greenplumn reloptions 源码
greenplumn reloptions 代码
文件路径:/src/backend/access/common/reloptions.c
/*-------------------------------------------------------------------------
*
* reloptions.c
* Core support for relation options (pg_class.reloptions)
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/common/reloptions.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <float.h>
#include "access/gist_private.h"
#include "access/hash.h"
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/reloptions.h"
#include "access/spgist.h"
#include "access/tuptoaster.h"
#include "catalog/pg_type.h"
#include "cdb/cdbappendonlyam.h"
#include "cdb/cdbvars.h"
#include "commands/defrem.h"
#include "commands/tablespace.h"
#include "commands/view.h"
#include "nodes/makefuncs.h"
#include "postmaster/postmaster.h"
#include "utils/array.h"
#include "utils/attoptcache.h"
#include "utils/builtins.h"
#include "utils/formatting.h"
#include "utils/guc.h"
#include "utils/guc_tables.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "miscadmin.h"
/*
* Contents of pg_class.reloptions
*
* To add an option:
*
* (i) decide on a type (integer, real, bool, string), name, default value,
* upper and lower bounds (if applicable); for strings, consider a validation
* routine.
* (ii) add a record below (or use add_<type>_reloption).
* (iii) add it to the appropriate options struct (perhaps StdRdOptions)
* (iv) add it to the appropriate handling routine (perhaps
* default_reloptions)
* (v) make sure the lock level is set correctly for that operation
* (vi) don't forget to document the option
*
* To add an GPDB option, please touch reloptions_gp.c rather than this file.
*
* The default choice for any new option should be AccessExclusiveLock.
* In some cases the lock level can be reduced from there, but the lock
* level chosen should always conflict with itself to ensure that multiple
* changes aren't lost when we attempt concurrent changes.
* The choice of lock level depends completely upon how that parameter
* is used within the server, not upon how and when you'd like to change it.
* Safety first. Existing choices are documented here, and elsewhere in
* backend code where the parameters are used.
*
* In general, anything that affects the results obtained from a SELECT must be
* protected by AccessExclusiveLock.
*
* Autovacuum related parameters can be set at ShareUpdateExclusiveLock
* since they are only used by the AV procs and don't change anything
* currently executing.
*
* Fillfactor can be set because it applies only to subsequent changes made to
* data blocks, as documented in heapio.c
*
* n_distinct options can be set at ShareUpdateExclusiveLock because they
* are only used during ANALYZE, which uses a ShareUpdateExclusiveLock,
* so the ANALYZE will not be affected by in-flight changes. Changing those
* values has no effect until the next ANALYZE, so no need for stronger lock.
*
* Planner-related parameters can be set with ShareUpdateExclusiveLock because
* they only affect planning and not the correctness of the execution. Plans
* cannot be changed in mid-flight, so changes here could not easily result in
* new improved plans in any case. So we allow existing queries to continue
* and existing plans to survive, a small price to pay for allowing better
* plans to be introduced concurrently without interfering with users.
*
* Setting parallel_workers is safe, since it acts the same as
* max_parallel_workers_per_gather which is a USERSET parameter that doesn't
* affect existing plans or queries.
*
* vacuum_truncate can be set at ShareUpdateExclusiveLock because it
* is only used during VACUUM, which uses a ShareUpdateExclusiveLock,
* so the VACUUM will not be affected by in-flight changes. Changing its
* value has no effect until the next VACUUM, so no need for stronger lock.
*/
static relopt_bool boolRelOpts[] =
{
{
{
"autosummarize",
"Enables automatic summarization on this BRIN index",
RELOPT_KIND_BRIN,
AccessExclusiveLock
},
false
},
{
{
"autovacuum_enabled",
"Enables autovacuum in this relation",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
true
},
{
{
"user_catalog_table",
"Declare a table as an additional catalog table, e.g. for the purpose of logical replication",
RELOPT_KIND_HEAP,
AccessExclusiveLock
},
false
},
{
{
"fastupdate",
"Enables \"fast update\" feature for this GIN index",
RELOPT_KIND_GIN,
AccessExclusiveLock
},
true
},
{
{
"security_barrier",
"View acts as a row security barrier",
RELOPT_KIND_VIEW,
AccessExclusiveLock
},
false
},
{
{
"vacuum_index_cleanup",
"Enables index vacuuming and index cleanup",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
true
},
{
{
"vacuum_truncate",
"Enables vacuum to truncate empty pages at the end of this table",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
true
},
/* list terminator */
{{NULL}}
};
static relopt_int intRelOpts[] =
{
{
{
"fillfactor",
"Packs table pages only to this percentage",
RELOPT_KIND_HEAP,
ShareUpdateExclusiveLock /* since it applies only to later
* inserts */
},
HEAP_DEFAULT_FILLFACTOR, HEAP_MIN_FILLFACTOR, 100
},
{
{
"fillfactor",
"Packs btree index pages only to this percentage",
RELOPT_KIND_BTREE,
ShareUpdateExclusiveLock /* since it applies only to later
* inserts */
},
BTREE_DEFAULT_FILLFACTOR, BTREE_MIN_FILLFACTOR, 100
},
{
{
"fillfactor",
"Packs hash index pages only to this percentage",
RELOPT_KIND_HASH,
ShareUpdateExclusiveLock /* since it applies only to later
* inserts */
},
HASH_DEFAULT_FILLFACTOR, HASH_MIN_FILLFACTOR, 100
},
{
{
"fillfactor",
"Packs gist index pages only to this percentage",
RELOPT_KIND_GIST,
ShareUpdateExclusiveLock /* since it applies only to later
* inserts */
},
GIST_DEFAULT_FILLFACTOR, GIST_MIN_FILLFACTOR, 100
},
{
{
"fillfactor",
"Packs spgist index pages only to this percentage",
RELOPT_KIND_SPGIST,
ShareUpdateExclusiveLock /* since it applies only to later
* inserts */
},
SPGIST_DEFAULT_FILLFACTOR, SPGIST_MIN_FILLFACTOR, 100
},
{
{
"autovacuum_vacuum_threshold",
"Minimum number of tuple updates or deletes prior to vacuum",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 0, INT_MAX
},
{
{
"autovacuum_analyze_threshold",
"Minimum number of tuple inserts, updates or deletes prior to analyze",
RELOPT_KIND_HEAP,
ShareUpdateExclusiveLock
},
-1, 0, INT_MAX
},
{
{
"autovacuum_vacuum_cost_limit",
"Vacuum cost amount available before napping, for autovacuum",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 1, 10000
},
{
{
"autovacuum_freeze_min_age",
"Minimum age at which VACUUM should freeze a table row, for autovacuum",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 0, 1000000000
},
{
{
"autovacuum_multixact_freeze_min_age",
"Minimum multixact age at which VACUUM should freeze a row multixact's, for autovacuum",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 0, 1000000000
},
{
{
"autovacuum_freeze_max_age",
"Age at which to autovacuum a table to prevent transaction ID wraparound",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 100000, 2000000000
},
{
{
"autovacuum_multixact_freeze_max_age",
"Multixact age at which to autovacuum a table to prevent multixact wraparound",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 10000, 2000000000
},
{
{
"autovacuum_freeze_table_age",
"Age at which VACUUM should perform a full table sweep to freeze row versions",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
}, -1, 0, 2000000000
},
{
{
"autovacuum_multixact_freeze_table_age",
"Age of multixact at which VACUUM should perform a full table sweep to freeze row versions",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
}, -1, 0, 2000000000
},
{
{
"log_autovacuum_min_duration",
"Sets the minimum execution time above which autovacuum actions will be logged",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, -1, INT_MAX
},
{
{
"toast_tuple_target",
"Sets the target tuple length at which external columns will be toasted",
RELOPT_KIND_HEAP,
ShareUpdateExclusiveLock
},
TOAST_TUPLE_TARGET, 128, TOAST_TUPLE_TARGET_MAIN
},
{
{
"pages_per_range",
"Number of pages that each page range covers in a BRIN index",
RELOPT_KIND_BRIN,
AccessExclusiveLock
}, 128, 1, 131072
},
{
{
"gin_pending_list_limit",
"Maximum size of the pending list for this GIN index, in kilobytes.",
RELOPT_KIND_GIN,
AccessExclusiveLock
},
-1, 64, MAX_KILOBYTES
},
{
{
"effective_io_concurrency",
"Number of simultaneous requests that can be handled efficiently by the disk subsystem.",
RELOPT_KIND_TABLESPACE,
ShareUpdateExclusiveLock
},
#ifdef USE_PREFETCH
-1, 0, MAX_IO_CONCURRENCY
#else
0, 0, 0
#endif
},
{
{
"parallel_workers",
"Number of parallel processes that can be used per executor node for this relation.",
RELOPT_KIND_HEAP,
ShareUpdateExclusiveLock
},
-1, 0, 1024
},
/* list terminator */
{{NULL}}
};
static relopt_real realRelOpts[] =
{
{
{
"autovacuum_vacuum_cost_delay",
"Vacuum cost delay in milliseconds, for autovacuum",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 0.0, 100.0
},
{
{
"autovacuum_vacuum_scale_factor",
"Number of tuple updates or deletes prior to vacuum as a fraction of reltuples",
RELOPT_KIND_HEAP | RELOPT_KIND_TOAST,
ShareUpdateExclusiveLock
},
-1, 0.0, 100.0
},
{
{
"autovacuum_analyze_scale_factor",
"Number of tuple inserts, updates or deletes prior to analyze as a fraction of reltuples",
RELOPT_KIND_HEAP,
ShareUpdateExclusiveLock
},
-1, 0.0, 100.0
},
{
{
"seq_page_cost",
"Sets the planner's estimate of the cost of a sequentially fetched disk page.",
RELOPT_KIND_TABLESPACE,
ShareUpdateExclusiveLock
},
-1, 0.0, DBL_MAX
},
{
{
"random_page_cost",
"Sets the planner's estimate of the cost of a nonsequentially fetched disk page.",
RELOPT_KIND_TABLESPACE,
ShareUpdateExclusiveLock
},
-1, 0.0, DBL_MAX
},
{
{
"n_distinct",
"Sets the planner's estimate of the number of distinct values appearing in a column (excluding child relations).",
RELOPT_KIND_ATTRIBUTE,
ShareUpdateExclusiveLock
},
0, -1.0, DBL_MAX
},
{
{
"n_distinct_inherited",
"Sets the planner's estimate of the number of distinct values appearing in a column (including child relations).",
RELOPT_KIND_ATTRIBUTE,
ShareUpdateExclusiveLock
},
0, -1.0, DBL_MAX
},
{
{
"vacuum_cleanup_index_scale_factor",
"Number of tuple inserts prior to index cleanup as a fraction of reltuples.",
RELOPT_KIND_BTREE,
ShareUpdateExclusiveLock
},
-1, 0.0, 1e10
},
/* list terminator */
{{NULL}}
};
static relopt_string stringRelOpts[] =
{
{
{
"buffering",
"Enables buffering build for this GiST index",
RELOPT_KIND_GIST,
AccessExclusiveLock
},
4,
false,
gistValidateBufferingOption,
"auto"
},
{
{
"check_option",
"View has WITH CHECK OPTION defined (local or cascaded).",
RELOPT_KIND_VIEW,
AccessExclusiveLock
},
0,
true,
validateWithCheckOption,
NULL
},
/* list terminator */
{{NULL}}
};
static relopt_gen **relOpts = NULL;
static bits32 last_assigned_kind = RELOPT_KIND_LAST_DEFAULT;
static int num_custom_options = 0;
static relopt_gen **custom_options = NULL;
static bool need_initialization = true;
static void initialize_reloptions(void);
static void parse_one_reloption(relopt_value *option, char *text_str,
int text_len, bool validate);
/*
* initialize_reloptions
* initialization routine, must be called before parsing
*
* Initialize the relOpts array and fill each variable's type and name length.
*/
static void
initialize_reloptions(void)
{
int i;
int j;
initialize_reloptions_gp();
j = 0;
for (i = 0; boolRelOpts[i].gen.name; i++)
{
Assert(DoLockModesConflict(boolRelOpts[i].gen.lockmode,
boolRelOpts[i].gen.lockmode));
j++;
}
for (i = 0; intRelOpts[i].gen.name; i++)
{
Assert(DoLockModesConflict(intRelOpts[i].gen.lockmode,
intRelOpts[i].gen.lockmode));
j++;
}
for (i = 0; realRelOpts[i].gen.name; i++)
{
Assert(DoLockModesConflict(realRelOpts[i].gen.lockmode,
realRelOpts[i].gen.lockmode));
j++;
}
for (i = 0; stringRelOpts[i].gen.name; i++)
{
Assert(DoLockModesConflict(stringRelOpts[i].gen.lockmode,
stringRelOpts[i].gen.lockmode));
j++;
}
j += num_custom_options;
if (relOpts)
pfree(relOpts);
relOpts = MemoryContextAlloc(TopMemoryContext,
(j + 1) * sizeof(relopt_gen *));
j = 0;
for (i = 0; boolRelOpts[i].gen.name; i++)
{
relOpts[j] = &boolRelOpts[i].gen;
relOpts[j]->type = RELOPT_TYPE_BOOL;
relOpts[j]->namelen = strlen(relOpts[j]->name);
j++;
}
for (i = 0; intRelOpts[i].gen.name; i++)
{
relOpts[j] = &intRelOpts[i].gen;
relOpts[j]->type = RELOPT_TYPE_INT;
relOpts[j]->namelen = strlen(relOpts[j]->name);
j++;
}
for (i = 0; realRelOpts[i].gen.name; i++)
{
relOpts[j] = &realRelOpts[i].gen;
relOpts[j]->type = RELOPT_TYPE_REAL;
relOpts[j]->namelen = strlen(relOpts[j]->name);
j++;
}
for (i = 0; stringRelOpts[i].gen.name; i++)
{
relOpts[j] = &stringRelOpts[i].gen;
relOpts[j]->type = RELOPT_TYPE_STRING;
relOpts[j]->namelen = strlen(relOpts[j]->name);
j++;
}
for (i = 0; i < num_custom_options; i++)
{
relOpts[j] = custom_options[i];
j++;
}
/* add a list terminator */
relOpts[j] = NULL;
/* flag the work is complete */
need_initialization = false;
}
/*
* add_reloption_kind
* Create a new relopt_kind value, to be used in custom reloptions by
* user-defined AMs.
*/
relopt_kind
add_reloption_kind(void)
{
/* don't hand out the last bit so that the enum's behavior is portable */
if (last_assigned_kind >= RELOPT_KIND_MAX)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("user-defined relation parameter types limit exceeded")));
last_assigned_kind <<= 1;
return (relopt_kind) last_assigned_kind;
}
/*
* add_reloption
* Add an already-created custom reloption to the list, and recompute the
* main parser table.
*/
static void
add_reloption(relopt_gen *newoption)
{
static int max_custom_options = 0;
if (num_custom_options >= max_custom_options)
{
MemoryContext oldcxt;
oldcxt = MemoryContextSwitchTo(TopMemoryContext);
if (max_custom_options == 0)
{
max_custom_options = 8;
custom_options = palloc(max_custom_options * sizeof(relopt_gen *));
}
else
{
max_custom_options *= 2;
custom_options = repalloc(custom_options,
max_custom_options * sizeof(relopt_gen *));
}
MemoryContextSwitchTo(oldcxt);
}
custom_options[num_custom_options++] = newoption;
need_initialization = true;
}
/*
* allocate_reloption
* Allocate a new reloption and initialize the type-agnostic fields
* (for types other than string)
*/
static relopt_gen *
allocate_reloption(bits32 kinds, int type, const char *name, const char *desc)
{
MemoryContext oldcxt;
size_t size;
relopt_gen *newoption;
oldcxt = MemoryContextSwitchTo(TopMemoryContext);
switch (type)
{
case RELOPT_TYPE_BOOL:
size = sizeof(relopt_bool);
break;
case RELOPT_TYPE_INT:
size = sizeof(relopt_int);
break;
case RELOPT_TYPE_REAL:
size = sizeof(relopt_real);
break;
case RELOPT_TYPE_STRING:
size = sizeof(relopt_string);
break;
default:
elog(ERROR, "unsupported reloption type %d", type);
return NULL; /* keep compiler quiet */
}
newoption = palloc(size);
newoption->name = pstrdup(name);
if (desc)
newoption->desc = pstrdup(desc);
else
newoption->desc = NULL;
newoption->kinds = kinds;
newoption->namelen = strlen(name);
newoption->type = type;
MemoryContextSwitchTo(oldcxt);
return newoption;
}
/*
* GPDB: the add_*_reloption() functions don't take 'lockmode' argument,but
* we need to set it correctly for the GPDB-specific options. So use this
* to set it after calling add_*_reloption() function.
*/
void
set_reloption_lockmode(const char *name, LOCKMODE lockmode)
{
for (int i = num_custom_options - 1; i >= 0; i--)
{
if (strcmp(custom_options[i]->name, name) == 0)
{
custom_options[i]->lockmode = lockmode;
return;
}
}
elog(ERROR, "could not find reloption \"%s\"", name);
}
/*
* add_bool_reloption
* Add a new boolean reloption
*/
void
add_bool_reloption(bits32 kinds, const char *name, const char *desc, bool default_val)
{
relopt_bool *newoption;
newoption = (relopt_bool *) allocate_reloption(kinds, RELOPT_TYPE_BOOL,
name, desc);
newoption->default_val = default_val;
add_reloption((relopt_gen *) newoption);
}
/*
* add_int_reloption
* Add a new integer reloption
*/
void
add_int_reloption(bits32 kinds, const char *name, const char *desc, int default_val,
int min_val, int max_val)
{
relopt_int *newoption;
newoption = (relopt_int *) allocate_reloption(kinds, RELOPT_TYPE_INT,
name, desc);
newoption->default_val = default_val;
newoption->min = min_val;
newoption->max = max_val;
add_reloption((relopt_gen *) newoption);
}
/*
* add_real_reloption
* Add a new float reloption
*/
void
add_real_reloption(bits32 kinds, const char *name, const char *desc, double default_val,
double min_val, double max_val)
{
relopt_real *newoption;
newoption = (relopt_real *) allocate_reloption(kinds, RELOPT_TYPE_REAL,
name, desc);
newoption->default_val = default_val;
newoption->min = min_val;
newoption->max = max_val;
add_reloption((relopt_gen *) newoption);
}
/*
* add_string_reloption
* Add a new string reloption
*
* "validator" is an optional function pointer that can be used to test the
* validity of the values. It must elog(ERROR) when the argument string is
* not acceptable for the variable. Note that the default value must pass
* the validation.
*/
void
add_string_reloption(bits32 kinds, const char *name, const char *desc, const char *default_val,
validate_string_relopt validator)
{
relopt_string *newoption;
/* make sure the validator/default combination is sane */
if (validator)
(validator) (default_val);
newoption = (relopt_string *) allocate_reloption(kinds, RELOPT_TYPE_STRING,
name, desc);
newoption->validate_cb = validator;
if (default_val)
{
newoption->default_val = MemoryContextStrdup(TopMemoryContext,
default_val);
newoption->default_len = strlen(default_val);
newoption->default_isnull = false;
}
else
{
newoption->default_val = "";
newoption->default_len = 0;
newoption->default_isnull = true;
}
add_reloption((relopt_gen *) newoption);
}
/*
* Transform a relation options list (list of DefElem) into the text array
* format that is kept in pg_class.reloptions, including only those options
* that are in the passed namespace. The output values do not include the
* namespace.
*
* This is used for three cases: CREATE TABLE/INDEX, ALTER TABLE SET, and
* ALTER TABLE RESET. In the ALTER cases, oldOptions is the existing
* reloptions value (possibly NULL), and we replace or remove entries
* as needed.
*
* If acceptOidsOff is true, then we allow oids = false, but throw error when
* on. This is solely needed for backwards compatibility.
*
* Note that this is not responsible for determining whether the options
* are valid, but it does check that namespaces for all the options given are
* listed in validnsps. The NULL namespace is always valid and need not be
* explicitly listed. Passing a NULL pointer means that only the NULL
* namespace is valid.
*
* Both oldOptions and the result are text arrays (or NULL for "default"),
* but we declare them as Datums to avoid including array.h in reloptions.h.
*/
Datum
transformRelOptions(Datum oldOptions, List *defList, const char *namspace,
char *validnsps[], bool acceptOidsOff, bool isReset)
{
Datum result;
ArrayBuildState *astate;
ListCell *cell;
/* no change if empty list */
if (defList == NIL)
return oldOptions;
/* We build new array using accumArrayResult */
astate = NULL;
/* Copy any oldOptions that aren't to be replaced */
if (PointerIsValid(DatumGetPointer(oldOptions)))
{
ArrayType *array = DatumGetArrayTypeP(oldOptions);
Datum *oldoptions;
int noldoptions;
int i;
deconstruct_array(array, TEXTOID, -1, false, 'i',
&oldoptions, NULL, &noldoptions);
for (i = 0; i < noldoptions; i++)
{
char *text_str = VARDATA(oldoptions[i]);
int text_len = VARSIZE(oldoptions[i]) - VARHDRSZ;
/* Search for a match in defList */
foreach(cell, defList)
{
DefElem *def = (DefElem *) lfirst(cell);
int kw_len;
/* ignore if not in the same namespace */
if (namspace == NULL)
{
if (def->defnamespace != NULL)
continue;
}
else if (def->defnamespace == NULL)
continue;
else if (strcmp(def->defnamespace, namspace) != 0)
continue;
kw_len = strlen(def->defname);
if (text_len > kw_len && text_str[kw_len] == '=' &&
strncmp(text_str, def->defname, kw_len) == 0)
break;
}
if (!cell)
{
/* No match, so keep old option */
astate = accumArrayResult(astate, oldoptions[i],
false, TEXTOID,
CurrentMemoryContext);
}
}
}
/*
* If CREATE/SET, add new options to array; if RESET, just check that the
* user didn't say RESET (option=val). (Must do this because the grammar
* doesn't enforce it.)
*/
foreach(cell, defList)
{
DefElem *def = (DefElem *) lfirst(cell);
if (isReset)
{
if (def->arg != NULL)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("RESET must not include values for parameters")));
}
else
{
text *t;
const char *value;
Size len;
/*
* Error out if the namespace is not valid. A NULL namespace is
* always valid.
*/
if (def->defnamespace != NULL)
{
bool valid = false;
int i;
if (validnsps)
{
for (i = 0; validnsps[i]; i++)
{
if (strcmp(def->defnamespace, validnsps[i]) == 0)
{
valid = true;
break;
}
}
}
if (!valid)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unrecognized parameter namespace \"%s\"",
def->defnamespace)));
}
/* ignore if not in the same namespace */
if (namspace == NULL)
{
if (def->defnamespace != NULL)
continue;
}
else if (def->defnamespace == NULL)
continue;
else if (strcmp(def->defnamespace, namspace) != 0)
continue;
/*
* Flatten the DefElem into a text string like "name=arg". If we
* have just "name", assume "name=true" is meant. Note: the
* namespace is not output.
*/
if (def->arg != NULL)
value = defGetString(def);
else
value = "true";
/*
* This is not a great place for this test, but there's no other
* convenient place to filter the option out. As WITH (oids =
* false) will be removed someday, this seems like an acceptable
* amount of ugly.
*/
if (acceptOidsOff && def->defnamespace == NULL &&
strcmp(def->defname, "oids") == 0)
{
if (defGetBoolean(def))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("tables declared WITH OIDS are not supported")));
/* skip over option, reloptions machinery doesn't know it */
continue;
}
len = VARHDRSZ + strlen(def->defname) + 1 + strlen(value);
/* +1 leaves room for sprintf's trailing null */
t = (text *) palloc(len + 1);
SET_VARSIZE(t, len);
sprintf(VARDATA(t), "%s=%s", def->defname, value);
astate = accumArrayResult(astate, PointerGetDatum(t),
false, TEXTOID,
CurrentMemoryContext);
}
}
if (astate)
result = makeArrayResult(astate, CurrentMemoryContext);
else
result = (Datum) 0;
return result;
}
/*
* Convert the text-array format of reloptions into a List of DefElem.
* This is the inverse of transformRelOptions().
*/
List *
untransformRelOptions(Datum options)
{
List *result = NIL;
ArrayType *array;
Datum *optiondatums;
int noptions;
int i;
/* Nothing to do if no options */
if (!PointerIsValid(DatumGetPointer(options)))
return result;
array = DatumGetArrayTypeP(options);
deconstruct_array(array, TEXTOID, -1, false, 'i',
&optiondatums, NULL, &noptions);
for (i = 0; i < noptions; i++)
{
char *s;
char *p;
Node *val = NULL;
s = TextDatumGetCString(optiondatums[i]);
p = strchr(s, '=');
if (p)
{
*p++ = '\0';
val = (Node *) makeString(pstrdup(p));
}
result = lappend(result, makeDefElem(pstrdup(s), val, -1));
}
return result;
}
/*
* Extract and parse reloptions from a pg_class tuple.
*
* This is a low-level routine, expected to be used by relcache code and
* callers that do not have a table's relcache entry (e.g. autovacuum). For
* other uses, consider grabbing the rd_options pointer from the relcache entry
* instead.
*
* tupdesc is pg_class' tuple descriptor. amoptions is a pointer to the index
* AM's options parser function in the case of a tuple corresponding to an
* index, or NULL otherwise.
*/
bytea *
extractRelOptions(HeapTuple tuple, TupleDesc tupdesc,
amoptions_function amoptions)
{
bytea *options;
bool isnull;
Datum datum;
Form_pg_class classForm;
datum = fastgetattr(tuple,
Anum_pg_class_reloptions,
tupdesc,
&isnull);
if (isnull)
return NULL;
classForm = (Form_pg_class) GETSTRUCT(tuple);
/* Parse into appropriate format; don't error out here */
switch (classForm->relkind)
{
case RELKIND_RELATION:
case RELKIND_TOASTVALUE:
case RELKIND_MATVIEW:
case RELKIND_PARTITIONED_TABLE:
options = heap_reloptions(classForm->relkind, datum, false);
break;
case RELKIND_VIEW:
options = view_reloptions(datum, false);
break;
case RELKIND_INDEX:
case RELKIND_PARTITIONED_INDEX:
options = index_reloptions(amoptions, datum, false);
break;
case RELKIND_FOREIGN_TABLE:
options = NULL;
break;
default:
Assert(false); /* can't get here */
options = NULL; /* keep compiler quiet */
break;
}
return options;
}
/*
* Interpret reloptions that are given in text-array format.
*
* options is a reloption text array as constructed by transformRelOptions.
* kind specifies the family of options to be processed.
*
* The return value is a relopt_value * array on which the options actually
* set in the options array are marked with isset=true. The length of this
* array is returned in *numrelopts. Options not set are also present in the
* array; this is so that the caller can easily locate the default values.
*
* If there are no options of the given kind, numrelopts is set to 0 and NULL
* is returned (unless options are illegally supplied despite none being
* defined, in which case an error occurs).
*
* Note: values of type int, bool and real are allocated as part of the
* returned array. Values of type string are allocated separately and must
* be freed by the caller.
*/
relopt_value *
parseRelOptions(Datum options, bool validate, relopt_kind kind,
int *numrelopts)
{
relopt_value *reloptions = NULL;
int numoptions = 0;
int i;
int j;
if (need_initialization)
initialize_reloptions();
/* Build a list of expected options, based on kind */
for (i = 0; relOpts[i]; i++)
if (relOpts[i]->kinds & kind)
numoptions++;
if (numoptions > 0)
{
reloptions = palloc(numoptions * sizeof(relopt_value));
for (i = 0, j = 0; relOpts[i]; i++)
{
if (relOpts[i]->kinds & kind)
{
reloptions[j].gen = relOpts[i];
reloptions[j].isset = false;
j++;
}
}
}
/* Done if no options */
if (PointerIsValid(DatumGetPointer(options)))
{
ArrayType *array = DatumGetArrayTypeP(options);
Datum *optiondatums;
int noptions;
deconstruct_array(array, TEXTOID, -1, false, 'i',
&optiondatums, NULL, &noptions);
for (i = 0; i < noptions; i++)
{
char *text_str = VARDATA(optiondatums[i]);
int text_len = VARSIZE(optiondatums[i]) - VARHDRSZ;
int j;
/* Search for a match in reloptions */
for (j = 0; j < numoptions; j++)
{
int kw_len = reloptions[j].gen->namelen;
if (text_len > kw_len && text_str[kw_len] == '=' &&
strncmp(text_str, reloptions[j].gen->name, kw_len) == 0)
{
parse_one_reloption(&reloptions[j], text_str, text_len,
validate);
break;
}
}
if (j >= numoptions && validate)
{
char *s;
char *p;
s = TextDatumGetCString(optiondatums[i]);
p = strchr(s, '=');
if (p)
*p = '\0';
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unrecognized parameter \"%s\"", s)));
}
}
/* It's worth avoiding memory leaks in this function */
pfree(optiondatums);
if (((void *) array) != DatumGetPointer(options))
pfree(array);
}
*numrelopts = numoptions;
return reloptions;
}
/*
* Subroutine for parseRelOptions, to parse and validate a single option's
* value
*/
static void
parse_one_reloption(relopt_value *option, char *text_str, int text_len,
bool validate)
{
char *value;
int value_len;
bool parsed;
bool nofree = false;
if (option->isset && validate)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("parameter \"%s\" specified more than once",
option->gen->name)));
value_len = text_len - option->gen->namelen - 1;
value = (char *) palloc(value_len + 1);
memcpy(value, text_str + option->gen->namelen + 1, value_len);
value[value_len] = '\0';
switch (option->gen->type)
{
case RELOPT_TYPE_BOOL:
{
parsed = parse_bool(value, &option->values.bool_val);
if (validate && !parsed)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid value for boolean option \"%s\": %s",
option->gen->name, value)));
}
break;
case RELOPT_TYPE_INT:
{
relopt_int *optint = (relopt_int *) option->gen;
parsed = parse_int(value, &option->values.int_val, 0, NULL);
if (validate && !parsed)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid value for integer option \"%s\": %s",
option->gen->name, value)));
if (validate && (option->values.int_val < optint->min ||
option->values.int_val > optint->max))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("value %s out of bounds for option \"%s\"",
value, option->gen->name),
errdetail("Valid values are between \"%d\" and \"%d\".",
optint->min, optint->max)));
}
break;
case RELOPT_TYPE_REAL:
{
relopt_real *optreal = (relopt_real *) option->gen;
parsed = parse_real(value, &option->values.real_val, 0, NULL);
if (validate && !parsed)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid value for floating point option \"%s\": %s",
option->gen->name, value)));
if (validate && (option->values.real_val < optreal->min ||
option->values.real_val > optreal->max))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("value %s out of bounds for option \"%s\"",
value, option->gen->name),
errdetail("Valid values are between \"%f\" and \"%f\".",
optreal->min, optreal->max)));
}
break;
case RELOPT_TYPE_STRING:
{
relopt_string *optstring = (relopt_string *) option->gen;
option->values.string_val = value;
nofree = true;
if (validate && optstring->validate_cb)
(optstring->validate_cb) (value);
parsed = true;
}
break;
default:
elog(ERROR, "unsupported reloption type %d", option->gen->type);
parsed = true; /* quiet compiler */
break;
}
if (parsed)
option->isset = true;
if (!nofree)
pfree(value);
}
/*
* Given the result from parseRelOptions, allocate a struct that's of the
* specified base size plus any extra space that's needed for string variables.
*
* "base" should be sizeof(struct) of the reloptions struct (StdRdOptions or
* equivalent).
*/
void *
allocateReloptStruct(Size base, relopt_value *options, int numoptions)
{
Size size = base;
int i;
for (i = 0; i < numoptions; i++)
if (options[i].gen->type == RELOPT_TYPE_STRING)
size += GET_STRING_RELOPTION_LEN(options[i]) + 1;
return palloc0(size);
}
/*
* Given the result of parseRelOptions and a parsing table, fill in the
* struct (previously allocated with allocateReloptStruct) with the parsed
* values.
*
* rdopts is the pointer to the allocated struct to be filled.
* basesize is the sizeof(struct) that was passed to allocateReloptStruct.
* options, of length numoptions, is parseRelOptions' output.
* elems, of length numelems, is the table describing the allowed options.
* When validate is true, it is expected that all options appear in elems.
*/
void
fillRelOptions(void *rdopts, Size basesize,
relopt_value *options, int numoptions,
bool validate,
const relopt_parse_elt *elems, int numelems)
{
int i;
int offset = basesize;
for (i = 0; i < numoptions; i++)
{
int j;
bool found = false;
for (j = 0; j < numelems; j++)
{
if (strcmp(options[i].gen->name, elems[j].optname) == 0)
{
relopt_string *optstring;
char *itempos = ((char *) rdopts) + elems[j].offset;
char *string_val;
switch (options[i].gen->type)
{
case RELOPT_TYPE_BOOL:
*(bool *) itempos = options[i].isset ?
options[i].values.bool_val :
((relopt_bool *) options[i].gen)->default_val;
break;
case RELOPT_TYPE_INT:
*(int *) itempos = options[i].isset ?
options[i].values.int_val :
((relopt_int *) options[i].gen)->default_val;
break;
case RELOPT_TYPE_REAL:
*(double *) itempos = options[i].isset ?
options[i].values.real_val :
((relopt_real *) options[i].gen)->default_val;
break;
case RELOPT_TYPE_STRING:
optstring = (relopt_string *) options[i].gen;
if (options[i].isset)
string_val = options[i].values.string_val;
else if (!optstring->default_isnull)
string_val = optstring->default_val;
else
string_val = NULL;
if (string_val == NULL)
*(int *) itempos = 0;
else
{
strcpy((char *) rdopts + offset, string_val);
*(int *) itempos = offset;
offset += strlen(string_val) + 1;
}
break;
default:
elog(ERROR, "unsupported reloption type %d",
options[i].gen->type);
break;
}
found = true;
break;
}
}
if (validate && !found)
elog(ERROR, "reloption \"%s\" not found in parse table",
options[i].gen->name);
}
SET_VARSIZE(rdopts, offset);
}
/*
* Option parser for anything that uses StdRdOptions.
*/
bytea *
default_reloptions(Datum reloptions, bool validate, relopt_kind kind)
{
relopt_value *options;
StdRdOptions *rdopts;
int numoptions;
static const relopt_parse_elt tab[] = {
{"fillfactor", RELOPT_TYPE_INT, offsetof(StdRdOptions, fillfactor)},
/* AO table options */
{SOPT_BLOCKSIZE, RELOPT_TYPE_INT, offsetof(StdRdOptions, blocksize)},
{SOPT_COMPLEVEL, RELOPT_TYPE_INT, offsetof(StdRdOptions, compresslevel)},
{SOPT_COMPTYPE, RELOPT_TYPE_STRING, offsetof(StdRdOptions, compresstype)},
{SOPT_CHECKSUM, RELOPT_TYPE_BOOL, offsetof(StdRdOptions, checksum)},
{"autovacuum_enabled", RELOPT_TYPE_BOOL,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, enabled)},
{"autovacuum_vacuum_threshold", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, vacuum_threshold)},
{"autovacuum_analyze_threshold", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, analyze_threshold)},
{"autovacuum_vacuum_cost_limit", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, vacuum_cost_limit)},
{"autovacuum_freeze_min_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, freeze_min_age)},
{"autovacuum_freeze_max_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, freeze_max_age)},
{"autovacuum_freeze_table_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, freeze_table_age)},
{"autovacuum_multixact_freeze_min_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, multixact_freeze_min_age)},
{"autovacuum_multixact_freeze_max_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, multixact_freeze_max_age)},
{"autovacuum_multixact_freeze_table_age", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, multixact_freeze_table_age)},
{"log_autovacuum_min_duration", RELOPT_TYPE_INT,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, log_min_duration)},
{"toast_tuple_target", RELOPT_TYPE_INT,
offsetof(StdRdOptions, toast_tuple_target)},
{"autovacuum_vacuum_cost_delay", RELOPT_TYPE_REAL,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, vacuum_cost_delay)},
{"autovacuum_vacuum_scale_factor", RELOPT_TYPE_REAL,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, vacuum_scale_factor)},
{"autovacuum_analyze_scale_factor", RELOPT_TYPE_REAL,
offsetof(StdRdOptions, autovacuum) + offsetof(AutoVacOpts, analyze_scale_factor)},
{"user_catalog_table", RELOPT_TYPE_BOOL,
offsetof(StdRdOptions, user_catalog_table)},
{"parallel_workers", RELOPT_TYPE_INT,
offsetof(StdRdOptions, parallel_workers)},
{"vacuum_cleanup_index_scale_factor", RELOPT_TYPE_REAL,
offsetof(StdRdOptions, vacuum_cleanup_index_scale_factor)},
{"vacuum_index_cleanup", RELOPT_TYPE_BOOL,
offsetof(StdRdOptions, vacuum_index_cleanup)},
{"vacuum_truncate", RELOPT_TYPE_BOOL,
offsetof(StdRdOptions, vacuum_truncate)}
};
options = parseRelOptions(reloptions, validate, kind, &numoptions);
/* if none set, we're done */
if (numoptions == 0)
return NULL;
rdopts = allocateReloptStruct(sizeof(StdRdOptions), options, numoptions);
fillRelOptions((void *) rdopts, sizeof(StdRdOptions), options, numoptions,
validate, tab, lengthof(tab));
validate_and_refill_options(rdopts, options, numoptions, kind, validate);
pfree(options);
return (bytea *) rdopts;
}
/*
* Option parser for views
*/
bytea *
view_reloptions(Datum reloptions, bool validate)
{
relopt_value *options;
ViewOptions *vopts;
int numoptions;
static const relopt_parse_elt tab[] = {
{"security_barrier", RELOPT_TYPE_BOOL,
offsetof(ViewOptions, security_barrier)},
{"check_option", RELOPT_TYPE_STRING,
offsetof(ViewOptions, check_option_offset)}
};
options = parseRelOptions(reloptions, validate, RELOPT_KIND_VIEW, &numoptions);
/* if none set, we're done */
if (numoptions == 0)
return NULL;
vopts = allocateReloptStruct(sizeof(ViewOptions), options, numoptions);
fillRelOptions((void *) vopts, sizeof(ViewOptions), options, numoptions,
validate, tab, lengthof(tab));
pfree(options);
return (bytea *) vopts;
}
/*
* Parse options for heaps, views and toast tables.
*/
bytea *
heap_reloptions(char relkind, Datum reloptions, bool validate)
{
StdRdOptions *rdopts;
switch (relkind)
{
case RELKIND_TOASTVALUE:
rdopts = (StdRdOptions *)
default_reloptions(reloptions, validate, RELOPT_KIND_TOAST);
if (rdopts != NULL)
{
/* adjust default-only parameters for TOAST relations */
rdopts->fillfactor = 100;
rdopts->autovacuum.analyze_threshold = -1;
rdopts->autovacuum.analyze_scale_factor = -1;
}
return (bytea *) rdopts;
case RELKIND_RELATION:
case RELKIND_MATVIEW:
return default_reloptions(reloptions, validate,
RELOPT_KIND_HEAP);
case RELKIND_PARTITIONED_TABLE:
/*
* GPDB_12_AFTER_MERGE_FIXME: should we accept AO-related options for
* partitioned tables? A partitioned table has no data, but the options
* might be inherited by partitions.
*/
return default_reloptions(reloptions, validate,
RELOPT_KIND_PARTITIONED);
default:
/* other relkinds are not supported */
return NULL;
}
}
/*
* Parse options for indexes.
*
* amoptions index AM's option parser function
* reloptions options as text[] datum
* validate error flag
*/
bytea *
index_reloptions(amoptions_function amoptions, Datum reloptions, bool validate)
{
Assert(amoptions != NULL);
/* Assume function is strict */
if (!PointerIsValid(DatumGetPointer(reloptions)))
return NULL;
return amoptions(reloptions, validate);
}
/*
* Option parser for attribute reloptions
*/
bytea *
attribute_reloptions(Datum reloptions, bool validate)
{
relopt_value *options;
AttributeOpts *aopts;
int numoptions;
static const relopt_parse_elt tab[] = {
{"n_distinct", RELOPT_TYPE_REAL, offsetof(AttributeOpts, n_distinct)},
{"n_distinct_inherited", RELOPT_TYPE_REAL, offsetof(AttributeOpts, n_distinct_inherited)}
};
options = parseRelOptions(reloptions, validate, RELOPT_KIND_ATTRIBUTE,
&numoptions);
/* if none set, we're done */
if (numoptions == 0)
return NULL;
aopts = allocateReloptStruct(sizeof(AttributeOpts), options, numoptions);
fillRelOptions((void *) aopts, sizeof(AttributeOpts), options, numoptions,
validate, tab, lengthof(tab));
pfree(options);
return (bytea *) aopts;
}
/*
* Option parser for tablespace reloptions
*/
bytea *
tablespace_reloptions(Datum reloptions, bool validate)
{
relopt_value *options;
TableSpaceOpts *tsopts;
int numoptions;
static const relopt_parse_elt tab[] = {
{"random_page_cost", RELOPT_TYPE_REAL, offsetof(TableSpaceOpts, random_page_cost)},
{"seq_page_cost", RELOPT_TYPE_REAL, offsetof(TableSpaceOpts, seq_page_cost)},
{"effective_io_concurrency", RELOPT_TYPE_INT, offsetof(TableSpaceOpts, effective_io_concurrency)}
};
options = parseRelOptions(reloptions, validate, RELOPT_KIND_TABLESPACE,
&numoptions);
/* if none set, we're done */
if (numoptions == 0)
return NULL;
tsopts = allocateReloptStruct(sizeof(TableSpaceOpts), options, numoptions);
fillRelOptions((void *) tsopts, sizeof(TableSpaceOpts), options, numoptions,
validate, tab, lengthof(tab));
pfree(options);
return (bytea *) tsopts;
}
/*
* Determine the required LOCKMODE from an option list.
*
* Called from AlterTableGetLockLevel(), see that function
* for a longer explanation of how this works.
*/
LOCKMODE
AlterTableGetRelOptionsLockLevel(List *defList)
{
LOCKMODE lockmode = NoLock;
ListCell *cell;
if (defList == NIL)
return AccessExclusiveLock;
if (need_initialization)
initialize_reloptions();
foreach(cell, defList)
{
DefElem *def = (DefElem *) lfirst(cell);
int i;
for (i = 0; relOpts[i]; i++)
{
if (strncmp(relOpts[i]->name,
def->defname,
relOpts[i]->namelen + 1) == 0)
{
if (lockmode < relOpts[i]->lockmode)
lockmode = relOpts[i]->lockmode;
}
}
}
return lockmode;
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦