superset long_lat 源码
superset long_lat 代码
文件路径:/superset/examples/long_lat.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import random
import geohash
import pandas as pd
from sqlalchemy import DateTime, Float, inspect, String
import superset.utils.database as database_utils
from superset import db
from superset.models.slice import Slice
from superset.utils.core import DatasourceType
from .helpers import (
get_example_url,
get_slice_json,
get_table_connector_registry,
merge_slice,
misc_dash_slices,
)
def load_long_lat_data(only_metadata: bool = False, force: bool = False) -> None:
"""Loading lat/long data from a csv file in the repo"""
tbl_name = "long_lat"
database = database_utils.get_example_database()
engine = database.get_sqla_engine()
schema = inspect(engine).default_schema_name
table_exists = database.has_table_by_name(tbl_name)
if not only_metadata and (not table_exists or force):
url = get_example_url("san_francisco.csv.gz")
pdf = pd.read_csv(url, encoding="utf-8", compression="gzip")
start = datetime.datetime.now().replace(
hour=0, minute=0, second=0, microsecond=0
)
pdf["datetime"] = [
start + datetime.timedelta(hours=i * 24 / (len(pdf) - 1))
for i in range(len(pdf))
]
pdf["occupancy"] = [random.randint(1, 6) for _ in range(len(pdf))]
pdf["radius_miles"] = [random.uniform(1, 3) for _ in range(len(pdf))]
pdf["geohash"] = pdf[["LAT", "LON"]].apply(lambda x: geohash.encode(*x), axis=1)
pdf["delimited"] = pdf["LAT"].map(str).str.cat(pdf["LON"].map(str), sep=",")
pdf.to_sql(
tbl_name,
engine,
schema=schema,
if_exists="replace",
chunksize=500,
dtype={
"longitude": Float(),
"latitude": Float(),
"number": Float(),
"street": String(100),
"unit": String(10),
"city": String(50),
"district": String(50),
"region": String(50),
"postcode": Float(),
"id": String(100),
"datetime": DateTime(),
"occupancy": Float(),
"radius_miles": Float(),
"geohash": String(12),
"delimited": String(60),
},
index=False,
)
print("Done loading table!")
print("-" * 80)
print("Creating table reference")
table = get_table_connector_registry()
obj = db.session.query(table).filter_by(table_name=tbl_name).first()
if not obj:
obj = table(table_name=tbl_name, schema=schema)
obj.main_dttm_col = "datetime"
obj.database = database
obj.filter_select_enabled = True
db.session.merge(obj)
db.session.commit()
obj.fetch_metadata()
tbl = obj
slice_data = {
"granularity_sqla": "day",
"since": "2014-01-01",
"until": "now",
"viz_type": "mapbox",
"all_columns_x": "LON",
"all_columns_y": "LAT",
"mapbox_style": "mapbox://styles/mapbox/light-v9",
"all_columns": ["occupancy"],
"row_limit": 500000,
}
print("Creating a slice")
slc = Slice(
slice_name="Mapbox Long/Lat",
viz_type="mapbox",
datasource_type=DatasourceType.TABLE,
datasource_id=tbl.id,
params=get_slice_json(slice_data),
)
misc_dash_slices.add(slc.slice_name)
merge_slice(slc)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦