airflow spark_sql 源码
airflow spark_sql 代码
文件路径:/airflow/providers/apache/spark/hooks/spark_sql.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import subprocess
from typing import TYPE_CHECKING, Any
from airflow.exceptions import AirflowException, AirflowNotFoundException
from airflow.hooks.base import BaseHook
if TYPE_CHECKING:
from airflow.models.connection import Connection
class SparkSqlHook(BaseHook):
"""
This hook is a wrapper around the spark-sql binary. It requires that the
"spark-sql" binary is in the PATH.
:param sql: The SQL query to execute
:param conf: arbitrary Spark configuration property
:param conn_id: connection_id string
:param total_executor_cores: (Standalone & Mesos only) Total cores for all executors
(Default: all the available cores on the worker)
:param executor_cores: (Standalone & YARN only) Number of cores per
executor (Default: 2)
:param executor_memory: Memory per executor (e.g. 1000M, 2G) (Default: 1G)
:param keytab: Full path to the file that contains the keytab
:param master: spark://host:port, mesos://host:port, yarn, or local
(Default: The ``host`` and ``port`` set in the Connection, or ``"yarn"``)
:param name: Name of the job.
:param num_executors: Number of executors to launch
:param verbose: Whether to pass the verbose flag to spark-sql
:param yarn_queue: The YARN queue to submit to
(Default: The ``queue`` value set in the Connection, or ``"default"``)
"""
conn_name_attr = 'conn_id'
default_conn_name = 'spark_sql_default'
conn_type = 'spark_sql'
hook_name = 'Spark SQL'
def __init__(
self,
sql: str,
conf: str | None = None,
conn_id: str = default_conn_name,
total_executor_cores: int | None = None,
executor_cores: int | None = None,
executor_memory: str | None = None,
keytab: str | None = None,
principal: str | None = None,
master: str | None = None,
name: str = 'default-name',
num_executors: int | None = None,
verbose: bool = True,
yarn_queue: str | None = None,
) -> None:
super().__init__()
options: dict = {}
conn: Connection | None = None
try:
conn = self.get_connection(conn_id)
except AirflowNotFoundException:
conn = None
if conn:
options = conn.extra_dejson
# Set arguments to values set in Connection if not explicitly provided.
if master is None:
if conn is None:
master = "yarn"
elif conn.port:
master = f"{conn.host}:{conn.port}"
else:
master = conn.host
if yarn_queue is None:
yarn_queue = options.get("queue", "default")
self._sql = sql
self._conf = conf
self._total_executor_cores = total_executor_cores
self._executor_cores = executor_cores
self._executor_memory = executor_memory
self._keytab = keytab
self._principal = principal
self._master = master
self._name = name
self._num_executors = num_executors
self._verbose = verbose
self._yarn_queue = yarn_queue
self._sp: Any = None
def get_conn(self) -> Any:
pass
def _prepare_command(self, cmd: str | list[str]) -> list[str]:
"""
Construct the spark-sql command to execute. Verbose output is enabled
as default.
:param cmd: command to append to the spark-sql command
:return: full command to be executed
"""
connection_cmd = ["spark-sql"]
if self._conf:
for conf_el in self._conf.split(","):
connection_cmd += ["--conf", conf_el]
if self._total_executor_cores:
connection_cmd += ["--total-executor-cores", str(self._total_executor_cores)]
if self._executor_cores:
connection_cmd += ["--executor-cores", str(self._executor_cores)]
if self._executor_memory:
connection_cmd += ["--executor-memory", self._executor_memory]
if self._keytab:
connection_cmd += ["--keytab", self._keytab]
if self._principal:
connection_cmd += ["--principal", self._principal]
if self._num_executors:
connection_cmd += ["--num-executors", str(self._num_executors)]
if self._sql:
sql = self._sql.strip()
if sql.endswith(".sql") or sql.endswith(".hql"):
connection_cmd += ["-f", sql]
else:
connection_cmd += ["-e", sql]
if self._master:
connection_cmd += ["--master", self._master]
if self._name:
connection_cmd += ["--name", self._name]
if self._verbose:
connection_cmd += ["--verbose"]
if self._yarn_queue:
connection_cmd += ["--queue", self._yarn_queue]
if isinstance(cmd, str):
connection_cmd += cmd.split()
elif isinstance(cmd, list):
connection_cmd += cmd
else:
raise AirflowException(f"Invalid additional command: {cmd}")
self.log.debug("Spark-Sql cmd: %s", connection_cmd)
return connection_cmd
def run_query(self, cmd: str = "", **kwargs: Any) -> None:
"""
Remote Popen (actually execute the Spark-sql query)
:param cmd: command to append to the spark-sql command
:param kwargs: extra arguments to Popen (see subprocess.Popen)
"""
spark_sql_cmd = self._prepare_command(cmd)
self._sp = subprocess.Popen(
spark_sql_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, **kwargs
)
for line in iter(self._sp.stdout): # type: ignore
self.log.info(line)
returncode = self._sp.wait()
if returncode:
raise AirflowException(
f"Cannot execute '{self._sql}' on {self._master} (additional parameters: '{cmd}'). "
f"Process exit code: {returncode}."
)
def kill(self) -> None:
"""Kill Spark job"""
if self._sp and self._sp.poll() is None:
self.log.info("Killing the Spark-Sql job")
self._sp.kill()
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦