greenplumn crypt-des 源码

  • 2022-08-18
  • 浏览 (554)

greenplumn crypt-des 代码

文件路径:/contrib/pgcrypto/crypt-des.c

/*
 * FreeSec: libcrypt for NetBSD
 *
 * contrib/pgcrypto/crypt-des.c
 *
 * Copyright (c) 1994 David Burren
 * All rights reserved.
 *
 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
 *	this file should now *only* export crypt(), in order to make
 *	binaries of libcrypt exportable from the USA
 *
 * Adapted for FreeBSD-4.0 by Mark R V Murray
 *	this file should now *only* export px_crypt_des(), in order to make
 *	a module that can be optionally included in libcrypt.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *	  notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *	  notice, this list of conditions and the following disclaimer in the
 *	  documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of other contributors
 *	  may be used to endorse or promote products derived from this software
 *	  without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
 *
 * This is an original implementation of the DES and the crypt(3) interfaces
 * by David Burren <davidb@werj.com.au>.
 *
 * An excellent reference on the underlying algorithm (and related
 * algorithms) is:
 *
 *	B. Schneier, Applied Cryptography: protocols, algorithms,
 *	and source code in C, John Wiley & Sons, 1994.
 *
 * Note that in that book's description of DES the lookups for the initial,
 * pbox, and final permutations are inverted (this has been brought to the
 * attention of the author).  A list of errata for this book has been
 * posted to the sci.crypt newsgroup by the author and is available for FTP.
 *
 * ARCHITECTURE ASSUMPTIONS:
 *	It is assumed that the 8-byte arrays passed by reference can be
 *	addressed as arrays of uint32's (ie. the CPU is not picky about
 *	alignment).
 */

#include "postgres.h"
#include "miscadmin.h"
#include "port/pg_bswap.h"

#include "px-crypt.h"

#define _PASSWORD_EFMT1 '_'

static const char _crypt_a64[] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

static uint8 IP[64] = {
	58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
	62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
	57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
	61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};

static uint8 inv_key_perm[64];
static uint8 u_key_perm[56];
static uint8 key_perm[56] = {
	57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
	10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
	63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
	14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};

static uint8 key_shifts[16] = {
	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};

static uint8 inv_comp_perm[56];
static uint8 comp_perm[48] = {
	14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
	23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
	41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
	44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 *	No E box is used, as it's replaced by some ANDs, shifts, and ORs.
 */

static uint8 u_sbox[8][64];
static uint8 sbox[8][64] = {
	{
		14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
		0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
		4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
		15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
	},
	{
		15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
		3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
		0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
		13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
	},
	{
		10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
		13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
		13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
		1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
	},
	{
		7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
		13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
		10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
		3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
	},
	{
		2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
		14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
		4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
		11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
	},
	{
		12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
		10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
		9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
		4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
	},
	{
		4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
		13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
		1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
		6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
	},
	{
		13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
		1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
		7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
		2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
	}
};

static uint8 un_pbox[32];
static uint8 pbox[32] = {
	16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
	2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};

static uint32 _crypt_bits32[32] =
{
	0x80000000, 0x40000000, 0x20000000, 0x10000000,
	0x08000000, 0x04000000, 0x02000000, 0x01000000,
	0x00800000, 0x00400000, 0x00200000, 0x00100000,
	0x00080000, 0x00040000, 0x00020000, 0x00010000,
	0x00008000, 0x00004000, 0x00002000, 0x00001000,
	0x00000800, 0x00000400, 0x00000200, 0x00000100,
	0x00000080, 0x00000040, 0x00000020, 0x00000010,
	0x00000008, 0x00000004, 0x00000002, 0x00000001
};

static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

static uint32 saltbits;
static long old_salt;
static uint32 *bits28,
		   *bits24;
static uint8 init_perm[64],
			final_perm[64];
static uint32 en_keysl[16],
			en_keysr[16];
static uint32 de_keysl[16],
			de_keysr[16];
static int	des_initialised = 0;
static uint8 m_sbox[4][4096];
static uint32 psbox[4][256];
static uint32 ip_maskl[8][256],
			ip_maskr[8][256];
static uint32 fp_maskl[8][256],
			fp_maskr[8][256];
static uint32 key_perm_maskl[8][128],
			key_perm_maskr[8][128];
static uint32 comp_maskl[8][128],
			comp_maskr[8][128];
static uint32 old_rawkey0,
			old_rawkey1;

static inline int
ascii_to_bin(char ch)
{
	if (ch > 'z')
		return 0;
	if (ch >= 'a')
		return (ch - 'a' + 38);
	if (ch > 'Z')
		return 0;
	if (ch >= 'A')
		return (ch - 'A' + 12);
	if (ch > '9')
		return 0;
	if (ch >= '.')
		return (ch - '.');
	return 0;
}

static void
des_init(void)
{
	int			i,
				j,
				b,
				k,
				inbit,
				obit;
	uint32	   *p,
			   *il,
			   *ir,
			   *fl,
			   *fr;

	old_rawkey0 = old_rawkey1 = 0L;
	saltbits = 0L;
	old_salt = 0L;
	bits24 = (bits28 = _crypt_bits32 + 4) + 4;

	/*
	 * Invert the S-boxes, reordering the input bits.
	 */
	for (i = 0; i < 8; i++)
		for (j = 0; j < 64; j++)
		{
			b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
			u_sbox[i][j] = sbox[i][b];
		}

	/*
	 * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
	 * 12 bits of the S-box input.
	 */
	for (b = 0; b < 4; b++)
		for (i = 0; i < 64; i++)
			for (j = 0; j < 64; j++)
				m_sbox[b][(i << 6) | j] =
					(u_sbox[(b << 1)][i] << 4) |
					u_sbox[(b << 1) + 1][j];

	/*
	 * Set up the initial & final permutations into a useful form, and
	 * initialise the inverted key permutation.
	 */
	for (i = 0; i < 64; i++)
	{
		init_perm[final_perm[i] = IP[i] - 1] = i;
		inv_key_perm[i] = 255;
	}

	/*
	 * Invert the key permutation and initialise the inverted key compression
	 * permutation.
	 */
	for (i = 0; i < 56; i++)
	{
		u_key_perm[i] = key_perm[i] - 1;
		inv_key_perm[key_perm[i] - 1] = i;
		inv_comp_perm[i] = 255;
	}

	/*
	 * Invert the key compression permutation.
	 */
	for (i = 0; i < 48; i++)
		inv_comp_perm[comp_perm[i] - 1] = i;

	/*
	 * Set up the OR-mask arrays for the initial and final permutations, and
	 * for the key initial and compression permutations.
	 */
	for (k = 0; k < 8; k++)
	{
		for (i = 0; i < 256; i++)
		{
			*(il = &ip_maskl[k][i]) = 0L;
			*(ir = &ip_maskr[k][i]) = 0L;
			*(fl = &fp_maskl[k][i]) = 0L;
			*(fr = &fp_maskr[k][i]) = 0L;
			for (j = 0; j < 8; j++)
			{
				inbit = 8 * k + j;
				if (i & _crypt_bits8[j])
				{
					if ((obit = init_perm[inbit]) < 32)
						*il |= _crypt_bits32[obit];
					else
						*ir |= _crypt_bits32[obit - 32];
					if ((obit = final_perm[inbit]) < 32)
						*fl |= _crypt_bits32[obit];
					else
						*fr |= _crypt_bits32[obit - 32];
				}
			}
		}
		for (i = 0; i < 128; i++)
		{
			*(il = &key_perm_maskl[k][i]) = 0L;
			*(ir = &key_perm_maskr[k][i]) = 0L;
			for (j = 0; j < 7; j++)
			{
				inbit = 8 * k + j;
				if (i & _crypt_bits8[j + 1])
				{
					if ((obit = inv_key_perm[inbit]) == 255)
						continue;
					if (obit < 28)
						*il |= bits28[obit];
					else
						*ir |= bits28[obit - 28];
				}
			}
			*(il = &comp_maskl[k][i]) = 0L;
			*(ir = &comp_maskr[k][i]) = 0L;
			for (j = 0; j < 7; j++)
			{
				inbit = 7 * k + j;
				if (i & _crypt_bits8[j + 1])
				{
					if ((obit = inv_comp_perm[inbit]) == 255)
						continue;
					if (obit < 24)
						*il |= bits24[obit];
					else
						*ir |= bits24[obit - 24];
				}
			}
		}
	}

	/*
	 * Invert the P-box permutation, and convert into OR-masks for handling
	 * the output of the S-box arrays setup above.
	 */
	for (i = 0; i < 32; i++)
		un_pbox[pbox[i] - 1] = i;

	for (b = 0; b < 4; b++)
		for (i = 0; i < 256; i++)
		{
			*(p = &psbox[b][i]) = 0L;
			for (j = 0; j < 8; j++)
			{
				if (i & _crypt_bits8[j])
					*p |= _crypt_bits32[un_pbox[8 * b + j]];
			}
		}

	des_initialised = 1;
}

static void
setup_salt(long salt)
{
	uint32		obit,
				saltbit;
	int			i;

	if (salt == old_salt)
		return;
	old_salt = salt;

	saltbits = 0L;
	saltbit = 1;
	obit = 0x800000;
	for (i = 0; i < 24; i++)
	{
		if (salt & saltbit)
			saltbits |= obit;
		saltbit <<= 1;
		obit >>= 1;
	}
}

static int
des_setkey(const char *key)
{
	uint32		k0,
				k1,
				rawkey0,
				rawkey1;
	int			shifts,
				round;

	if (!des_initialised)
		des_init();

	rawkey0 = pg_ntoh32(*(const uint32 *) key);
	rawkey1 = pg_ntoh32(*(const uint32 *) (key + 4));

	if ((rawkey0 | rawkey1)
		&& rawkey0 == old_rawkey0
		&& rawkey1 == old_rawkey1)
	{
		/*
		 * Already setup for this key. This optimization fails on a zero key
		 * (which is weak and has bad parity anyway) in order to simplify the
		 * starting conditions.
		 */
		return 0;
	}
	old_rawkey0 = rawkey0;
	old_rawkey1 = rawkey1;

	/*
	 * Do key permutation and split into two 28-bit subkeys.
	 */
	k0 = key_perm_maskl[0][rawkey0 >> 25]
		| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
		| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
		| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
		| key_perm_maskl[4][rawkey1 >> 25]
		| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
		| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
		| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
	k1 = key_perm_maskr[0][rawkey0 >> 25]
		| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
		| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
		| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
		| key_perm_maskr[4][rawkey1 >> 25]
		| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
		| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
		| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];

	/*
	 * Rotate subkeys and do compression permutation.
	 */
	shifts = 0;
	for (round = 0; round < 16; round++)
	{
		uint32		t0,
					t1;

		shifts += key_shifts[round];

		t0 = (k0 << shifts) | (k0 >> (28 - shifts));
		t1 = (k1 << shifts) | (k1 >> (28 - shifts));

		de_keysl[15 - round] =
			en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
			| comp_maskl[1][(t0 >> 14) & 0x7f]
			| comp_maskl[2][(t0 >> 7) & 0x7f]
			| comp_maskl[3][t0 & 0x7f]
			| comp_maskl[4][(t1 >> 21) & 0x7f]
			| comp_maskl[5][(t1 >> 14) & 0x7f]
			| comp_maskl[6][(t1 >> 7) & 0x7f]
			| comp_maskl[7][t1 & 0x7f];

		de_keysr[15 - round] =
			en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
			| comp_maskr[1][(t0 >> 14) & 0x7f]
			| comp_maskr[2][(t0 >> 7) & 0x7f]
			| comp_maskr[3][t0 & 0x7f]
			| comp_maskr[4][(t1 >> 21) & 0x7f]
			| comp_maskr[5][(t1 >> 14) & 0x7f]
			| comp_maskr[6][(t1 >> 7) & 0x7f]
			| comp_maskr[7][t1 & 0x7f];
	}
	return 0;
}

static int
do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
{
	/*
	 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
	 */
	uint32		l,
				r,
			   *kl,
			   *kr,
			   *kl1,
			   *kr1;
	uint32		f,
				r48l,
				r48r;
	int			round;

	if (count == 0)
		return 1;
	else if (count > 0)
	{
		/*
		 * Encrypting
		 */
		kl1 = en_keysl;
		kr1 = en_keysr;
	}
	else
	{
		/*
		 * Decrypting
		 */
		count = -count;
		kl1 = de_keysl;
		kr1 = de_keysr;
	}

	/*
	 * Do initial permutation (IP).
	 */
	l = ip_maskl[0][l_in >> 24]
		| ip_maskl[1][(l_in >> 16) & 0xff]
		| ip_maskl[2][(l_in >> 8) & 0xff]
		| ip_maskl[3][l_in & 0xff]
		| ip_maskl[4][r_in >> 24]
		| ip_maskl[5][(r_in >> 16) & 0xff]
		| ip_maskl[6][(r_in >> 8) & 0xff]
		| ip_maskl[7][r_in & 0xff];
	r = ip_maskr[0][l_in >> 24]
		| ip_maskr[1][(l_in >> 16) & 0xff]
		| ip_maskr[2][(l_in >> 8) & 0xff]
		| ip_maskr[3][l_in & 0xff]
		| ip_maskr[4][r_in >> 24]
		| ip_maskr[5][(r_in >> 16) & 0xff]
		| ip_maskr[6][(r_in >> 8) & 0xff]
		| ip_maskr[7][r_in & 0xff];

	while (count--)
	{
		CHECK_FOR_INTERRUPTS();

		/*
		 * Do each round.
		 */
		kl = kl1;
		kr = kr1;
		round = 16;
		while (round--)
		{
			/*
			 * Expand R to 48 bits (simulate the E-box).
			 */
			r48l = ((r & 0x00000001) << 23)
				| ((r & 0xf8000000) >> 9)
				| ((r & 0x1f800000) >> 11)
				| ((r & 0x01f80000) >> 13)
				| ((r & 0x001f8000) >> 15);

			r48r = ((r & 0x0001f800) << 7)
				| ((r & 0x00001f80) << 5)
				| ((r & 0x000001f8) << 3)
				| ((r & 0x0000001f) << 1)
				| ((r & 0x80000000) >> 31);

			/*
			 * Do salting for crypt() and friends, and XOR with the permuted
			 * key.
			 */
			f = (r48l ^ r48r) & saltbits;
			r48l ^= f ^ *kl++;
			r48r ^= f ^ *kr++;

			/*
			 * Do sbox lookups (which shrink it back to 32 bits) and do the
			 * pbox permutation at the same time.
			 */
			f = psbox[0][m_sbox[0][r48l >> 12]]
				| psbox[1][m_sbox[1][r48l & 0xfff]]
				| psbox[2][m_sbox[2][r48r >> 12]]
				| psbox[3][m_sbox[3][r48r & 0xfff]];

			/*
			 * Now that we've permuted things, complete f().
			 */
			f ^= l;
			l = r;
			r = f;
		}
		r = l;
		l = f;
	}

	/*
	 * Do final permutation (inverse of IP).
	 */
	*l_out = fp_maskl[0][l >> 24]
		| fp_maskl[1][(l >> 16) & 0xff]
		| fp_maskl[2][(l >> 8) & 0xff]
		| fp_maskl[3][l & 0xff]
		| fp_maskl[4][r >> 24]
		| fp_maskl[5][(r >> 16) & 0xff]
		| fp_maskl[6][(r >> 8) & 0xff]
		| fp_maskl[7][r & 0xff];
	*r_out = fp_maskr[0][l >> 24]
		| fp_maskr[1][(l >> 16) & 0xff]
		| fp_maskr[2][(l >> 8) & 0xff]
		| fp_maskr[3][l & 0xff]
		| fp_maskr[4][r >> 24]
		| fp_maskr[5][(r >> 16) & 0xff]
		| fp_maskr[6][(r >> 8) & 0xff]
		| fp_maskr[7][r & 0xff];
	return 0;
}

static int
des_cipher(const char *in, char *out, long salt, int count)
{
	uint32		buffer[2];
	uint32		l_out,
				r_out,
				rawl,
				rawr;
	int			retval;

	if (!des_initialised)
		des_init();

	setup_salt(salt);

	/* copy data to avoid assuming input is word-aligned */
	memcpy(buffer, in, sizeof(buffer));

	rawl = pg_ntoh32(buffer[0]);
	rawr = pg_ntoh32(buffer[1]);

	retval = do_des(rawl, rawr, &l_out, &r_out, count);
	if (retval)
		return retval;

	buffer[0] = pg_hton32(l_out);
	buffer[1] = pg_hton32(r_out);

	/* copy data to avoid assuming output is word-aligned */
	memcpy(out, buffer, sizeof(buffer));

	return retval;
}

char *
px_crypt_des(const char *key, const char *setting)
{
	int			i;
	uint32		count,
				salt,
				l,
				r0,
				r1,
				keybuf[2];
	char	   *p;
	uint8	   *q;
	static char output[21];

	if (!des_initialised)
		des_init();


	/*
	 * Copy the key, shifting each character up by one bit and padding with
	 * zeros.
	 */
	q = (uint8 *) keybuf;
	while (q - (uint8 *) keybuf - 8)
	{
		*q++ = *key << 1;
		if (*key != '\0')
			key++;
	}
	if (des_setkey((char *) keybuf))
		return NULL;

#ifndef DISABLE_XDES
	if (*setting == _PASSWORD_EFMT1)
	{
		/*
		 * "new"-style: setting must be a 9-character (underscore, then 4
		 * bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
		 * the "Extended crypt" heading for further details.
		 *
		 * Unlimited characters of the input key are used. This is known as
		 * the "Extended crypt" DES method.
		 *
		 */
		if (strlen(setting) < 9)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
					 errmsg("invalid salt")));

		for (i = 1, count = 0L; i < 5; i++)
			count |= ascii_to_bin(setting[i]) << (i - 1) * 6;

		for (i = 5, salt = 0L; i < 9; i++)
			salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;

		while (*key)
		{
			/*
			 * Encrypt the key with itself.
			 */
			if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
				return NULL;

			/*
			 * And XOR with the next 8 characters of the key.
			 */
			q = (uint8 *) keybuf;
			while (q - (uint8 *) keybuf - 8 && *key)
				*q++ ^= *key++ << 1;

			if (des_setkey((char *) keybuf))
				return NULL;
		}
		StrNCpy(output, setting, 10);

		/*
		 * Double check that we weren't given a short setting. If we were, the
		 * above code will probably have created weird values for count and
		 * salt, but we don't really care. Just make sure the output string
		 * doesn't have an extra NUL in it.
		 */
		p = output + strlen(output);
	}
	else
#endif							/* !DISABLE_XDES */
	{
		/*
		 * "old"-style: setting - 2 bytes of salt key - only up to the first 8
		 * characters of the input key are used.
		 */
		count = 25;

		if (strlen(setting) < 2)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
					 errmsg("invalid salt")));

		salt = (ascii_to_bin(setting[1]) << 6)
			| ascii_to_bin(setting[0]);

		output[0] = setting[0];

		/*
		 * If the encrypted password that the salt was extracted from is only
		 * 1 character long, the salt will be corrupted.  We need to ensure
		 * that the output string doesn't have an extra NUL in it!
		 */
		output[1] = setting[1] ? setting[1] : output[0];

		p = output + 2;
	}
	setup_salt(salt);

	/*
	 * Do it.
	 */
	if (do_des(0L, 0L, &r0, &r1, count))
		return NULL;

	/*
	 * Now encode the result...
	 */
	l = (r0 >> 8);
	*p++ = _crypt_a64[(l >> 18) & 0x3f];
	*p++ = _crypt_a64[(l >> 12) & 0x3f];
	*p++ = _crypt_a64[(l >> 6) & 0x3f];
	*p++ = _crypt_a64[l & 0x3f];

	l = (r0 << 16) | ((r1 >> 16) & 0xffff);
	*p++ = _crypt_a64[(l >> 18) & 0x3f];
	*p++ = _crypt_a64[(l >> 12) & 0x3f];
	*p++ = _crypt_a64[(l >> 6) & 0x3f];
	*p++ = _crypt_a64[l & 0x3f];

	l = r1 << 2;
	*p++ = _crypt_a64[(l >> 12) & 0x3f];
	*p++ = _crypt_a64[(l >> 6) & 0x3f];
	*p++ = _crypt_a64[l & 0x3f];
	*p = 0;

	return output;
}

相关信息

greenplumn 源码目录

相关文章

greenplumn blf 源码

greenplumn blf 源码

greenplumn crypt-blowfish 源码

greenplumn crypt-gensalt 源码

greenplumn crypt-md5 源码

greenplumn imath 源码

greenplumn imath 源码

greenplumn internal-sha2 源码

greenplumn internal 源码

greenplumn mbuf 源码

0  赞