrary expressions pulled up from a subquery!
 *		pathlist - List of Path nodes, one for each potentially useful
 *				   method of generating the relation
 *		ppilist - ParamPathInfo nodes for parameterized Paths, if any
 *		cheapest_startup_path - the pathlist member with lowest startup cost
 *			(regardless of ordering) among the unparameterized paths;
 *			or NULL if there is no unparameterized path
 *		cheapest_total_path - the pathlist member with lowest total cost
 *			(regardless of ordering) among the unparameterized paths;
 *			or if there is no unparameterized path, the path with lowest
 *			total cost among the paths with minimum parameterization
 *		cheapest_unique_path - for caching cheapest path to produce unique
 *			(no duplicates) output from relation; NULL if not yet requested
 *		cheapest_parameterized_paths - best paths for their parameterizations;
 *			always includes cheapest_total_path, even if that's unparameterized
 *		direct_lateral_relids - rels this rel has direct LATERAL references to
 *		lateral_relids - required outer rels for LATERAL, as a Relids set
 *			(includes both direct and indirect lateral references)
 *
 * If the relation is a base relation it will have these fields set:
 *
 *		relid - RTE index (this is redundant with the relids field, but
 *				is provided for convenience of access)
 *		rtekind - copy of RTE's rtekind field
 *		min_attr, max_attr - range of valid AttrNumbers for rel
 *		attr_needed - array of bitmapsets indicating the highest joinrel
 *				in which each attribute is needed; if bit 0 is set then
 *				the attribute is needed as part of final targetlist
 *		attr_widths - cache space for per-attribute width estimates;
 *					  zero means not computed yet
 *		lateral_vars - lateral cross-references of rel, if any (list of
 *					   Vars and PlaceHolderVars)
 *		lateral_referencers - relids of rels that reference this one laterally
 *				(includes both direct and indirect lateral references)
 *		indexlist - list of IndexOptInfo nodes for relation's indexes
 *					(always NIL if it's not a table)
 *		pages - number of disk pages in relation (zero if not a table)
 *		tuples - number of tuples in relation (not considering restrictions)
 *		allvisfrac - fraction of disk pages that are marked all-visible
 *		subroot - PlannerInfo for subquery (NULL if it's not a subquery)
 *		subplan_params - list of PlannerParamItems to be passed to subquery
 *
 *		Note: for a subquery, tuples and subroot are not set immediately
 *		upon creation of the RelOptInfo object; they are filled in when
 *		set_subquery_pathlist processes the object.
 *
 *		For otherrels that are appendrel members, these fields are filled
 *		in just as for a baserel, except we don't bother with lateral_vars.
 *
 * If the relation is either a foreign table or a join of foreign tables that
 * all belong to the same foreign server and are assigned to the same user to
 * check access permissions as (cf checkAsUser), these fields will be set:
 *
 *		serverid - OID of foreign server, if foreign table (else InvalidOid)
 *		userid - OID of user to check access as (InvalidOid means current user)
 *		useridiscurrent - we've assumed that userid equals current user
 *		fdwroutine - function hooks for FDW, if foreign table (else NULL)
 *		fdw_private - private state for FDW, if foreign table (else NULL)
 *
 * Two fields are used to cache knowledge acquired during the join search
 * about whether this rel is provably unique when being joined to given other
 * relation(s), ie, it can have at most one row matching any given row from
 * that join relation.  Currently we only attempt such proofs, and thus only
 * populate these fields, for base rels; but someday they might be used for
 * join rels too:
 *
 *		unique_for_rels - list of Relid sets, each one being a set of other
 *					rels for which this one has been proven unique
 *		non_unique_for_rels - list of Relid sets, each one being a set of
 *					other rels for which we have tried and failed to prove
 *					this one unique
 *
 * The presence of the following fields depends on the restrictions
 * and joins that the relation participates in:
 *
 *		baserestrictinfo - List of RestrictInfo nodes, containing info about
 *					each non-join qualification clause in which this relation
 *					participates (only used for base rels)
 *		baserestrictcost - Estimated cost of evaluating the baserestrictinfo
 *					clauses at a single tuple (only used for base rels)
 *		baserestrict_min_security - Smallest security_level found among
 *					clauses in baserestrictinfo
 *		joininfo  - List of RestrictInfo nodes, containing info about each
 *					join clause in which this relation participates (but
 *					note this excludes clauses that might be derivable from
 *					EquivalenceClasses)
 *		has_eclass_joins - flag that EquivalenceClass joins are possible
 *
 * Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
 * base rels, because for a join rel the set of clauses that are treated as
 * restrict clauses varies depending on which sub-relations we choose to join.
 * (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
 * treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
 * if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
 * and should not be processed again at the level of {1 2 3}.)	Therefore,
 * the restrictinfo list in the join case appears in individual JoinPaths
 * (field joinrestrictinfo), not in the parent relation.  But it's OK for
 * the RelOptInfo to store the joininfo list, because that is the same
 * for a given rel no matter how we form it.
 *
 * We store baserestrictcost in the RelOptInfo (for base relations) because
 * we know we will need it at least once (to price the sequential scan)
 * and may need it multiple times to price index scans.
 *
 * If the relation is partitioned, these fields will be set:
 *
 *		part_scheme - Partitioning scheme of the relation
 *		nparts - Number of partitions
 *		boundinfo - Partition bounds
 *		partition_qual - Partition constraint if not the root
 *		part_rels - RelOptInfos for each partition
 *		partexprs, nullable_partexprs - Partition key expressions
 *		partitioned_child_rels - RT indexes of unpruned partitions of
 *								 this relation that are partitioned tables
 *								 themselves, in hierarchical order
 *
 * Note: A base relation always has only one set of partition keys, but a join
 * relation may have as many sets of partition keys as the number of relations
 * being joined. partexprs and nullable_partexprs are arrays containing
 * part_scheme->partnatts elements each. Each of these elements is a list of
 * partition key expressions.  For a base relation each list in partexprs
 * contains only one expression and nullable_partexprs is not populated. For a
 * join relation, partexprs and nullable_partexprs contain partition key
 * expressions from non-nullable and nullable relations resp. Lists at any
 * given position in those arrays together contain as many elements as the
 * number of joining relations.
 *
 * GPDB: Even if the relation is distributed, 'rows', 'tuples' and 'pages' are
 * totals are across all segments. Divide by cdbpolicy->numsegments to get the
 * sizes of a distributed scan node.
 *----------
 */
typedef enum RelOptKind
{
	RELOPT_BASEREL,
	RELOPT_JOINREL,
	RELOPT_OTHER_MEMBER_REL,
	RELOPT_OTHER_JOINREL,
	RELOPT_UPPER_REL,
	RELOPT_OTHER_UPPER_REL,
	RELOPT_DEADREL
} RelOptKind;

/*
 * Is the given relation a simple relation i.e a base or "other" member
 * relation?
 */
#define IS_SIMPLE_REL(rel) \
	((rel)->reloptkind == RELOPT_BASEREL || \
	 (rel)->reloptkind == RELOPT_OTHER_MEMBER_REL)

/* Is the given relation a join relation? */
#define IS_JOIN_REL(rel)	\
	((rel)->reloptkind == RELOPT_JOINREL || \
	 (rel)->reloptkind == RELOPT_OTHER_JOINREL)

/* Is the given relation an upper relation? */
#define IS_UPPER_REL(rel)	\
	((rel)->reloptkind == RELOPT_UPPER_REL || \
	 (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)

/* Is the given relation an "other" relation? */
#define IS_OTHER_REL(rel) \
	((rel)->reloptkind == RELOPT_OTHER_MEMBER_REL || \
	 (rel)->reloptkind == RELOPT_OTHER_JOINREL || \
	 (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)

typedef struct RelOptInfo
{
	NodeTag		type;

	RelOptKind	reloptkind;

	/* all relations included in this RelOptInfo */
	Relids		relids;			/* set of base relids (rangetable indexes) */

	/* size estimates generated by planner */
	double		rows;			/* estimated number of result tuples */

	/* per-relation planner control flags */
	bool		consider_startup;	/* keep cheap-startup-cost paths? */
	bool		consider_param_startup; /* ditto, for parameterized paths? */
	bool		consider_parallel;	/* consider parallel paths? */

	/* default result targetlist for Paths scanning this relation */
	struct PathTarget *reltarget;	/* list of Vars/Exprs, cost, width */

	/* materialization information */
	List	   *pathlist;		/* Path structures */
	List	   *ppilist;		/* ParamPathInfos used in pathlist */
	List	   *partial_pathlist;	/* partial Paths */
	struct Path *cheapest_startup_path;
	struct Path *cheapest_total_path;
	struct Path *cheapest_unique_path;
	List	   *cheapest_parameterized_paths;

	/* parameterization information needed for both base rels and join rels */
	/* (see also lateral_vars and lateral_referencers) */
	Relids		direct_lateral_relids;	/* rels directly laterally referenced */
	Relids		lateral_relids; /* minimum parameterization of rel */

	/* information about a base rel (not set for join rels!) */
	Index		relid;
	Oid			reltablespace;	/* containing tablespace */
	RTEKind		rtekind;		/* RELATION, SUBQUERY, FUNCTION, etc */
	AttrNumber	min_attr;		/* smallest attrno of rel (often <0) */
	AttrNumber	max_attr;		/* largest attrno of rel */
	Relids	   *attr_needed;	/* array indexed [min_attr .. max_attr] */
	int32	   *attr_widths;	/* array indexed [min_attr .. max_attr] */
	List	   *lateral_vars;	/* LATERAL Vars and PHVs referenced by rel */
	Relids		lateral_referencers;	/* rels that reference me laterally */
	List	   *indexlist;		/* list of IndexOptInfo */
	List	   *statlist;		/* list of StatisticExtInfo */
	BlockNumber pages;			/* size estimates derived from pg_class */
	double		tuples;
    struct GpPolicy   *cdbpolicy;      /* distribution of stored tuples */
	Oid			amhandler;			/* from relcache entry */
	double		allvisfrac;
	PlannerInfo *subroot;		/* if subquery (in GPDB: or CTE) */
	List	   *subplan_params; /* if subquery */
	int			rel_parallel_workers;	/* wanted number of parallel workers */

	/* Information about foreign tables and foreign joins */
	Oid			serverid;		/* identifies server for the table or join */
	Oid			userid;			/* identifies user to check access as */
	bool		useridiscurrent;	/* join is only valid for current user */
	char		exec_location;  /* execute on MASTER, ANY or ALL SEGMENTS, Greenplum MPP specific */
	/* use "struct FdwRoutine" to avoid including fdwapi.h here */
	struct FdwRoutine *fdwroutine;
	void	   *fdw_private;

	/* cache space for remembering if we have proven this relation unique */
	List	   *unique_for_rels;	/* known unique for these other relid
									 * set(s) */
	List	   *non_unique_for_rels;	/* known not unique for these set(s) */

	/* used by various scans and joins: */
	List	   *baserestrictinfo;	/* RestrictInfo structures (if base rel) */
	QualCost	baserestrictcost;	/* cost of evaluating the above */
	Index		baserestrict_min_security;	/* min security_level found in
											 * baserestrictinfo */
	List	   *joininfo;		/* RestrictInfo structures for join clauses
								 * involving this rel */
	bool		has_eclass_joins;	/* T means joininfo is incomplete */

	/* used by partitionwise joins: */
	bool		consider_partitionwise_join;	/* consider partitionwise join
												 * paths? (if partitioned rel) */
	Relids		top_parent_relids;	/* Relids of topmost parents (if "other"
									 * rel) */

	/* used for partitioned relations */
	PartitionScheme part_scheme;	/* Partitioning scheme. */
	int			nparts;			/* number of partitions */
	struct PartitionBoundInfoData *boundinfo;	/* Partition bounds */
	List	   *partition_qual; /* partition constraint */
	struct RelOptInfo **part_rels;	/* Array of RelOptInfos of partitions,
									 * stored in the same order of bounds */
	List	  **partexprs;		/* Non-nullable partition key expressions. */
	List	  **nullable_partexprs; /* Nullable partition key expressions. */
	List	   *partitioned_child_rels; /* List of RT indexes. */

	/*
	 * In a subquery, if this base relation contains quals that must
	 * be evaluated at "outerquery" locus, and the base relation has a
	 * different locus, they are kept here in 'upperrestrictinfo', instead of
	 * 'baserestrictinfo'.
	 */
	List	   *upperrestrictinfo;		/* RestrictInfo structures (if base
										 * rel) */
} RelOptInfo;

/*
 * Is given relation partitioned?
 *
 * It's not enough to test whether rel->part_scheme is set, because it might
 * be that the basic partitioning properties of the input relations matched
 * but the partition bounds did not.  Also, if we are able to prove a rel
 * dummy (empty), we should henceforth treat it as unpartitioned.
 */
#define IS_PARTITIONED_REL(rel) \
	((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
	 (rel)->part_rels && !IS_DUMMY_REL(rel))

/*
 * Convenience macro to make sure that a partitioned relation has all the
 * required members set.
 */
#define REL_HAS_ALL_PART_PROPS(rel)	\
	((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
	 (rel)->part_rels && (rel)->partexprs && (rel)->nullable_partexprs)

/*
 * Convenience macro to verify if a relation supports TID scans.  Caution: it
 * suffers from double evaluation.
 */
#define REL_SUPPORTS_TID_SCAN(rel) \
	((rel)->amhandler != AO_ROW_TABLE_AM_HANDLER_OID &&	\
	 (rel)->amhandler != AO_COLUMN_TABLE_AM_HANDLER_OID)

/*
 * IndexOptInfo
 *		Per-index information for planning/optimization
 *
 *		indexkeys[], indexcollations[] each have ncolumns entries.
 *		opfamily[], and opcintype[]	each have nkeycolumns entries. They do
 *		not contain any information about included attributes.
 *
 *		sortopfamily[], reverse_sort[], and nulls_first[] have
 *		nkeycolumns entries, if the index is ordered; but if it is unordered,
 *		those pointers are NULL.
 *
 *		Zeroes in the indexkeys[] array indicate index columns that are
 *		expressions; there is one element in indexprs for each such column.
 *
 *		For an ordered index, reverse_sort[] and nulls_first[] describe the
 *		sort ordering of a forward indexscan; we can also consider a backward
 *		indexscan, which will generate the reverse ordering.
 *
 *		The indexprs and indpred expressions have been run through
 *		prepqual.c and eval_const_expressions() for ease of matching to
 *		WHERE clauses. indpred is in implicit-AND form.
 *
 *		indextlist is a TargetEntry list representing the index columns.
 *		It provides an equivalent base-relation Var for each simple column,
 *		and links to the matching indexprs element for each expression column.
 *
 *		While most of these fields are filled when the IndexOptInfo is created
 *		(by plancat.c), indrestrictinfo and predOK are set later, in
 *		check_index_predicates().
 */
#ifndef HAVE_INDEXOPTINFO_TYPEDEF
typedef struct IndexOptInfo IndexOptInfo;
#define HAVE_INDEXOPTINFO_TYPEDEF 1
#endif

struct IndexOptInfo
{
	NodeTag		type;

	Oid			indexoid;		/* OID of the index relation */
	Oid			reltablespace;	/* tablespace of index (not table) */
	RelOptInfo *rel;			/* back-link to index's table */

	/* index-size statistics (from pg_class and elsewhere) */
	BlockNumber pages;			/* number of disk pages in index */
	double		tuples;			/* number of index tuples in index */
	int			tree_height;	/* index tree height, or -1 if unknown */

	/* index descriptor information */
	int			ncolumns;		/* number of columns in index */
	int			nkeycolumns;	/* number of key columns in index */
	int		   *indexkeys;		/* column numbers of index's attributes both
								 * key and included columns, or 0 */
	Oid		   *indexcollations;	/* OIDs of collations of index columns */
	Oid		   *opfamily;		/* OIDs of operator families for columns */
	Oid		   *opcintype;		/* OIDs of opclass declared input data types */
	Oid		   *sortopfamily;	/* OIDs of btree opfamilies, if orderable */
	bool	   *reverse_sort;	/* is sort order descending? */
	bool	   *nulls_first;	/* do NULLs come first in the sort order? */
	bool	   *canreturn;		/* which index cols can be returned in an
								 * index-only scan? */
	Oid			relam;			/* OID of the access method (in pg_am) */

	List	   *indexprs;		/* expressions for non-simple index columns */
	List	   *indpred;		/* predicate if a partial index, else NIL */

	List	   *indextlist;		/* targetlist representing index columns */

	List	   *indrestrictinfo;	/* parent relation's baserestrictinfo
									 * list, less any conditions implied by
									 * the index's predicate (unless it's a
									 * target rel, see comments in
									 * check_index_predicates()) */

	bool		predOK;			/* true if index predicate matches query */
	bool		unique;			/* true if a unique index */
	bool		immediate;		/* is uniqueness enforced immediately? */
	bool		hypothetical;	/* true if index doesn't really exist */

	/* Remaining fields are copied from the index AM's API struct: */
	bool		amcanorderbyop; /* does AM support order by operator result? */
	bool		amoptionalkey;	/* can query omit key for the first column? */
	bool		amsearcharray;	/* can AM handle ScalarArrayOpExpr quals? */
	bool		amsearchnulls;	/* can AM search for NULL/NOT NULL entries? */
	bool		amhasgettuple;	/* does AM have amgettuple interface? */
	bool		amhasgetbitmap; /* does AM have amgetbitmap interface? */
	bool		amcanparallel;	/* does AM support parallel scan? */

	/* Rather than include amapi.h here, we declare amcostestimate like this */
	void		(*amcostestimate) ();	/* AM's cost estimator */
};

/*
 * ForeignKeyOptInfo
 *		Per-foreign-key information for planning/optimization
 *
 * The per-FK-column arrays can be fixed-size because we allow at most
 * INDEX_MAX_KEYS columns in a foreign key constraint.  Each array has
 * nkeys valid entries.
 */
typedef struct ForeignKeyOptInfo
{
	NodeTag		type;

	/* Basic data about the foreign key (fetched from catalogs): */
	Index		con_relid;		/* RT index of the referencing table */
	Index		ref_relid;		/* RT index of the referenced table */
	int			nkeys;			/* number of columns in the foreign key */
	AttrNumber	conkey[INDEX_MAX_KEYS]; /* cols in referencing table */
	AttrNumber	confkey[INDEX_MAX_KEYS];	/* cols in referenced table */
	Oid			conpfeqop[INDEX_MAX_KEYS];	/* PK = FK operator OIDs */

	/* Derived info about whether FK's equality conditions match the query: */
	int			nmatched_ec;	/* # of FK cols matched by ECs */
	int			nmatched_rcols; /* # of FK cols matched by non-EC rinfos */
	int			nmatched_ri;	/* total # of non-EC rinfos matched to FK */
	/* Pointer to eclass matching each column's condition, if there is one */
	struct EquivalenceClass *eclass[INDEX_MAX_KEYS];
	/* List of non-EC RestrictInfos matching each column's condition */
	List	   *rinfos[INDEX_MAX_KEYS];
} ForeignKeyOptInfo;

/*
 * StatisticExtInfo
 *		Information about extended statistics for planning/optimization
 *
 * Each pg_statistic_ext row is represented by one or more nodes of this
 * type, or even zero if ANALYZE has not computed them.
 */
typedef struct StatisticExtInfo
{
	NodeTag		type;

	Oid			statOid;		/* OID of the statistics row */
	RelOptInfo *rel;			/* back-link to statistic's table */
	char		kind;			/* statistic kind of this entry */
	Bitmapset  *keys;			/* attnums of the columns covered */
} StatisticExtInfo;

/*
 * EquivalenceClasses
 *
 * Whenever we can determine that a mergejoinable equality clause A = B is
 * not delayed by any outer join, we create an EquivalenceClass containing
 * the expressions A and B to record this knowledge.  If we later find another
 * equivalence B = C, we add C to the existing EquivalenceClass; this may
 * require merging two existing EquivalenceClasses.  At the end of the qual
 * distribution process, we have sets of values that are known all transitively
 * equal to each other, where "equal" is according to the rules of the btree
 * operator family(s) shown in ec_opfamilies, as well as the collation shown
 * by ec_collation.  (We restrict an EC to contain only equalities whose
 * operators belong to the same set of opfamilies.  This could probably be
 * relaxed, but for now it's not worth the trouble, since nearly all equality
 * operators belong to only one btree opclass anyway.  Similarly, we suppose
 * that all or none of the input datatypes are collatable, so that a single
 * collation value is sufficient.)
 *
 * We also use EquivalenceClasses as the base structure for PathKeys, letting
 * us represent knowledge about different sort orderings being equivalent.
 * Since every PathKey must reference an EquivalenceClass, we will end up
 * with single-member EquivalenceClasses whenever a sort key expression has
 * not been equivalenced to anything else.  It is also possible that such an
 * EquivalenceClass will contain a volatile expression ("ORDER BY random()"),
 * which is a case that can't arise otherwise since clauses containing
 * volatile functions are never considered mergejoinable.  We mark such
 * EquivalenceClasses specially to prevent them from being merged with
 * ordinary EquivalenceClasses.  Also, for volatile expressions we have
 * to be careful to match the EquivalenceClass to the correct targetlist
 * entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
 * So we record the SortGroupRef of the originating sort clause.
 *
 * We allow equality clauses appearing below the nullable side of an outer join
 * to form EquivalenceClasses, but these have a slightly different meaning:
 * the included values might be all NULL rather than all the same non-null
 * values.  See src/backend/optimizer/README for more on that point.
 *
 * NB: if ec_merged isn't NULL, this class has been merged into another, and
 * should be ignored in favor of using the pointed-to class.
 */
typedef struct EquivalenceClass
{
	NodeTag		type;

	List	   *ec_opfamilies;	/* btree operator family OIDs */
	Oid			ec_collation;	/* collation, if datatypes are collatable */
	List	   *ec_members;		/* list of EquivalenceMembers */
	List	   *ec_sources;		/* list of generating RestrictInfos */
	List	   *ec_derives;		/* list of derived RestrictInfos */
	Relids		ec_relids;		/* all relids appearing in ec_members, except
								 * for child members (see below) */
	bool		ec_has_const;	/* any pseudoconstants in ec_members? */
	bool		ec_has_volatile;	/* the (sole) member is a volatile expr */
	bool		ec_below_outer_join;	/* equivalence applies below an OJ */
	bool		ec_broken;		/* failed to generate needed clauses? */
	Index		ec_sortref;		/* originating sortclause label, or 0 */
	Index		ec_min_security;	/* minimum security_level in ec_sources */
	Index		ec_max_security;	/* maximum security_level in ec_sources */
	struct EquivalenceClass *ec_merged; /* set if merged into another EC */
} EquivalenceClass;

/*
 * If an EC contains a const and isn't below-outer-join, any PathKey depending
 * on it must be redundant, since there's only one possible value of the key.
 */
#define EC_MUST_BE_REDUNDANT(eclass)  \
	((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)

/*
 * EquivalenceMember - one member expression of an EquivalenceClass
 *
 * em_is_child signifies that this element was built by transposing a member
 * for an appendrel parent relation to represent the corresponding expression
 * for an appendrel child.  These members are used for determining the
 * pathkeys of scans on the child relation and for explicitly sorting the
 * child when necessary to build a MergeAppend path for the whole appendrel
 * tree.  An em_is_child member has no impact on the properties of the EC as a
 * whole; in particular the EC's ec_relids field does NOT include the child
 * relation.  An em_is_child member should never be marked em_is_const nor
 * cause ec_has_const or ec_has_volatile to be set, either.  Thus, em_is_child
 * members are not really full-fledged members of the EC, but just reflections
 * or doppelgangers of real members.  Most operations on EquivalenceClasses
 * should ignore em_is_child members, and those that don't should test
 * em_relids to make sure they only consider relevant members.
 *
 * em_datatype is usually the same as exprType(em_expr), but can be
 * different when dealing with a binary-compatible opfamily; in particular
 * anyarray_ops would never work without this.  Use em_datatype when
 * looking up a specific btree operator to work with this expression.
 */
typedef struct EquivalenceMember
{
	NodeTag		type;

	Expr	   *em_expr;		/* the expression represented */
	Relids		em_relids;		/* all relids appearing in em_expr */
	Relids		em_nullable_relids; /* nullable by lower outer joins */
	bool		em_is_const;	/* expression is pseudoconstant? */
	bool		em_is_child;	/* derived version for a child relation? */
	Oid			em_datatype;	/* the "nominal type" used by the opfamily */
} EquivalenceMember;

/*
 * PathKeys
 *
 * The sort ordering of a path is represented by a list of PathKey nodes.
 * An empty list implies no known ordering.  Otherwise the first item
 * represents the primary sort key, the second the first secondary sort key,
 * etc.  The value being sorted is represented by linking to an
 * EquivalenceClass containing that value and including pk_opfamily among its
 * ec_opfamilies.  The EquivalenceClass tells which collation to use, too.
 * This is a convenient method because it makes it trivial to detect
 * equivalent and closely-related orderings. (See optimizer/README for more
 * information.)
 *
 * Note: pk_strategy is either BTLessStrategyNumber (for ASC) or
 * BTGreaterStrategyNumber (for DESC).  We assume that all ordering-capable
 * index types will use btree-compatible strategy numbers.
 */
typedef struct PathKey
{
	NodeTag		type;

	EquivalenceClass *pk_eclass;	/* the value that is ordered */
	Oid			pk_opfamily;	/* btree opfamily defining the ordering */
	int			pk_strategy;	/* sort direction (ASC or DESC) */
	bool		pk_nulls_first; /* do NULLs come before normal values? */
} PathKey;

/*
 * DistributionKeys
 *
 * Like PathKey, but is used to represent data distribution by hash across
 * segments (DISTRIBUTED BY), rather than sort ordering.
 */
typedef struct DistributionKey
{
	NodeTag		type;

	List	   *dk_eclasses;	/* the value that is distributed */

	/* Hash operator family that determines the hash function to use */
	Oid			dk_opfamily;
} DistributionKey;

/*
 * CdbEquivClassIsConstant
 *      is true if the equivalence class represents a pseudo-constant
 *
 * This is copied from MUST_BE_REDUNDANT in pathkeys.c
 */
#define CdbEquivClassIsConstant(eclass)						\
	((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)

/*
 * PathTarget
 *
 * This struct contains what we need to know during planning about the
 * targetlist (output columns) that a Path will compute.  Each RelOptInfo
 * includes a default PathTarget, which its individual Paths may simply
 * reference.  However, in some cases a Path may compute outputs different
 * from other Paths, and in that case we make a custom PathTarget for it.
 * For example, an indexscan might return index expressions that would
 * otherwise need to be explicitly calculated.  (Note also that "upper"
 * relations generally don't have useful default PathTargets.)
 *
 * exprs contains bare expressions; they do not have TargetEntry nodes on top,
 * though those will appear in finished Plans.
 *
 * sortgrouprefs[] is an array of the same length as exprs, containing the
 * corresponding sort/group refnos, or zeroes for expressions not referenced
 * by sort/group clauses.  If sortgrouprefs is NULL (which it generally is in
 * RelOptInfo.reltarget targets; only upper-level Paths contain this info),
 * we have not identified sort/group columns in this tlist.  This allows us to
 * deal with sort/group refnos when needed with less expense than including
 * TargetEntry nodes in the exprs list.
 */
typedef struct PathTarget
{
	NodeTag		type;
	List	   *exprs;			/* list of expressions to be computed */
	Index	   *sortgrouprefs;	/* corresponding sort/group refnos, or 0 */
	QualCost	cost;			/* cost of evaluating the expressions */
	int			width;			/* estimated avg width of result tuples */
} PathTarget;

/* Convenience macro to get a sort/group refno from a PathTarget */
#define get_pathtarget_sortgroupref(target, colno) \
	((target)->sortgrouprefs ? (target)->sortgrouprefs[colno] : (Index) 0)


/*
 * ParamPathInfo
 *
 * All parameterized paths for a given relation with given required outer rels
 * link to a single ParamPathInfo, which stores common information such as
 * the estimated rowcount for this parameterization.  We do this partly to
 * avoid recalculations, but mostly to ensure that the estimated rowcount
 * is in fact the same for every such path.
 *
 * Note: ppi_clauses is only used in ParamPathInfos for base relation paths;
 * in join cases it's NIL because the set of relevant clauses varies depending
 * on how the join is formed.  The relevant clauses will appear in each
 * parameterized join path's joinrestrictinfo list, instead.
 *
 * GPDB: Like the rowcount in RelOptInfo, 'ppi_rows' is the total across all
 * segments.
 */
typedef struct ParamPathInfo
{
	NodeTag		type;

	Relids		ppi_req_outer;	/* rels supplying parameters used by path */
	double		ppi_rows;		/* estimated number of result tuples */
	List	   *ppi_clauses;	/* join clauses available from outer rels */
} ParamPathInfo;


/*
 * Type "Path" is used as-is for sequential-scan paths, as well as some other
 * simple plan types that we don't need any extra information in the path for.
 * For other path types it is the first component of a larger struct.
 *
 * "pathtype" is the NodeTag of the Plan node we could build from this Path.
 * It is partially redundant with the Path's NodeTag, but allows us to use
 * the same Path type for multiple Plan types when there is no need to
 * distinguish the Plan type during path processing.
 *
 * "parent" identifies the relation this Path scans, and "pathtarget"
 * describes the precise set of output columns the Path would compute.
 * In simple cases all Paths for a given rel share the same targetlist,
 * which we represent by having path->pathtarget equal to parent->reltarget.
 *
 * "param_info", if not NULL, links to a ParamPathInfo that identifies outer
 * relation(s) that provide parameter values to each scan of this path.
 * That means this path can only be joined to those rels by means of nestloop
 * joins with this path on the inside.  Also note that a parameterized path
 * is responsible for testing all "movable" joinclauses involving this rel
 * and the specified outer rel(s).
 *
 * "rows" is the same as parent->rows in simple paths, but in parameterized
 * paths and UniquePaths it can be less than parent->rows, reflecting the
 * fact that we've filtered by extra join conditions or removed duplicates.
 *
 * "pathkeys" is a List of PathKey nodes (see above), describing the sort
 * ordering of the path's output rows.
 *
 * GPDB: The 'rows' estimate, as well as al the costs, are *per node* values.
 * That's similar to upstream parallel Paths, which also hold estimates
 * per worker. But note that the 'rows', 'tuples', 'pages' in RelOptInfo
 * are for the whole relation, across all segmnents! So you cannot generally
 * assign RelOptInfo->rows to Path->rows, you will need to adjust it for
 * the number of segments used to execute the Path..
 */
typedef struct Path
{
	NodeTag		type;

	NodeTag		pathtype;		/* tag identifying scan/join method */

	RelOptInfo *parent;			/* the relation this path can build */
	PathTarget *pathtarget;		/* list of Vars/Exprs, cost, width */

	ParamPathInfo *param_info;	/* parameterization info, or NULL if none */

	bool		parallel_aware; /* engage parallel-aware logic? */
	bool		parallel_safe;	/* OK to use as part of parallel plan? */
	int			parallel_workers;	/* desired # of workers; 0 = not parallel */

	/* estimated size/costs for path (see costsize.c for more info) */
	double		rows;			/* estimated number of result tuples */
	Cost		startup_cost;	/* cost expended before fetching any tuples */
	Cost		total_cost;		/* total cost (assuming all tuples fetched) */

	EstimatedBytes  memory;     /* executor RAM needed for Path + kids */

	CdbPathLocus    locus;      /* distribution of the result tuples */

	bool        motionHazard;   /* true => path contains a CdbMotion operator
					without a slackening operator above it */

	bool		rescannable;    /* CDB: true => path can accept ExecRescan call
                                 */
	List	   *pathkeys;		/* sort ordering of path's output */
	/* pathkeys is a List of PathKey nodes; see above */

	/*
	 * sameslice_relids indicates which (base) relations will be executed in
	 * the same slice, if this path is chosen. It is used in partition planning,
	 * to decide if it's safe to create a PartitionSelector node that affects
	 * other nodes at a distance. That can only be done if the PartitionSelector
	 * would be executed in the same slice.
	 *
	 * This is a conservative estimate, it's always safe to set it to NULL if
	 * unsure, and the worst that will happen is that you lose out on potential
	 * optimizations.
	 */
	Relids		sameslice_relids;
} Path;

/* 
 * AppendOnlyPath is used for append-only table scans. 
 */
typedef struct AppendOnlyPath
{
	Path		path;

	/* for now it's pretty plain.. */
} AppendOnlyPath;

/*
 * AOCSPath is used for append-only column store table scans.
 */
typedef struct AOCSPath
{
	Path		path;

	/* for now it's pretty plain.. */
} AOCSPath;

/*
 * PartitionSelectorPath is used for injection of partition selectors
 */
typedef struct PartitionSelectorPath
{
	Path		path;

    Path	   *subpath;

	int			paramid;
	struct PartitionPruneInfo *part_prune_info;
} PartitionSelectorPath;

/* Macro for extracting a path's parameterization relids; beware double eval */
#define PATH_REQ_OUTER(path)  \
	((path)->param_info ? (path)->param_info->ppi_req_outer : (Relids) NULL)

/*
 * GPDB: CTEs are planned differently from upstream.
 */
typedef struct CtePath
{
	Path		path;

	Path	   *subpath; /* if NULL, this is a shared CTE reference;
						  * get the plan from the CtePlanInfo */
} CtePath;

/*----------
 * IndexPath represents an index scan over a single index.
 *
 * This struct is used for both regular indexscans and index-only scans;
 * path.pathtype is T_IndexScan or T_IndexOnlyScan to show which is meant.
 *
 * 'indexinfo' is the index to be scanned.
 *
 * 'indexclauses' is a list of IndexClause nodes, each representing one
 * index-checkable restriction, with implicit AND semantics across the list.
 * An empty list implies a full index scan.
 *
 * 'indexorderbys', if not NIL, is a list of ORDER BY expressions that have
 * been found to be usable as ordering operators for an amcanorderbyop index.
 * The list must match the path's pathkeys, ie, one expression per pathkey
 * in the same order.  These are not RestrictInfos, just bare expressions,
 * since they generally won't yield booleans.  It's guaranteed that each
 * expression has the index key on the left side of the operator.
 *
 * 'indexorderbycols' is an integer list of index column numbers (zero-based)
 * of the same length as 'indexorderbys', showing which index column each
 * ORDER BY expression is meant to be used with.  (There is no restriction
 * on which index column each ORDER BY can be used with.)
 *
 * 'indexscandir' is one of:
 *		ForwardScanDirection: forward scan of an ordered index
 *		BackwardScanDirection: backward scan of an ordered index
 *		NoMovementScanDirection: scan of an unordered index, or don't care
 * (The executor doesn't care whether it gets ForwardScanDirection or
 * NoMovementScanDirection for an indexscan, but the planner wants to
 * distinguish ordered from unordered indexes for building pathkeys.)
 *
 * 'indextotalcost' and 'indexselectivity' are saved in the IndexPath so that
 * we need not recompute them when considering using the same index in a
 * bitmap index/heap scan (see BitmapHeapPath).  The costs of the IndexPath
 * itself represent the costs of an IndexScan or IndexOnlyScan plan type.
 *----------
 */
typedef struct IndexPath
{
	Path		path;
	IndexOptInfo *indexinfo;
	List	   *indexclauses;
	List	   *indexorderbys;
	List	   *indexorderbycols;
	ScanDirection indexscandir;
	Cost		indextotalcost;
	Selectivity indexselectivity;
    int         num_leading_eq; /* CDB: number of leading key columns matched by
                                 * equality predicates in indexquals.  If equal
                                 * to indexinfo->ncolumns, at most one distinct
                                 * value of the index key can satisfy the quals.
                                 * Further if the index is unique, we can assume
                                 * at most one visible row satisfies the quals.
                                 */
} IndexPath;

/*
 * Each IndexClause references a RestrictInfo node from the query's WHERE
 * or JOIN conditions, and shows how that restriction can be applied to
 * the particular index.  We support both indexclauses that are directly
 * usable by the index machinery, which are typically of the form
 * "indexcol OP pseudoconstant", and those from which an indexable qual
 * can be derived.  The simplest such transformation is that a clause
 * of the form "pseudoconstant OP indexcol" can be commuted to produce an
 * indexable qual (the index machinery expects the indexcol to be on the
 * left always).  Another example is that we might be able to extract an
 * indexable range condition from a LIKE condition, as in "x LIKE 'foo%bar'"
 * giving rise to "x >= 'foo' AND x < 'fop'".  Derivation of such lossy
 * conditions is done by a planner support function attached to the
 * indexclause's top-level function or operator.
 *
 * indexquals is a list of RestrictInfos for the directly-usable index
 * conditions associated with this IndexClause.  In the simplest case
 * it's a one-element list whose member is iclause->rinfo.  Otherwise,
 * it contains one or more directly-usable indexqual conditions extracted
 * from the given clause.  The 'lossy' flag indicates whether the
 * indexquals are semantically equivalent to the original clause, or
 * represent a weaker condition.
 *
 * Normally, indexcol is the index of the single index column the clause
 * works on, and indexcols is NIL.  But if the clause is a RowCompareExpr,
 * indexcol is the index of the leading column, and indexcols is a list of
 * all the affected columns.  (Note that indexcols matches up with the
 * columns of the actual indexable RowCompareExpr in indexquals, which
 * might be different from the original in rinfo.)
 *
 * An IndexPath's IndexClause list is required to be ordered by index
 * column, i.e. the indexcol values must form a nondecreasing sequence.
 * (The order of multiple clauses for the same index column is unspecified.)
 */
typedef struct IndexClause
{
	NodeTag		type;
	struct RestrictInfo *rinfo; /* original restriction or join clause */
	List	   *indexquals;		/* indexqual(s) derived from it */
	bool		lossy;			/* are indexquals a lossy version of clause? */
	AttrNumber	indexcol;		/* index column the clause uses (zero-based) */
	List	   *indexcols;		/* multiple index columns, if RowCompare */
} IndexClause;

/*
 * BitmapHeapPath represents one or more indexscans that generate TID bitmaps
 * instead of directly accessing the heap, followed by AND/OR combinations
 * to produce a single bitmap, followed by a heap scan that uses the bitmap.
 * Note that the output is always considered unordered, since it will come
 * out in physical heap order no matter what the underlying indexes did.
 *
 * The individual indexscans are represented by IndexPath nodes, and any
 * logic on top of them is represented by a tree of BitmapAndPath and
 * BitmapOrPath nodes.  Notice that we can use the same IndexPath node both
 * to represent a regular (or index-only) index scan plan, and as the child
 * of a BitmapHeapPath that represents scanning the same index using a
 * BitmapIndexScan.  The startup_cost and total_cost figures of an IndexPath
 * always represent the costs to use it as a regular (or index-only)
 * IndexScan.  The costs of a BitmapIndexScan can be computed using the
 * IndexPath's indextotalcost and indexselectivity.
 */
typedef struct BitmapHeapPath
{
	Path		path;
	Path	   *bitmapqual;		/* IndexPath, BitmapAndPath, BitmapOrPath */
} BitmapHeapPath;

/*
 * BitmapAndPath represents a BitmapAnd plan node; it can only appear as
 * part of the substructure of a BitmapHeapPath.  The Path structure is
 * a bit more heavyweight than we really need for this, but for simplicity
 * we make it a derivative of Path anyway.
 */
typedef struct BitmapAndPath
{
	Path		path;
	List	   *bitmapquals;	/* IndexPaths and BitmapOrPaths */
	Selectivity bitmapselectivity;
} BitmapAndPath;

/*
 * BitmapOrPath represents a BitmapOr plan node; it can only appear as
 * part of the substructure of a BitmapHeapPath.  The Path structure is
 * a bit more heavyweight than we really need for this, but for simplicity
 * we make it a derivative of Path anyway.
 */
typedef struct BitmapOrPath
{
	Path		path;
	List	   *bitmapquals;	/* IndexPaths and BitmapAndPaths */
	Selectivity bitmapselectivity;
} BitmapOrPath;

/*
 * TidPath represents a scan by TID
 *
 * tidquals is an implicitly OR'ed list of qual expressions of the form
 * "CTID = pseudoconstant", or "CTID = ANY(pseudoconstant_array)",
 * or a CurrentOfExpr for the relation.
 */
typedef struct TidPath
{
	Path		path;
	List	   *tidquals;		/* qual(s) involving CTID = something */
} TidPath;

/*
 * CdbMotionPath represents transmission of the child Path results
 * from a set of sending processes to a set of receiving processes.
 *
 * Normally, the distribution is determined by the 'locus' of the path.
 * However, if the distribution cannot be represented by a DistributionKeys,
 * an alternative representation is to mark the locus as Strewn, and list
 * the hash columns in 'policy'. In the normal case, 'policy' is not used.
 */
typedef struct CdbMotionPath
{
	Path		path;
    Path	   *subpath;
	bool		is_explicit_motion;

	GpPolicy   *policy;
} CdbMotionPath;

/*
 * SubqueryScanPath represents a scan of an unflattened subquery-in-FROM
 *
 * Note that the subpath comes from a different planning domain; for example
 * RTE indexes within it mean something different from those known to the
 * SubqueryScanPath.  path.parent->subroot is the planning context needed to
 * interpret the subpath.
 */
typedef struct SubqueryScanPath
{
	Path		path;
	Path	   *subpath;		/* path representing subquery execution */

	/* In gpdb, we need to rebuild a SubqueryScanPath if MotionPath push down*/
	Relids      required_outer;
} SubqueryScanPath;

/*
 * TableFunctionScanPath represents a scan of an unflattened subquery-in-FROM
 *
 * Note that the subpath comes from a different planning domain, like in
 * SubqueryScanPath.
 */
typedef struct TableFunctionScanPath
{
	Path		path;
	Path	   *subpath;		/* path representing subquery execution */
} TableFunctionScanPath;

/*
 * ForeignPath represents a potential scan of a foreign table, foreign join
 * or foreign upper-relation.
 *
 * fdw_private stores FDW private data about the scan.  While fdw_private is
 * not actually touched by the core code during normal operations, it's
 * generally a good idea to use a representation that can be dumped by
 * nodeToString(), so that you can examine the structure during debugging
 * with tools like pprint().
 */
typedef struct ForeignPath
{
	Path		path;
	Path	   *fdw_outerpath;
	List	   *fdw_private;
} ForeignPath;

/*
 * CustomPath represents a table scan done by some out-of-core extension.
 *
 * We provide a set of hooks here - which the provider must take care to set
 * up correctly - to allow extensions to supply their own methods of scanning
 * a relation.  For example, a provider might provide GPU acceleration, a
 * cache-based scan, or some other kind of logic we haven't dreamed up yet.
 *
 * CustomPaths can be injected into the planning process for a relation by
 * set_rel_pathlist_hook functions.
 *
 * Core code must avoid assuming that the CustomPath is only as large as
 * the structure declared here; providers are allowed to make it the first
 * element in a larger structure.  (Since the planner never copies Paths,
 * this doesn't add any complication.)  However, for consistency with the
 * FDW case, we provide a "custom_private" field in CustomPath; providers
 * may prefer to use that rather than define another struct type.
 */

struct CustomPathMethods;

typedef struct CustomPath
{
	Path		path;
	uint32		flags;			/* mask of CUSTOMPATH_* flags, see
								 * nodes/extensible.h */
	List	   *custom_paths;	/* list of child Path nodes, if any */
	List	   *custom_private;
	const struct CustomPathMethods *methods;
} CustomPath;

/*
 * AppendPath represents an Append plan, ie, successive execution of
 * several member plans.
 *
 * For partial Append, 'subpaths' contains non-partial subpaths followed by
 * partial subpaths.
 *
 * Note: it is possible for "subpaths" to contain only one, or even no,
 * elements.  These cases are optimized during create_append_plan.
 * In particular, an AppendPath with no subpaths is a "dummy" path that
 * is created to represent the case that a relation is provably empty.
 * (This is a convenient representation because it means that when we build
 * an appendrel and find that all its children have been excluded, no extra
 * action is needed to recognize the relation as dummy.)
 */
typedef struct AppendPath
{
	Path		path;
	/* RT indexes of non-leaf tables in a partition tree */
	List	   *partitioned_rels;
	List	   *subpaths;		/* list of component Paths */
	/* Index of first partial path in subpaths; list_length(subpaths) if none */
	int			first_partial_path;
	double		limit_tuples;	/* hard limit on output tuples, or -1 */
} AppendPath;

#define IS_DUMMY_APPEND(p) \
	(IsA((p), AppendPath) && ((AppendPath *) (p))->subpaths == NIL)

/*
 * A relation that's been proven empty will have one path that is dummy
 * (but might have projection paths on top).  For historical reasons,
 * this is provided as a macro that wraps is_dummy_rel().
 */
#define IS_DUMMY_REL(r) is_dummy_rel(r)
extern bool is_dummy_rel(RelOptInfo *rel);

/*
 * MergeAppendPath represents a MergeAppend plan, ie, the merging of sorted
 * results from several member plans to produce similarly-sorted output.
 */
typedef struct MergeAppendPath
{
	Path		path;
	/* RT indexes of non-leaf tables in a partition tree */
	List	   *partitioned_rels;
	List	   *subpaths;		/* list of component Paths */
	double		limit_tuples;	/* hard limit on output tuples, or -1 */
} MergeAppendPath;

/*
 * GroupResultPath represents use of a Result plan node to compute the
 * output of a degenerate GROUP BY case, wherein we know we should produce
 * exactly one row, which might then be filtered by a HAVING qual.
 *
 * Note that quals is a list of bare clauses, not RestrictInfos.
 */
typedef struct GroupResultPath
{
	Path		path;
	List	   *quals;
} GroupResultPath;

/*
 * MaterialPath represents use of a Material plan node, i.e., caching of
 * the output of its subpath.  This is used when the subpath is expensive
 * and needs to be scanned repeatedly, or when we need mark/restore ability
 * and the subpath doesn't have it.
 */
typedef struct MaterialPath
{
	Path		path;
	Path	   *subpath;
    bool        cdb_strict;     /* true  => consume and store all input tuples
                                 *            before yielding output tuples
                                 * false => memoize tuples as they stream thru
                                 */

	/*
	 * If 'cdb_shield_child_from_rescans' is set, the sub-plan is not
	 * rescannable, and the Material never call rescan on it. (The Material
	 * node will keep all tuples, even if REWIND/BACKWARD/MARK executor flags
	 * are not set.)
	 */
	bool		cdb_shield_child_from_rescans;
} MaterialPath;

/*
 * UniquePath represents elimination of distinct rows from the output of
 * its subpath.
 *
 * This can represent significantly different plans: either hash-based or
 * sort-based implementation, or a no-op if the input path can be proven
 * distinct already.  The decision is sufficiently localized that it's not
 * worth having separate Path node types.  (Note: in the no-op case, we could
 * eliminate the UniquePath node entirely and just return the subpath; but
 * it's convenient to have a UniquePath in the path tree to signal upper-level
 * routines that the input is known distinct.)
 */
typedef enum
{
	UNIQUE_PATH_NOOP,			/* input is known unique already */
	UNIQUE_PATH_HASH,			/* use hashing */
	UNIQUE_PATH_SORT			/* use sorting */
} UniquePathMethod;

typedef struct UniquePath
{
	Path		path;
	Path	   *subpath;
	UniquePathMethod umethod;
	List	   *in_operators;	/* equality operators of the IN clause */
	List	   *uniq_exprs;		/* expressions to be made unique */
} UniquePath;

/*
 * GatherPath runs several copies of a plan in parallel and collects the
 * results.  The parallel leader may also execute the plan, unless the
 * single_copy flag is set.
 */
typedef struct GatherPath
{
	Path		path;
	Path	   *subpath;		/* path for each worker */
	bool		single_copy;	/* don't execute path more than once */
	int			num_workers;	/* number of workers sought to help */
} GatherPath;

/*
 * GatherMergePath runs several copies of a plan in parallel and collects
 * the results, preserving their common sort order.
 */
typedef struct GatherMergePath
{
	Path		path;
	Path	   *subpath;		/* path for each worker */
	int			num_workers;	/* number of workers sought to help */
} GatherMergePath;


/*
 * All join-type paths share these fields.
 */

typedef struct JoinPath
{
	Path		path;

	JoinType	jointype;

	bool		inner_unique;	/* each outer tuple provably matches no more
								 * than one inner tuple */

	Path	   *outerjoinpath;	/* path for the outer side of the join */
	Path	   *innerjoinpath;	/* path for the inner side of the join */

	List	   *joinrestrictinfo;	/* RestrictInfos to apply to join */

	/*
	 * See the notes for RelOptInfo and ParamPathInfo to understand why
	 * joinrestrictinfo is needed in JoinPath, and can't be merged into the
	 * parent RelOptInfo.
	 */
} JoinPath;

/*
 * IsJoinPath
 *      Returns true if the node type is one that derives from JoinPath.
 */
#define IsJoinPath(node)        \
    (IsA((node), NestPath) ||   \
     IsA((node), HashPath) ||   \
     IsA((node), MergePath))

/*
 * A nested-loop path needs no special fields.
 */

typedef JoinPath NestPath;

/*
 * A mergejoin path has these fields.
 *
 * Unlike other path types, a MergePath node doesn't represent just a single
 * run-time plan node: it can represent up to four.  Aside from the MergeJoin
 * node itself, there can be a Sort node for the outer input, a Sort node
 * for the inner input, and/or a Material node for the inner input.  We could
 * represent these nodes by separate path nodes, but considering how many
 * different merge paths are investigated during a complex join problem,
 * it seems better to avoid unnecessary palloc overhead.
 *
 * path_mergeclauses lists the clauses (in the form of RestrictInfos)
 * that will be used in the merge.
 *
 * Note that the mergeclauses are a subset of the parent relation's
 * restriction-clause list.  Any join clauses that are not mergejoinable
 * appear only in the parent's restrict list, and must be checked by a
 * qpqual at execution time.
 *
 * outersortkeys (resp. innersortkeys) is NIL if the outer path
 * (resp. inner path) is already ordered appropriately for the
 * mergejoin.  If it is not NIL then it is a PathKeys list describing
 * the ordering that must be created by an explicit Sort node.
 *
 * skip_mark_restore is true if the executor need not do mark/restore calls.
 * Mark/restore overhead is usually required, but can be skipped if we know
 * that the executor need find only one match per outer tuple, and that the
 * mergeclauses are sufficient to identify a match.  In such cases the
 * executor can immediately advance the outer relation after processing a
 * match, and therefore it need never back up the inner relation.
 *
 * materialize_inner is true if a Material node should be placed atop the
 * inner input.  This may appear with or without an inner Sort step.
 */

typedef struct MergePath
{
	JoinPath	jpath;
	List	   *path_mergeclauses;	/* join clauses to be used for merge */
	List	   *outersortkeys;	/* keys for explicit sort, if any */
	List	   *innersortkeys;	/* keys for explicit sort, if any */
	bool		skip_mark_restore;	/* can executor skip mark/restore? */
	bool		materialize_inner;	/* add Materialize to inner? */
} MergePath;

/*
 * A hashjoin path has these fields.
 *
 * The remarks above for mergeclauses apply for hashclauses as well.
 *
 * Hashjoin does not care what order its inputs appear in, so we have
 * no need for sortkeys.
 */

typedef struct HashPath
{
	JoinPath	jpath;
	List	   *path_hashclauses;	/* join clauses used for hashing */
	int			num_batches;	/* number of batches expected */
	double		inner_rows_total;	/* total inner rows expected */
} HashPath;

/*
 * ProjectionPath represents a projection (that is, targetlist computation)
 *
 * Nominally, this path node represents using a Result plan node to do a
 * projection step.  However, if the input plan node supports projection,
 * we can just modify its output targetlist to do the required calculations
 * directly, and not need a Result.  In some places in the planner we can just
 * jam the desired PathTarget into the input path node (and adjust its cost
 * accordingly), so we don't need a ProjectionPath.  But in other places
 * it's necessary to not modify the input path node, so we need a separate
 * ProjectionPath node, which is marked dummy to indicate that we intend to
 * assign the work to the input plan node.  The estimated cost for the
 * ProjectionPath node will account for whether a Result will be used or not.
 */
typedef struct ProjectionPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	bool		dummypp;		/* true if no separate Result is needed */

	/*
	 * Greenplum specific field:
	 * If force is true, we always create a Result plannode.
	 */
	bool        force;

	List	   *cdb_restrict_clauses;

	/*
	 * CDB: projection with qual gp_execution_segment() = <segid>,
	 * for such case we should consider update directdispatch info.
	 */
	List	   *direct_dispath_contentIds;
} ProjectionPath;

/*
 * ProjectSetPath represents evaluation of a targetlist that includes
 * set-returning function(s), which will need to be implemented by a
 * ProjectSet plan node.
 */
typedef struct ProjectSetPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
} ProjectSetPath;

/*
 * SortPath represents an explicit sort step
 *
 * The sort keys are, by definition, the same as path.pathkeys.
 *
 * Note: the Sort plan node cannot project, so path.pathtarget must be the
 * same as the input's pathtarget.
 */
typedef struct SortPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
} SortPath;

/*
 * GroupPath represents grouping (of presorted input)
 *
 * groupClause represents the columns to be grouped on; the input path
 * must be at least that well sorted.
 *
 * We can also apply a qual to the grouped rows (equivalent of HAVING)
 */
typedef struct GroupPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	List	   *groupClause;	/* a list of SortGroupClause's */
	List	   *qual;			/* quals (HAVING quals), if any */
} GroupPath;

/*
 * UpperUniquePath represents adjacent-duplicate removal (in presorted input)
 *
 * The columns to be compared are the first numkeys columns of the path's
 * pathkeys.  The input is presumed already sorted that way.
 */
typedef struct UpperUniquePath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	int			numkeys;		/* number of pathkey columns to compare */
} UpperUniquePath;

/*
 * AggPath represents generic computation of aggregate functions
 *
 * This may involve plain grouping (but not grouping sets), using either
 * sorted or hashed grouping; for the AGG_SORTED case, the input must be
 * appropriately presorted.
 */
typedef struct AggPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	AggStrategy aggstrategy;	/* basic strategy, see nodes.h */
	AggSplit	aggsplit;		/* agg-splitting mode, see nodes.h */
	double		numGroups;		/* estimated number of groups in input */
	List	   *groupClause;	/* a list of SortGroupClause's */
	List	   *qual;			/* quals (HAVING quals), if any */
	bool		streaming;
} AggPath;

/*
 * Various annotations used for grouping sets in the planner.
 */

typedef struct GroupingSetData
{
	NodeTag		type;
	List	   *set;			/* grouping set as list of sortgrouprefs */
	double		numGroups;		/* est. number of result groups */
} GroupingSetData;

typedef struct RollupData
{
	NodeTag		type;
	List	   *groupClause;	/* applicable subset of parse->groupClause */
	List	   *gsets;			/* lists of integer indexes into groupClause */
	List	   *gsets_data;		/* list of GroupingSetData */
	double		numGroups;		/* est. number of result groups */
	bool		hashable;		/* can be hashed */
	bool		is_hashed;		/* to be implemented as a hashagg */
} RollupData;

/*
 * GroupingSetsPath represents a GROUPING SETS aggregation
 */

typedef struct GroupingSetsPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	AggStrategy aggstrategy;	/* basic strategy */
	AggSplit	aggsplit;		/* agg-splitting mode, see nodes.h */
	List	   *rollups;		/* list of RollupData */
	List	   *qual;			/* quals (HAVING quals), if any */
} GroupingSetsPath;

/*
 * MinMaxAggPath represents computation of MIN/MAX aggregates from indexes
 */
typedef struct MinMaxAggPath
{
	Path		path;
	List	   *mmaggregates;	/* list of MinMaxAggInfo */
	List	   *quals;			/* HAVING quals, if any */
} MinMaxAggPath;

/*
 * WindowAggPath represents generic computation of window functions
 */
typedef struct WindowAggPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	WindowClause *winclause;	/* WindowClause we'll be using */
} WindowAggPath;

/*
 * TupleSplitPath represents tuple split by DQAs expr
 *
 * In gpdb, we need to split one input tuple to n output tuples for MultiDQA
 * MPP execution. Each output tuple only contains one DQA expr and all GROUP BY
 * exprs.
 */
typedef struct TupleSplitPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	List	   *groupClause;	/* a list of SortGroupClause's */

	List	   *dqa_expr_lst;
} TupleSplitPath;

/*
 * SetOpPath represents a set-operation, that is INTERSECT or EXCEPT
 */
typedef struct SetOpPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	SetOpCmd	cmd;			/* what to do, see nodes.h */
	SetOpStrategy strategy;		/* how to do it, see nodes.h */
	List	   *distinctList;	/* SortGroupClauses identifying target cols */
	AttrNumber	flagColIdx;		/* where is the flag column, if any */
	int			firstFlag;		/* flag value for first input relation */
	double		numGroups;		/* estimated number of groups in input */
} SetOpPath;

/*
 * RecursiveUnionPath represents a recursive UNION node
 */
typedef struct RecursiveUnionPath
{
	Path		path;
	Path	   *leftpath;		/* paths representing input sources */
	Path	   *rightpath;
	List	   *distinctList;	/* SortGroupClauses identifying target cols */
	int			wtParam;		/* ID of Param representing work table */
	double		numGroups;		/* estimated number of groups in input */
} RecursiveUnionPath;

/*
 * LockRowsPath represents acquiring row locks for SELECT FOR UPDATE/SHARE
 */
typedef struct LockRowsPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	List	   *rowMarks;		/* a list of PlanRowMark's */
	int			epqParam;		/* ID of Param for EvalPlanQual re-eval */
} LockRowsPath;

/*
 * SplitUpdatePath
 */
typedef struct SplitUpdatePath
{
	Path		path;
	Path	   *subpath;
	Index		resultRelation;
} SplitUpdatePath;

/*
 * ModifyTablePath represents performing INSERT/UPDATE/DELETE modifications
 *
 * We represent most things that will be in the ModifyTable plan node
 * literally, except we have child Path(s) not Plan(s).  But analysis of the
 * OnConflictExpr is deferred to createplan.c, as is collection of FDW data.
 */
typedef struct ModifyTablePath
{
	Path		path;
	CmdType		operation;		/* INSERT, UPDATE, or DELETE */
	bool		canSetTag;		/* do we set the command tag/es_processed? */
	Index		nominalRelation;	/* Parent RT index for use of EXPLAIN */
	Index		rootRelation;	/* Root RT index, if target is partitioned */
	bool		partColsUpdated;	/* some part key in hierarchy updated */
	List	   *resultRelations;	/* integer list of RT indexes */
	List	   *is_split_updates;
	List	   *subpaths;		/* Path(s) producing source data */
	List	   *subroots;		/* per-target-table PlannerInfos */
	List	   *withCheckOptionLists;	/* per-target-table WCO lists */
	List	   *returningLists; /* per-target-table RETURNING tlists */
	List	   *rowMarks;		/* PlanRowMarks (non-locking only) */
	OnConflictExpr *onconflict; /* ON CONFLICT clause, or NULL */
	int			epqParam;		/* ID of Param for EvalPlanQual re-eval */
} ModifyTablePath;

/*
 * LimitPath represents applying LIMIT/OFFSET restrictions
 */
typedef struct LimitPath
{
	Path		path;
	Path	   *subpath;		/* path representing input source */
	Node	   *limitOffset;	/* OFFSET parameter, or NULL if none */
	Node	   *limitCount;		/* COUNT parameter, or NULL if none */
} LimitPath;


/*
 * Restriction clause info.
 *
 * We create one of these for each AND sub-clause of a restriction condition
 * (WHERE or JOIN/ON clause).  Since the restriction clauses are logically
 * ANDed, we can use any one of them or any subset of them to filter out
 * tuples, without having to evaluate the rest.  The RestrictInfo node itself
 * stores data used by the optimizer while choosing the best query plan.
 *
 * If a restriction clause references a single base relation, it will appear
 * in the baserestrictinfo list of the RelOptInfo for that base rel.
 *
 * If a restriction clause references more than one base rel, it will
 * appear in the joininfo list of every RelOptInfo that describes a strict
 * subset of the base rels mentioned in the clause.  The joininfo lists are
 * used to drive join tree building by selecting plausible join candidates.
 * The clause cannot actually be applied until we have built a join rel
 * containing all the base rels it references, however.
 *
 * When we construct a join rel that includes all the base rels referenced
 * in a multi-relation restriction clause, we place that clause into the
 * joinrestrictinfo lists of paths for the join rel, if neither left nor
 * right sub-path includes all base rels referenced in the clause.  The clause
 * will be applied at that join level, and will not propagate any further up
 * the join tree.  (Note: the "predicate migration" code was once intended to
 * push restriction clauses up and down the plan tree based on evaluation
 * costs, but it's dead code and is unlikely to be resurrected in the
 * foreseeable future.)
 *
 * Note that in the presence of more than two rels, a multi-rel restriction
 * might reach different heights in the join tree depending on the join
 * sequence we use.  So, these clauses cannot be associated directly with
 * the join RelOptInfo, but must be kept track of on a per-join-path basis.
 *
 * RestrictInfos that represent equivalence conditions (i.e., mergejoinable
 * equalities that are not outerjoin-delayed) are handled a bit differently.
 * Initially we attach them to the EquivalenceClasses that are derived from
 * them.  When we construct a scan or join path, we look through all the
 * EquivalenceClasses and generate derived RestrictInfos representing the
 * minimal set of conditions that need to be checked for this particular scan
 * or join to enforce that all members of each EquivalenceClass are in fact
 * equal in all rows emitted by the scan or join.
 *
 * When dealing with outer joins we have to be very careful about pushing qual
 * clauses up and down the tree.  An outer join's own JOIN/ON conditions must
 * be evaluated exactly at that join node, unless they are "degenerate"
 * conditions that reference only Vars from the nullable side of the join.
 * Quals appearing in WHERE or in a JOIN above the outer join cannot be pushed
 * down below the outer join, if they reference any nullable Vars.
 * RestrictInfo nodes contain a flag to indicate whether a qual has been
 * pushed down to a lower level than its original syntactic placement in the
 * join tree would suggest.  If an outer join prevents us from pushing a qual
 * down to its "natural" semantic level (the level associated with just the
 * base rels used in the qual) then we mark the qual with a "required_relids"
 * value including more than just the base rels it actually uses.  By
 * pretending that the qual references all the rels required to form the outer
 * join, we prevent it from being evaluated below the outer join's joinrel.
 * When we do form the outer join's joinrel, we still need to distinguish
 * those quals that are actually in that join's JOIN/ON condition from those
 * that appeared elsewhere in the tree and were pushed down to the join rel
 * because they used no other rels.  That's what the is_pushed_down flag is
 * for; it tells us that a qual is not an OUTER JOIN qual for the set of base
 * rels listed in required_relids.  A clause that originally came from WHERE
 * or an INNER JOIN condition will *always* have its is_pushed_down flag set.
 * It's possible for an OUTER JOIN clause to be marked is_pushed_down too,
 * if we decide that it can be pushed down into the nullable side of the join.
 * In that case it acts as a plain filter qual for wherever it gets evaluated.
 * (In short, is_pushed_down is only false for non-degenerate outer join
 * conditions.  Possibly we should rename it to reflect that meaning?  But
 * see also the comments for RINFO_IS_PUSHED_DOWN, below.)
 *
 * RestrictInfo nodes also contain an outerjoin_delayed flag, which is true
 * if the clause's applicability must be delayed due to any outer joins
 * appearing below it (ie, it has to be postponed to some join level higher
 * than the set of relations it actually references).
 *
 * There is also an outer_relids field, which is NULL except for outer join
 * clauses; for those, it is the set of relids on the outer side of the
 * clause's outer join.  (These are rels that the clause cannot be applied to
 * in parameterized scans, since pushing it into the join's outer side would
 * lead to wrong answers.)
 *
 * There is also a nullable_relids field, which is the set of rels the clause
 * references that can be forced null by some outer join below the clause.
 *
 * outerjoin_delayed = true is subtly different from nullable_relids != NULL:
 * a clause might reference some nullable rels and yet not be
 * outerjoin_delayed because it also references all the other rels of the
 * outer join(s). A clause that is not outerjoin_delayed can be enforced
 * anywhere it is computable.
 *
 * To handle security-barrier conditions efficiently, we mark RestrictInfo
 * nodes with a security_level field, in which higher values identify clauses
 * coming from less-trusted sources.  The exact semantics are that a clause
 * cannot be evaluated before another clause with a lower security_level value
 * unless the first clause is leakproof.  As with outer-join clauses, this
 * creates a reason for clauses to sometimes need to be evaluated higher in
 * the join tree than their contents would suggest; and even at a single plan
 * node, this rule constrains the order of application of clauses.
 *
 * In general, the referenced clause might be arbitrarily complex.  The
 * kinds of clauses we can handle as indexscan quals, mergejoin clauses,
 * or hashjoin clauses are limited (e.g., no volatile functions).  The code
 * for each kind of path is responsible for identifying the restrict clauses
 * it can use and ignoring the rest.  Clauses not implemented by an indexscan,
 * mergejoin, or hashjoin will be placed in the plan qual or joinqual field
 * of the finished Plan node, where they will be enforced by general-purpose
 * qual-expression-evaluation code.  (But we are still entitled to count
 * their selectivity when estimating the result tuple count, if we
 * can guess what it is...)
 *
 * When the referenced clause is an OR clause, we generate a modified copy
 * in which additional RestrictInfo nodes are inserted below the top-level
 * OR/AND structure.  This is a convenience for OR indexscan processing:
 * indexquals taken from either the top level or an OR subclause will have
 * associated RestrictInfo nodes.
 *
 * The can_join flag is set true if the clause looks potentially useful as
 * a merge or hash join clause, that is if it is a binary opclause with
 * nonoverlapping sets of relids referenced in the left and right sides.
 * (Whether the operator is actually merge or hash joinable isn't checked,
 * however.)
 *
 * The pseudoconstant flag is set true if the clause contains no Vars of
 * the current query level and no volatile functions.  Such a clause can be
 * pulled out and used as a one-time qual in a gating Result node.  We keep
 * pseudoconstant clauses in the same lists as other RestrictInfos so that
 * the regular clause-pushing machinery can assign them to the correct join
 * level, but they need to be treated specially for cost and selectivity
 * estimates.  Note that a pseudoconstant clause can never be an indexqual
 * or merge or hash join clause, so it's of no interest to large parts of
 * the planner.
 *
 * When join clauses are generated from EquivalenceClasses, there may be
 * several equally valid ways to enforce join equivalence, of which we need
 * apply only one.  We mark clauses of this kind by setting parent_ec to
 * point to the generating EquivalenceClass.  Multiple clauses with the same
 * parent_ec in the same join are redundant.
 */

typedef struct RestrictInfo
{
	NodeTag		type;

	Expr	   *clause;			/* the represented clause of WHERE or JOIN */

	bool		is_pushed_down; /* true if clause was pushed down in level */

	bool		outerjoin_delayed;	/* true if delayed by lower outer join */

	bool		can_join;		/* see comment above */

	bool		pseudoconstant; /* see comment above */

	bool		leakproof;		/* true if known to contain no leaked Vars */

	Index		security_level; /* see comment above */

	/*
	 * GPDB: does the clause refer to outer query levels? (Which implies that
	 * it must be evaluted in the same slice as the parent query)
	 */
	bool		contain_outer_query_references;

	/* The set of relids (varnos) actually referenced in the clause: */
	Relids		clause_relids;

	/* The set of relids required to evaluate the clause: */
	Relids		required_relids;

	/* If an outer-join clause, the outer-side relations, else NULL: */
	Relids		outer_relids;

	/* The relids used in the clause that are nullable by lower outer joins: */
	Relids		nullable_relids;

	/* These fields are set for any binary opclause: */
	Relids		left_relids;	/* relids in left side of clause */
	Relids		right_relids;	/* relids in right side of clause */

	/* This field is NULL unless clause is an OR clause: */
	Expr	   *orclause;		/* modified clause with RestrictInfos */

	/* This field is NULL unless clause is potentially redundant: */
	EquivalenceClass *parent_ec;	/* generating EquivalenceClass */

	/* cache space for cost and selectivity */
	QualCost	eval_cost;		/* eval cost of clause; -1 if not yet set */
	Selectivity norm_selec;		/* selectivity for "normal" (JOIN_INNER)
								 * semantics; -1 if not yet set; >1 means a
								 * redundant clause */
	Selectivity outer_selec;	/* selectivity for outer join semantics; -1 if
								 * not yet set */

	/* valid if clause is mergejoinable, else NIL */
	List	   *mergeopfamilies;	/* opfamilies containing clause operator */

	/* cache space for mergeclause processing; NULL if not yet set */
	EquivalenceClass *left_ec;	/* EquivalenceClass containing lefthand */
	EquivalenceClass *right_ec; /* EquivalenceClass containing righthand */
	EquivalenceMember *left_em; /* EquivalenceMember for lefthand */
	EquivalenceMember *right_em;	/* EquivalenceMember for righthand */
	List	   *scansel_cache;	/* list of MergeScanSelCache structs */

	/* transient workspace for use while considering a specific join path */
	bool		outer_is_left;	/* T = outer var on left, F = on right */

	/* valid if clause is hashjoinable, else InvalidOid: */
	Oid			hashjoinoperator;	/* copy of clause operator */

	/* cache space for hashclause processing; -1 if not yet set */
	Selectivity left_bucketsize;	/* avg bucketsize of left side */
	Selectivity right_bucketsize;	/* avg bucketsize of right side */
	Selectivity left_mcvfreq;	/* left side's most common val's freq */
	Selectivity right_mcvfreq;	/* right side's most common val's freq */
} RestrictInfo;

/*
 * This macro embodies the correct way to test whether a RestrictInfo is
 * "pushed down" to a given outer join, that is, should be treated as a filter
 * clause rather than a join clause at that outer join.  This is certainly so
 * if is_pushed_down is true; but examining that is not sufficient anymore,
 * because outer-join clauses will get pushed down to lower outer joins when
 * we generate a path for the lower outer join that is parameterized by the
 * LHS of the upper one.  We can detect such a clause by noting that its
 * required_relids exceed the scope of the join.
 */
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids) \
	((rinfo)->is_pushed_down || \
	 !bms_is_subset((rinfo)->required_relids, joinrelids))

/*
 * Since mergejoinscansel() is a relatively expensive function, and would
 * otherwise be invoked many times while planning a large join tree,
 * we go out of our way to cache its results.  Each mergejoinable
 * RestrictInfo carries a list of the specific sort orderings that have
 * been considered for use with it, and the resulting selectivities.
 */
typedef struct MergeScanSelCache
{
	/* Ordering details (cache lookup key) */
	Oid			opfamily;		/* btree opfamily defining the ordering */
	Oid			collation;		/* collation for the ordering */
	int			strategy;		/* sort direction (ASC or DESC) */
	bool		nulls_first;	/* do NULLs come before normal values? */
	/* Results */
	Selectivity leftstartsel;	/* first-join fraction for clause left side */
	Selectivity leftendsel;		/* last-join fraction for clause left side */
	Selectivity rightstartsel;	/* first-join fraction for clause right side */
	Selectivity rightendsel;	/* last-join fraction for clause right side */
} MergeScanSelCache;

/*
 * Placeholder node for an expression to be evaluated below the top level
 * of a plan tree.  This is used during planning to represent the contained
 * expression.  At the end of the planning process it is replaced by either
 * the contained expression or a Var referring to a lower-level evaluation of
 * the contained expression.  Typically the evaluation occurs below an outer
 * join, and Var references above the outer join might thereby yield NULL
 * instead of the expression value.
 *
 * Although the planner treats this as an expression node type, it is not
 * recognized by the parser or executor, so we declare it here rather than
 * in primnodes.h.
 */

typedef struct PlaceHolderVar
{
	Expr		xpr;
	Expr	   *phexpr;			/* the represented expression */
	Relids		phrels;			/* base relids syntactically within expr src */
	Index		phid;			/* ID for PHV (unique within planner run) */
	Index		phlevelsup;		/* > 0 if PHV belongs to outer query */
} PlaceHolderVar;

/*
 * "Special join" info.
 *
 * One-sided outer joins constrain the order of joining partially but not
 * completely.  We flatten such joins into the planner's top-level list of
 * relations to join, but record information about each outer join in a
 * SpecialJoinInfo struct.  These structs are kept in the PlannerInfo node's
 * join_info_list.
 *
 * Similarly, semijoins and antijoins created by flattening IN (subselect)
 * and EXISTS(subselect) clauses create partial constraints on join order.
 * These are likewise recorded in SpecialJoinInfo structs.
 *
 * We make SpecialJoinInfos for FULL JOINs even though there is no flexibility
 * of planning for them, because this simplifies make_join_rel()'s API.
 *
 * min_lefthand and min_righthand are the sets of base relids that must be
 * available on each side when performing the special join.  lhs_strict is
 * true if the special join's condition cannot succeed when the LHS variables
 * are all NULL (this means that an outer join can commute with upper-level
 * outer joins even if it appears in their RHS).  We don't bother to set
 * lhs_strict for FULL JOINs, however.
 *
 * It is not valid for either min_lefthand or min_righthand to be empty sets;
 * if they were, this would break the logic that enforces join order.
 *
 * syn_lefthand and syn_righthand are the sets of base relids that are
 * syntactically below this special join.  (These are needed to help compute
 * min_lefthand and min_righthand for higher joins.)
 *
 * delay_upper_joins is set true if we detect a pushed-down clause that has
 * to be evaluated after this join is formed (because it references the RHS).
 * Any outer joins that have such a clause and this join in their RHS cannot
 * commute with this join, because that would leave noplace to check the
 * pushed-down clause.  (We don't track this for FULL JOINs, either.)
 *
 * For a semijoin, we also extract the join operators and their RHS arguments
 * and set semi_operators, semi_rhs_exprs, semi_can_btree, and semi_can_hash.
 * This is done in support of possibly unique-ifying the RHS, so we don't
 * bother unless at least one of semi_can_btree and semi_can_hash can be set
 * true.  (You might expect that this information would be computed during
 * join planning; but it's helpful to have it available during planning of
 * parameterized table scans, so we store it in the SpecialJoinInfo structs.)
 *
 * jointype is never JOIN_RIGHT; a RIGHT JOIN is handled by switching
 * the inputs to make it a LEFT JOIN.  So the allowed values of jointype
 * in a join_info_list member are only LEFT, FULL, SEMI, or ANTI.
 *
 * For purposes of join selectivity estimation, we create transient
 * SpecialJoinInfo structures for regular inner joins; so it is possible
 * to have jointype == JOIN_INNER in such a structure, even though this is
 * not allowed within join_info_list.  We also create transient
 * SpecialJoinInfos with jointype == JOIN_INNER for outer joins, since for
 * cost estimation purposes it is sometimes useful to know the join size under
 * plain innerjoin semantics.  Note that lhs_strict, delay_upper_joins, and
 * of course the semi_xxx fields are not set meaningfully within such structs.
 */
#ifndef HAVE_SPECIALJOININFO_TYPEDEF
typedef struct SpecialJoinInfo SpecialJoinInfo;
#define HAVE_SPECIALJOININFO_TYPEDEF 1
#endif

struct SpecialJoinInfo
{
	NodeTag		type;
	Relids		min_lefthand;	/* base relids in minimum LHS for join */
	Relids		min_righthand;	/* base relids in minimum RHS for join */
	Relids		syn_lefthand;	/* base relids syntactically within LHS */
	Relids		syn_righthand;	/* base relids syntactically within RHS */
	JoinType	jointype;		/* always INNER, LEFT, FULL, SEMI, or ANTI */
	bool		lhs_strict;		/* joinclause is strict for some LHS rel */
	bool		delay_upper_joins;	/* can't commute with upper RHS */
	/* Remaining fields are set only for JOIN_SEMI jointype: */
	bool		semi_can_btree; /* true if semi_operators are all btree */
	bool		semi_can_hash;	/* true if semi_operators are all hash */
	List	   *semi_operators; /* OIDs of equality join operators */
	List	   *semi_rhs_exprs; /* righthand-side expressions of these ops */
};

/*
 * Append-relation info.
 *
 * When we expand an inheritable table or a UNION-ALL subselect into an
 * "append relation" (essentially, a list of child RTEs), we build an
 * AppendRelInfo for each child RTE.  The list of AppendRelInfos indicates
 * which child RTEs must be included when expanding the parent, and each node
 * carries information needed to translate Vars referencing the parent into
 * Vars referencing that child.
 *
 * These structs are kept in the PlannerInfo node's append_rel_list.
 * Note that we just throw all the structs into one list, and scan the
 * whole list when desiring to expand any one parent.  We could have used
 * a more complex data structure (eg, one list per parent), but this would
 * be harder to update during operations such as pulling up subqueries,
 * and not really any easier to scan.  Considering that typical queries
 * will not have many different append parents, it doesn't seem worthwhile
 * to complicate things.
 *
 * Note: after completion of the planner prep phase, any given RTE is an
 * append parent having entries in append_rel_list if and only if its
 * "inh" flag is set.  We clear "inh" for plain tables that turn out not
 * to have inheritance children, and (in an abuse of the original meaning
 * of the flag) we set "inh" for subquery RTEs that turn out to be
 * flattenable UNION ALL queries.  This lets us avoid useless searches
 * of append_rel_list.
 *
 * Note: the data structure assumes that append-rel members are single
 * baserels.  This is OK for inheritance, but it prevents us from pulling
 * up a UNION ALL member subquery if it contains a join.  While that could
 * be fixed with a more complex data structure, at present there's not much
 * point because no improvement in the plan could result.
 */

typedef struct AppendRelInfo
{
	NodeTag		type;

	/*
	 * These fields uniquely identify this append relationship.  There can be
	 * (in fact, always should be) multiple AppendRelInfos for the same
	 * parent_relid, but never more than one per child_relid, since a given
	 * RTE cannot be a child of more than one append parent.
	 */
	Index		parent_relid;	/* RT index of append parent rel */
	Index		child_relid;	/* RT index of append child rel */

	/*
	 * For an inheritance appendrel, the parent and child are both regular
	 * relations, and we store their rowtype OIDs here for use in translating
	 * whole-row Vars.  For a UNION-ALL appendrel, the parent and child are
	 * both subqueries with no named rowtype, and we store InvalidOid here.
	 */
	Oid			parent_reltype; /* OID of parent's composite type */
	Oid			child_reltype;	/* OID of child's composite type */

	/*
	 * The N'th element of this list is a Var or expression representing the
	 * child column corresponding to the N'th column of the parent. This is
	 * used to translate Vars referencing the parent rel into references to
	 * the child.  A list element is NULL if it corresponds to a dropped
	 * column of the parent (this is only possible for inheritance cases, not
	 * UNION ALL).  The list elements are always simple Vars for inheritance
	 * cases, but can be arbitrary expressions in UNION ALL cases.
	 *
	 * Notice we only store entries for user columns (attno > 0).  Whole-row
	 * Vars are special-cased, and system columns (attno < 0) need no special
	 * translation since their attnos are the same for all tables.
	 *
	 * Caution: the Vars have varlevelsup = 0.  Be careful to adjust as needed
	 * when copying into a subquery.
	 */
	List	   *translated_vars;	/* Expressions in the child's Vars */

	/*
	 * We store the parent table's OID here for inheritance, or InvalidOid for
	 * UNION ALL.  This is only needed to help in generating error messages if
	 * an attempt is made to reference a dropped parent column.
	 */
	Oid			parent_reloid;	/* OID of parent relation */
} AppendRelInfo;

/*
 * For each distinct placeholder expression generated during planning, we
 * store a PlaceHolderInfo node in the PlannerInfo node's placeholder_list.
 * This stores info that is needed centrally rather than in each copy of the
 * PlaceHolderVar.  The phid fields identify which PlaceHolderInfo goes with
 * each PlaceHolderVar.  Note that phid is unique throughout a planner run,
 * not just within a query level --- this is so that we need not reassign ID's
 * when pulling a subquery into its parent.
 *
 * The idea is to evaluate the expression at (only) the ph_eval_at join level,
 * then allow it to bubble up like a Var until the ph_needed join level.
 * ph_needed has the same definition as attr_needed for a regular Var.
 * ph_may_need is an initial estimate of ph_needed, formed using the
 * syntactic locations of references to the PHV.  We need this in order to
 * determine whether the PHV reference forces a join ordering constraint:
 * if the PHV has to be evaluated below the nullable side of an outer join,
 * and then used above that outer join, we must constrain join order to ensure
 * there's a valid place to evaluate the PHV below the join.  The final
 * actual ph_needed level might be lower than ph_may_need, but we can't
 * determine that until later on.  Fortunately this doesn't matter for what
 * we need ph_may_need for: if there's a PHV reference syntactically
 * above the outer join, it's not going to be allowed to drop below the outer
 * join, so we would come to the same conclusions about join order even if
 * we had the final ph_needed value to compare to.
 *
 * The PlaceHolderVar's expression might contain LATERAL references to vars
 * coming from outside its syntactic scope.  If so, those rels are *not*
 * included in ph_eval_at, but they are recorded in ph_lateral.
 *
 * Notice that when ph_eval_at is a join rather than a single baserel, the
 * PlaceHolderInfo may create constraints on join order: the ph_eval_at join
 * has to be formed below any outer joins that should null the PlaceHolderVar.
 *
 * We create a PlaceHolderInfo only after determining that the PlaceHolderVar
 * is actually referenced in the plan tree, so that unreferenced placeholders
 * don't result in unnecessary constraints on join order.
 */

typedef struct PlaceHolderInfo
{
	NodeTag		type;

	Index		phid;			/* ID for PH (unique within planner run) */
	PlaceHolderVar *ph_var;		/* copy of PlaceHolderVar tree */
	Relids		ph_eval_at;		/* lowest level we can evaluate value at */
	Relids		ph_lateral;		/* relids of contained lateral refs, if any */
	Relids		ph_needed;		/* highest level the value is needed at */
	int32		ph_width;		/* estimated attribute width */
} PlaceHolderInfo;

/*
 * This struct describes one potentially index-optimizable MIN/MAX aggregate
 * function.  MinMaxAggPath contains a list of these, and if we accept that
 * path, the list is stored into root->minmax_aggs for use during setrefs.c.
 */
typedef struct MinMaxAggInfo
{
	NodeTag		type;

	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
	Oid			aggsortop;		/* Oid of its sort operator */
	Expr	   *target;			/* expression we are aggregating on */
	PlannerInfo *subroot;		/* modified "root" for planning the subquery */
	Path	   *path;			/* access path for subquery */
	Cost		pathcost;		/* estimated cost to fetch first row */
	Param	   *param;			/* param for subplan's output */
} MinMaxAggInfo;

/*
 * At runtime, PARAM_EXEC slots are used to pass values around from one plan
 * node to another.  They can be used to pass values down into subqueries (for
 * outer references in subqueries), or up out of subqueries (for the results
 * of a subplan), or from a NestLoop plan node into its inner relation (when
 * the inner scan is parameterized with values from the outer relation).
 * The planner is responsible for assigning nonconflicting PARAM_EXEC IDs to
 * the PARAM_EXEC Params it generates.
 *
 * Outer references are managed via root->plan_params, which is a list of
 * PlannerParamItems.  While planning a subquery, each parent query level's
 * plan_params contains the values required from it by the current subquery.
 * During create_plan(), we use plan_params to track values that must be
 * passed from outer to inner sides of NestLoop plan nodes.
 *
 * The item a PlannerParamItem represents can be one of three kinds:
 *
 * A Var: the slot represents a variable of this level that must be passed
 * down because subqueries have outer references to it, or must be passed
 * from a NestLoop node to its inner scan.  The varlevelsup value in the Var
 * will always be zero.
 *
 * A PlaceHolderVar: this works much like the Var case, except that the
 * entry is a PlaceHolderVar node with a contained expression.  The PHV
 * will have phlevelsup = 0, and the contained expression is adjusted
 * to match in level.
 *
 * An Aggref (with an expression tree representing its argument): the slot
 * represents an aggregate expression that is an outer reference for some
 * subquery.  The Aggref itself has agglevelsup = 0, and its argument tree
 * is adjusted to match in level.
 *
 * Note: we detect duplicate Var and PlaceHolderVar parameters and coalesce
 * them into one slot, but we do not bother to do that for Aggrefs.
 * The scope of duplicate-elimination only extends across the set of
 * parameters passed from one query level into a single subquery, or for
 * nestloop parameters across the set of nestloop parameters used in a single
 * query level.  So there is no possibility of a PARAM_EXEC slot being used
 * for conflicting purposes.
 *
 * In addition, PARAM_EXEC slots are assigned for Params representing outputs
 * from subplans (values that are setParam items for those subplans).  These
 * IDs need not be tracked via PlannerParamItems, since we do not need any
 * duplicate-elimination nor later processing of the represented expressions.
 * Instead, we just record the assignment of the slot number by appending to
 * root->glob->paramExecTypes.
 */
typedef struct PlannerParamItem
{
	NodeTag		type;

	Node	   *item;			/* the Var, PlaceHolderVar, or Aggref */
	int			paramId;		/* its assigned PARAM_EXEC slot number */
} PlannerParamItem;

/*
 * A Mapping created by the QD during data loading that maps a
 * relation id to the segfile number that is should be inserting
 * into (in cases of inserting into a partitioned table the QD
 * assigns a segno for each possible partition child relation).
 * 
 * It is a node because it needs to get serialized as a part of 
 * CopyStmt.
 */
typedef struct SegfileMapNode
{
	NodeTag 	type;
	Oid			relid;
	int			segno;
} SegfileMapNode;

/*
 * When making cost estimates for a SEMI/ANTI/inner_unique join, there are
 * some correction factors that are needed in both nestloop and hash joins
 * to account for the fact that the executor can stop scanning inner rows
 * as soon as it finds a match to the current outer row.  These numbers
 * depend only on the selected outer and inner join relations, not on the
 * particular paths used for them, so it's worthwhile to calculate them
 * just once per relation pair not once per considered path.  This struct
 * is filled by compute_semi_anti_join_factors and must be passed along
 * to the join cost estimation functions.
 *
 * outer_match_frac is the fraction of the outer tuples that are
 *		expected to have at least one match.
 * match_count is the average number of matches expected for
 *		outer tuples that have at least one match.
 */
typedef struct SemiAntiJoinFactors
{
	Selectivity outer_match_frac;
	Selectivity match_count;
} SemiAntiJoinFactors;

/*
 * Struct for extra information passed to subroutines of add_paths_to_joinrel
 *
 * restrictlist contains all of the RestrictInfo nodes for restriction
 *		clauses that apply to this join
 * mergeclause_list is a list of RestrictInfo nodes for available
 *		mergejoin clauses in this join
 * inner_unique is true if each outer tuple provably matches no more
 *		than one inner tuple
 * sjinfo is extra info about special joins for selectivity estimation
 * semifactors is as shown above (only valid for SEMI/ANTI/inner_unique joins)
 * param_source_rels are OK targets for parameterization of result paths
 */
typedef struct JoinPathExtraData
{
	List	   *restrictlist;
	List	   *mergeclause_list;
	bool		inner_unique;
	SpecialJoinInfo *sjinfo;
	SemiAntiJoinFactors semifactors;
	Relids		param_source_rels;
	List	   *redistribution_clauses;
} JoinPathExtraData;

/*
 * Various flags indicating what kinds of grouping are possible.
 *
 * GROUPING_CAN_USE_SORT should be set if it's possible to perform
 * sort-based implementations of grouping.  When grouping sets are in use,
 * this will be true if sorting is potentially usable for any of the grouping
 * sets, even if it's not usable for all of them.
 *
 * GROUPING_CAN_USE_HASH should be set if it's possible to perform
 * hash-based implementations of grouping.
 *
 * GROUPING_CAN_PARTIAL_AGG should be set if the aggregation is of a type
 * for which we support partial aggregation (not, for example, grouping sets).
 * It says nothing about parallel-safety or the availability of suitable paths.
 */
#define GROUPING_CAN_USE_SORT       0x0001
#define GROUPING_CAN_USE_HASH       0x0002
#define GROUPING_CAN_PARTIAL_AGG	0x0004
/*
 * PostgreSQL's executor doesn't support hashed aggregation
 * with DISTINCT, because it's supposed to be "a certain loser",
 * which is not that certion in Greenplum MPP architecture.
 */
#define GROUPING_CAN_USE_MPP_HASH   0x0008

/*
 * What kind of partitionwise aggregation is in use?
 *
 * PARTITIONWISE_AGGREGATE_NONE: Not used.
 *
 * PARTITIONWISE_AGGREGATE_FULL: Aggregate each partition separately, and
 * append the results.
 *
 * PARTITIONWISE_AGGREGATE_PARTIAL: Partially aggregate each partition
 * separately, append the results, and then finalize aggregation.
 */
typedef enum
{
	PARTITIONWISE_AGGREGATE_NONE,
	PARTITIONWISE_AGGREGATE_FULL,
	PARTITIONWISE_AGGREGATE_PARTIAL
} PartitionwiseAggregateType;

/*
 * Struct for extra information passed to subroutines of create_grouping_paths
 *
 * flags indicating what kinds of grouping are possible.
 * partial_costs_set is true if the agg_partial_costs and agg_final_costs
 * 		have been initialized.
 * agg_partial_costs gives partial aggregation costs.
 * agg_final_costs gives finalization costs.
 * target_parallel_safe is true if target is parallel safe.
 * havingQual gives list of quals to be applied after aggregation.
 * targetList gives list of columns to be projected.
 * patype is the type of partitionwise aggregation that is being performed.
 */
typedef struct
{
	/* Data which remains constant once set. */
	int			flags;
	bool		partial_costs_set;
	AggClauseCosts agg_partial_costs;
	AggClauseCosts agg_final_costs;

	/* Data which may differ across partitions. */
	bool		target_parallel_safe;
	Node	   *havingQual;
	List	   *targetList;
	PartitionwiseAggregateType patype;
} GroupPathExtraData;

/*
 * Struct for extra information passed to subroutines of grouping_planner
 *
 * limit_needed is true if we actually need a Limit plan node.
 * limit_tuples is an estimated bound on the number of output tuples,
 *		or -1 if no LIMIT or couldn't estimate.
 * count_est and offset_est are the estimated values of the LIMIT and OFFSET
 * 		expressions computed by preprocess_limit() (see comments for
 * 		preprocess_limit() for more information).
 */
typedef struct
{
	bool		limit_needed;
	double		limit_tuples;
	int64		count_est;
	int64		offset_est;
} FinalPathExtraData;

/*
 * For speed reasons, cost estimation for join paths is performed in two
 * phases: the first phase tries to quickly derive a lower bound for the
 * join cost, and then we check if that's sufficient to reject the path.
 * If not, we come back for a more refined cost estimate.  The first phase
 * fills a JoinCostWorkspace struct with its preliminary cost estimates
 * and possibly additional intermediate values.  The second phase takes
 * these values as inputs to avoid repeating work.
 *
 * (Ideally we'd declare this in cost.h, but it's also needed in pathnode.h,
 * so seems best to put it here.)
 */
typedef struct JoinCostWorkspace
{
	/* Preliminary cost estimates --- must not be larger than final ones! */
	Cost		startup_cost;	/* cost expended before fetching any tuples */
	Cost		total_cost;		/* total cost (assuming all tuples fetched) */

	/* Fields below here should be treated as private to costsize.c */
	Cost		run_cost;		/* non-startup cost components */

	/* private for cost_nestloop code */
	Cost		inner_run_cost; /* also used by cost_mergejoin code */
	Cost		inner_rescan_run_cost;

	/* private for cost_mergejoin code */
	double		outer_rows;
	double		inner_rows;
	double		outer_skip_rows;
	double		inner_skip_rows;

	/* private for cost_hashjoin code */
	int			numbuckets;
	int			numbatches;
	double		inner_rows_total;
} JoinCostWorkspace;

#endif							/* PATHNODES_H */

相关信息

greenplumn 源码目录

相关文章

greenplumn altertablenodes 源码

greenplumn bitmapset 源码

greenplumn execnodes 源码

greenplumn extensible 源码

greenplumn lockoptions 源码

greenplumn makefuncs 源码

greenplumn memnodes 源码

greenplumn nodeFuncs 源码

greenplumn nodes 源码

greenplumn params 源码

0  赞