greenplumn analyzeutils 源码

  • 2022-08-18
  • 浏览 (342)

greenplumn analyzeutils 代码

文件路径:/src/backend/commands/analyzeutils.c

/*-------------------------------------------------------------------------
 *
 * analyzeutils.c
 *
 *	  Provides utils functions for analyze.c
 *
 * Copyright (c) 2015, VMware, Inc. or its affiliates.
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/heapam.h"
#include "catalog/indexing.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_statistic.h"
#include "cdb/cdbhash.h"
#include "commands/analyzeutils.h"
#include "commands/vacuum.h"
#include "lib/binaryheap.h"
#include "miscadmin.h"
#include "parser/parse_oper.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/hsearch.h"


typedef struct MCVFreqEntry
{
	MCVFreqPair *entry;
} MCVFreqEntry;

typedef struct PartDatum
{
	int			partId;			/* id of the partition histogram where the
								 * datum is from */
	Datum		datum;
} PartDatum;

static Datum *buildMCVArrayForStatsEntry(MCVFreqPair **mcvpairArray, int *nEntries, float4 ndistinct, float4 nrows);
static float4 *buildFreqArrayForStatsEntry(MCVFreqPair **mcvpairArray, int nEntries, float4 reltuples);
static int	datumHashTableMatch(const void *keyPtr1, const void *keyPtr2, Size keysize);
static uint32 datumHashTableHash(const void *keyPtr, Size keysize);
static HTAB *createDatumHashTable(unsigned int nEntries);
static MCVFreqPair *MCVFreqPairCopy(MCVFreqPair *mcvFreqPair);
static bool containsDatum(HTAB *datumHash, MCVFreqPair *mcvFreqPair);
static void addLeafPartitionMCVsToHashTable(HTAB *datumHash, HeapTuple heaptupleStats,
			 float4 partReltuples, TypInfo *typInfo
);
static void addMCVToHashTable(HTAB *datumHash, MCVFreqPair *mcvFreqPair);
static int	mcvpair_cmp(const void *a, const void *b);

static void initTypInfo(TypInfo *typInfo, Oid relationOid, AttrNumber attnum);
static int	DatumHeapComparator(Datum lhs, Datum rhs, void *context);
static void advanceCursor(int pid, int *cursors, AttStatsSlot * *histSlots);
static Datum getMinBound(AttStatsSlot * *histSlots, int *cursors, int nParts,
						 Oid ltFuncOid, Oid collid);
static Datum getMaxBound(AttStatsSlot * *histSlots, int nParts, Oid ltFuncOid, Oid
						 collid);
static void
			getHistogramHeapTuple(AttStatsSlot * *histSlots, HeapTuple *heaptupleStats, int *numNotNullParts, int nParts);
static void initDatumHeap(binaryheap *hp, AttStatsSlot * *histSlots, int *cursors, int nParts);

static float4 getBucketSizes(const HeapTuple *heaptupleStats, const float4 *relTuples, int nParts,
			   MCVFreqPair **mcvPairRemaining, int rem_mcv,
			   float4 *eachBucket);

float4
get_rel_reltuples(Oid relid)
{
	float4		relTuples = 0.0;
	HeapTuple	tp;

	tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
	if (HeapTupleIsValid(tp))
	{
		Form_pg_class reltup = (Form_pg_class) GETSTRUCT(tp);

		relTuples = reltup->reltuples;
		ReleaseSysCache(tp);
	}

	return relTuples;
}

int32
get_rel_relpages(Oid relid)
{
	int32		relPages = 0.0;
	HeapTuple	tp;

	tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
	if (HeapTupleIsValid(tp))
	{
		Form_pg_class reltup = (Form_pg_class) GETSTRUCT(tp);

		relPages = reltup->relpages;
		ReleaseSysCache(tp);
	}

	return relPages;
}

/*
 * Given column stats of an attribute, build an MCVFreqPair and add it to the hash table.
 * If the MCV to be added already exist in the hash table, we increment its count value.
 * Input:
 * 	- datumHash: hash table
 * 	- partOid: Oid of current partition
 *  - partReltuples: Number of tuples in that partition
 * 	- typInfo: type information
 * Output:
 *  - partReltuples: the number of tuples in this partition
 */
static void
addLeafPartitionMCVsToHashTable (HTAB *datumHash, HeapTuple heaptupleStats,
								 float4 partReltuples, TypInfo * typInfo)
{
	AttStatsSlot mcvSlot;

	(void) get_attstatsslot(&mcvSlot, heaptupleStats, STATISTIC_KIND_MCV,
							InvalidOid, ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);

	Assert(mcvSlot.nvalues == mcvSlot.nnumbers);
	for (int i = 0; i < mcvSlot.nvalues; i++)
	{
		Datum		mcv = mcvSlot.values[i];
		float4		count = partReltuples * mcvSlot.numbers[i];
		MCVFreqPair *mcvFreqPair = (MCVFreqPair *) palloc(sizeof(MCVFreqPair));

		mcvFreqPair->mcv = mcv;
		mcvFreqPair->count = count;
		mcvFreqPair->typinfo = typInfo;
		addMCVToHashTable(datumHash, mcvFreqPair);
		pfree(mcvFreqPair);
	}
	free_attstatsslot(&mcvSlot);
}


/*
 * Main function for aggregating leaf partition MCV/Freq to compute
 * root or interior partition MCV/Freq
 *
 * Input:
 * 	- relationOid: Oid of root or interior partition
 * 	- attnum: column number
 *  - numPartitions: # of elements in heaptupleStats and relTuples arrays
 *  - heaptupleStats: pg_statistics tuples for each partition
 *  - relTuples: number of tuples in each partition (pg_class.reltuples)
 * 	- nEntries: target number of MCVs/Freqs to be collected, the real number of
 * 	MCVs/Freqs returned may be less
 *
 * Output:
 * 	- result: two dimensional arrays of MCVs and Freqs
 */
MCVFreqPair **
aggregate_leaf_partition_MCVs(Oid relationOid,
							  AttrNumber attnum,
							  int numPartitions,
							  HeapTuple *heaptupleStats,
							  float4 *relTuples,
							  unsigned int nEntries,
							  double ndistinct,
							  int *num_mcv,
							  int *rem_mcv,
							  void **result)
{
	TypInfo    *typInfo = (TypInfo *) palloc(sizeof(TypInfo));

	initTypInfo(typInfo, relationOid, attnum);

	/* Hash table for storing combined MCVs */
	HTAB	   *datumHash = createDatumHashTable(nEntries);
	float4		sumReltuples = 0;

	for (int i = 0; i < numPartitions; i++)
	{
		if (!HeapTupleIsValid(heaptupleStats[i]))
			continue;

		addLeafPartitionMCVsToHashTable(datumHash, heaptupleStats[i], relTuples[i],
										typInfo);
		sumReltuples += relTuples[i];
	}

	*rem_mcv = hash_get_num_entries(datumHash);
	if (0 == *rem_mcv)
	{
		/* in the unlikely event of an empty hash table, return early */
		*result = NULL;
		result++;
		*result = NULL;
		hash_destroy(datumHash);
		return NULL;
	}

	int			i = 0;
	HASH_SEQ_STATUS hash_seq;
	MCVFreqEntry *mcvfreq;

	MCVFreqPair **mcvpairArray = palloc((*rem_mcv) * sizeof(MCVFreqPair *));

	/* put MCVFreqPairs in an array in order to sort */
	hash_seq_init(&hash_seq, datumHash);
	while ((mcvfreq = hash_seq_search(&hash_seq)) != NULL)
	{
		mcvpairArray[i++] = mcvfreq->entry;
	}
	/* sort MCVFreqPairs in descending order of frequency */
	qsort(mcvpairArray, i, sizeof(MCVFreqPair *), mcvpair_cmp);

	/* prepare returning MCV and Freq arrays */
	*num_mcv = Min(i, nEntries);
	*result = (void *) buildMCVArrayForStatsEntry(mcvpairArray, num_mcv,
												  ndistinct, sumReltuples);
	if (*result == NULL)
	{
		*num_mcv = 0;
		return mcvpairArray;
	}

	result++;					/* now switch to frequency array (result[1]) */
	*result = (void *) buildFreqArrayForStatsEntry(mcvpairArray, *num_mcv,
												   sumReltuples);

	hash_destroy(datumHash);
	pfree(typInfo);

	*rem_mcv -= *num_mcv;
	return mcvpairArray;
}

/*
 * Return an array of MCVs from the resultant MCVFreqPair array
 * Input:
 * 	- mcvpairArray: contains MCVs and corresponding counts in desc order
 * 	- nEntries: number of MCVs to be returned
 * 	- typoid: type oid of the MCV datum
 * 	- nrows: number of tuples from all partitions
 */
static Datum *
buildMCVArrayForStatsEntry(MCVFreqPair **mcvpairArray,
						   int *nEntries,
						   float4 ndistinct,
						   float4 nrows)
{
	Assert(mcvpairArray);
	Assert(*nEntries > 0);

	Datum	   *out = palloc(sizeof(Datum) * (*nEntries));
	double		mincount = -1.0;

	if (*nEntries == (int) ndistinct && ndistinct > 0)
	{
		/* Track list includes all values seen, and all will fit */
	}
	else
	{
		double		avgcount,
					maxmincount;

		/* estimate # of occurrences in sample of a typical value */
		avgcount = (double) nrows / ndistinct;
		/* set minimum threshold count to store a value */
		mincount = avgcount * 1.25;
		if (mincount < 2)
			mincount = 2;
		/* don't let threshold exceed 1/K, however */
		maxmincount = (double) nrows / (double) *nEntries;
		if (mincount > maxmincount)
			mincount = maxmincount;

	}
	for (int i = 0; i < *nEntries; i++)
	{
		if ((mcvpairArray[i])->count < mincount)
		{
			if (i == 0)
			{
				pfree(out);
				return NULL;
			}
			else
			{
				*nEntries = i;
				break;
			}
		}
		Datum		mcv = (mcvpairArray[i])->mcv;

		out[i] = mcv;
	}

	return out;
}

/*
 * Return an array of frequencies from the resultant MCVFreqPair array
 * Input:
 * 	- mcvpairArray: contains MCVs and corresponding counts in desc order
 * 	- nEntries: number of frequencies to be returned
 * 	- reltuples: number of tuples of the root or interior partition (all leaf partitions combined)
 */
static float4 *
buildFreqArrayForStatsEntry(MCVFreqPair **mcvpairArray,
							int nEntries,
							float4 reltuples)
{
	Assert(mcvpairArray);
	Assert(nEntries > 0);
	Assert(reltuples > 0);		/* otherwise ANALYZE will not collect stats */

	float4	   *out = (float *) palloc(sizeof(float4) * nEntries);

	for (int i = 0; i < nEntries; i++)
	{
		float4		freq = mcvpairArray[i]->count / reltuples;

		out[i] = freq;
	}

	return out;
}

/*
 * Comparison function to sort an array of MCVFreqPairs in desc order
 */
static int
mcvpair_cmp(const void *a, const void *b)
{
	Assert(a);
	Assert(b);

	MCVFreqPair *mcvFreqPair1 = *(MCVFreqPair **) a;
	MCVFreqPair *mcvFreqPair2 = *(MCVFreqPair **) b;

	if (mcvFreqPair1->count > mcvFreqPair2->count)
		return -1;
	if (mcvFreqPair1->count < mcvFreqPair2->count)
		return 1;
	else
		return 0;
}

/**
 * Add an MCVFreqPair to the hash table, if the same datum already exists
 * in the hash table, update its count
 * Input:
 * 	datumHash - hash table
 * 	mcvFreqPair - MCVFreqPair to be added
 * 	typbyval - whether the datum inside is passed by value
 * 	typlen - pg_type.typlen of the datum type
 */
static void
addMCVToHashTable(HTAB *datumHash, MCVFreqPair *mcvFreqPair)
{
	Assert(datumHash);
	Assert(mcvFreqPair);

	MCVFreqEntry *mcvfreq;
	bool		found = false;	/* required by hash_search */

	if (!containsDatum(datumHash, mcvFreqPair))
	{
		/* create a deep copy of MCVFreqPair and put it in the hash table */
		MCVFreqPair *key = MCVFreqPairCopy(mcvFreqPair);

		mcvfreq = hash_search(datumHash, &key, HASH_ENTER, &found);
		mcvfreq->entry = key;
	}
	else
	{
		mcvfreq = hash_search(datumHash, &mcvFreqPair, HASH_FIND, &found);
		Assert(mcvfreq);
		mcvfreq->entry->count += mcvFreqPair->count;
	}

	return;
}

/**
 * Copy function for MCVFreqPair
 * Input:
 * 	mcvFreqPair - input MCVFreqPair
 * 	typbyval - whether the datum inside is passed by value
 * 	typlen - pg_type.typlen of the datum type
 * Output:
 * 	result - a deep copy of input MCVFreqPair
 */
static MCVFreqPair *
MCVFreqPairCopy(MCVFreqPair *mcvFreqPair)
{
	MCVFreqPair *result = (MCVFreqPair *) palloc(sizeof(MCVFreqPair));

	result->count = mcvFreqPair->count;
	result->typinfo = mcvFreqPair->typinfo;
	result->mcv = datumCopy(mcvFreqPair->mcv,
							mcvFreqPair->typinfo->typbyval,
							mcvFreqPair->typinfo->typlen);

	return result;
}

/**
 * Test whether an MCVFreqPair is in the hash table
 * Input:
 * 	datumHash - hash table
 * 	mcvFreqPair - pointer to an MCVFreqPair
 * Output:
 * 	found - whether the MCVFreqPair is found
 */
static bool
containsDatum(HTAB *datumHash, MCVFreqPair *mcvFreqPair)
{
	bool		found = false;

	if (datumHash != NULL)
		hash_search(datumHash, &mcvFreqPair, HASH_FIND, &found);

	return found;
}

/**
 * Create a hash table with both hash key and hash entry as a pointer
 * to a MCVFreqPair struct
 * Input:
 * 	nEntries - estimated number of elements in the hash table, the size
 * 	of the hash table can grow dynamically
 * Output:
 * 	a pointer to the created hash table
 */
static HTAB *
createDatumHashTable(unsigned int nEntries)
{
	HASHCTL		hash_ctl;

	MemSet(&hash_ctl, 0, sizeof(hash_ctl));

	hash_ctl.keysize = sizeof(MCVFreqPair *);
	hash_ctl.entrysize = sizeof(MCVFreqEntry);
	hash_ctl.hash = datumHashTableHash;
	hash_ctl.match = datumHashTableMatch;

	return hash_create("DatumHashTable", nEntries, &hash_ctl,
					   HASH_ELEM | HASH_FUNCTION | HASH_COMPARE);
}

/**
 * Hash function for MCVFreqPair struct pointer.
 * Input:
 * 	keyPtr - pointer to hash key
 * 	keysize - not used, hash function must have this signature
 * Output:
 * 	result - hash value as an unsigned integer
 */
static uint32
datumHashTableHash(const void *keyPtr, Size keysize)
{
	uint32		result;
	MCVFreqPair *mcvFreqPair = *((MCVFreqPair **)keyPtr);
	FmgrInfo   *hashfunc = &mcvFreqPair->typinfo->hashfunc;
	Oid			collid = mcvFreqPair->typinfo->collid;

	result = DatumGetUInt32(FunctionCall1Coll(hashfunc, collid, mcvFreqPair->mcv));

	return result;
}

/**
 * Match function for MCVFreqPair struct pointer.
 * Input:
 * 	keyPtr1, keyPtr2 - pointers to two hash keys
 * 	keysize - not used, hash function must have this signature
 * Output:
 * 	0 if two hash keys match, 1 otherwise
 */
static int
datumHashTableMatch(const void *keyPtr1, const void *keyPtr2, Size keysize)
{
	Assert(keyPtr1);
	Assert(keyPtr2);

	MCVFreqPair *left = *((MCVFreqPair **) keyPtr1);
	MCVFreqPair *right = *((MCVFreqPair **) keyPtr2);

	Assert(left->typinfo->typOid == right->typinfo->typOid);

	return OidFunctionCall2Coll(left->typinfo->eqFuncOp,
								left->typinfo->collid,
								left->mcv, right->mcv) ? 0 : 1;
}

/*
 * Initialize type information
 * Input:
 * 	relationOid - oid of the relation
 * 	attnum - attribute numbe
 * Output:
 *  members of typInfo are initialized
 */
static void
initTypInfo(TypInfo *typInfo, Oid relationOid, AttrNumber attnum)
{
	Oid			ltOpr;
	Oid			eqOpr;
	Oid			hashFunc;

	Oid			typoid;
	int32		typmod;
	Oid			collid;

	get_atttypetypmodcoll(relationOid, attnum, &typoid, &typmod, &collid);

	typInfo->typOid = typoid;
	typInfo->collid = collid;
	get_typlenbyval(typoid, &typInfo->typlen, &typInfo->typbyval);

	get_sort_group_operators(typoid, false, true, false, &ltOpr, &eqOpr, NULL, NULL);
	typInfo->ltFuncOp = get_opcode(ltOpr);
	typInfo->eqFuncOp = get_opcode(eqOpr);

	if (!get_op_hash_functions(eqOpr, &hashFunc, NULL))
		elog(ERROR, "could not find hash function for hash operator %u", eqOpr);
	fmgr_info(hashFunc, &typInfo->hashfunc);
}

/*
 * Comparator function of heap element PartDatum
 * Input:
 * 	lhs, rhs - pointers to heap elements
 * 	context - pointer to comparison context
 * Output:
 *  -1 if lhs < rhs
 *  0 if lhs == rhs
 *  1 if lhs > rhs
 */
static int
DatumHeapComparator(Datum lhs, Datum rhs, void *context)
{
	Datum		d1 = ((PartDatum *) DatumGetPointer(lhs))->datum;
	Datum		d2 = ((PartDatum *) DatumGetPointer(rhs))->datum;
	TypInfo    *typInfo = (TypInfo *) context;

	if (OidFunctionCall2Coll(typInfo->ltFuncOp,
							 typInfo->collid,
							 d1, d2))
	{
		return 1;
	}

	if (OidFunctionCall2Coll(typInfo->eqFuncOp,
							 typInfo->collid,
							 d1, d2))
	{
		return 0;
	}

	return -1;
}

/* Advance the cursor of a partition by 1, set to -1 if the end is reached
 * Input:
 * 	pid - partition id
 * 	cursors - cursor vector
 * 	nBounds - array of the number of bounds
 * */
static void
advanceCursor(int pid, int *cursors, AttStatsSlot * *histSlots)
{
	cursors[pid]++;
	if (cursors[pid] >= histSlots[pid]->nvalues)
	{
		cursors[pid] = -1;
	}
}

/*
 * Get the minimum bound of all partition bounds. Only need to iterate over
 * the first bound of each partition since the bounds in a histogram are ordered.
 */
static Datum
getMinBound(AttStatsSlot * *histSlots, int *cursors, int nParts, Oid ltFuncOid, Oid collid)
{
	Assert(histSlots);
	Assert(histSlots[0]);
	Assert(cursors);
	Assert(nParts > 0);

	Datum		minDatum = histSlots[0]->values[0];

	for (int pid = 0; pid < nParts; pid++)
	{
		if (OidFunctionCall2Coll(ltFuncOid, collid,
								 histSlots[pid]->values[0], minDatum))
		{
			minDatum = histSlots[pid]->values[0];
		}
		advanceCursor(pid, cursors, histSlots);
	}

	return minDatum;
}

/*
 * Get the maximum bound of all partition bounds. Only need to iterate over
 * the last bound of each partition since the bounds in a histogram are ordered.
 */
static Datum
getMaxBound(AttStatsSlot * *histSlots, int nParts, Oid ltFuncOid, Oid collid)
{
	Assert(histSlots);
	Assert(histSlots[0]);
	Assert(nParts > 0);

	Datum		maxDatum = histSlots[0]->values[histSlots[0]->nvalues - 1];

	for (int pid = 0; pid < nParts; pid++)
	{
		if (OidFunctionCall2Coll(ltFuncOid, collid,
								 maxDatum, histSlots[pid]->values[histSlots[pid]->nvalues - 1]))
		{
			maxDatum = histSlots[pid]->values[histSlots[pid]->nvalues - 1];
		}
	}

	return maxDatum;
}

/*
 * Preparing the output array of histogram bounds, removing any duplicates
 * Input:
 * 	ldatum - list of pointers to the aggregated bounds, may contain duplicates
 * 	typInfo - type information
 * Output:
 *  an array containing the aggregated histogram bounds
 */
static Datum *
buildHistogramEntryForStats(List *ldatum, TypInfo *typInfo, int *num_hist)
{
	Assert(ldatum);
	Assert(typInfo);

	Datum	   *histArray = (Datum *) palloc(sizeof(Datum) * list_length(ldatum));

	ListCell   *lc;
	Datum	   *prevDatum = (Datum *) linitial(ldatum);
	int			idx = 0;

	*num_hist = 0;

	foreach_with_count(lc, ldatum, idx)
	{
		Datum	   *pdatum = (Datum *) lfirst(lc);

		/* remove duplicate datum in the list, starting from the second datum */
		if (OidFunctionCall2Coll(typInfo->eqFuncOp, typInfo->collid,
								 *pdatum, *prevDatum) && idx > 0)
		{
			continue;
		}

		histArray[*num_hist] = *pdatum;
		*num_hist = *num_hist + 1;
		*prevDatum = *pdatum;
	}

	return histArray;
}


/*
 * Obtain all histogram bounds from every partition and store them in a 2D array (histData)
 * Input:
 * 	lRelOids - list of part Oids
 * 	typInfo - type info
 * 	attnum - attribute number
 * Output:
 * 	histData - 2D array of all histogram bounds from every partition
 * 	nBounds - array of the number of histogram bounds (from each partition)
 * 	partsReltuples - array of the number of tuples (from each partition)
 * 	sumReltuples - sum of number of tuples in all partitions
 */
static void
getHistogramHeapTuple(AttStatsSlot * *histSlots, HeapTuple *heaptupleStats,
					  int *numNotNullParts, int nParts)
{
	int			pid = 0;

	for (int i = 0; i < nParts; i++)
	{
		if (!HeapTupleIsValid(heaptupleStats[i]))
		{
			continue;
		}
		histSlots[pid] = (AttStatsSlot *) palloc(sizeof(AttStatsSlot));
		(void) get_attstatsslot(histSlots[pid], heaptupleStats[i], STATISTIC_KIND_HISTOGRAM, InvalidOid, ATTSTATSSLOT_VALUES);

		if (histSlots[pid]->nvalues > 0)
		{
			pid++;
		}
	}
	*numNotNullParts = pid;
}

/*
 * Obtain all histogram bounds from every partition and store them in a 2D array (histData)
 * Input:
 * 	lRelOids - list of part Oids
 * 	typInfo - type info
 * 	attnum - attribute number
 * Output:
 * 	histData - 2D array of all histogram bounds from every partition
 * 	nBounds - array of the number of histogram bounds (from each partition)
 * 	partsReltuples - array of the number of tuples (from each partition)
 * 	sumReltuples - sum of number of tuples in all partitions
 */
static void
getHistogramMCVTuple(AttStatsSlot * *histSlots, MCVFreqPair **mcvRemaining,
					 int start_idx, int rem_mcv)
{
	for (int i = 0; i < rem_mcv; i++)
	{
		histSlots[start_idx + i] = (AttStatsSlot *) palloc(sizeof(AttStatsSlot));
		histSlots[start_idx + i]->nvalues = 2;
		histSlots[start_idx + i]->values = (Datum *) palloc(sizeof(Datum) * 2);
		histSlots[start_idx + i]->values[0] = mcvRemaining[i]->mcv;
		histSlots[start_idx + i]->values[1] = mcvRemaining[i]->mcv;
	}
}

/*
 * Initialize heap by inserting the second histogram bound from each partition histogram.
 * Input:
 * 	hp - heap
 * 	histData - all histogram bounds from each part
 * 	cursors - cursor vector
 * 	nParts - number of partitions
 */
static void
initDatumHeap(binaryheap *hp, AttStatsSlot * *histSlots, int *cursors, int nParts)
{
	PartDatum *pds = (PartDatum *) palloc(nParts * sizeof(PartDatum));

	for (int pid = 0; pid < nParts; pid++)
	{
		/* do nothing if part histogram only has one element */
		if (cursors[pid] > 0)
		{
			pds[pid].partId = pid;
			pds[pid].datum = histSlots[pid]->values[cursors[pid]];
			binaryheap_add_unordered(hp, PointerGetDatum(&pds[pid]));
		}
	}
	binaryheap_build(hp);
}

/*
 * Main function for aggregating leaf partition histogram to compute
 * root or interior partition histogram
 * Input:
 * 	- relationOid: Oid of root or interior partition
 * 	- attnum: column number
 *  - nParts: # of elements in heaptupleStats and relTuples arrays
 *  - heaptupleStats: pg_statistics tuples for each partition
 * 	- nEntries: target number of histogram bounds to be collected, the real number of
 * 	histogram bounds returned may be less
 * Output:
 * 	- result: an array of aggregated histogram bounds
 * Algorithm:
 *
 * 	We use the following example to explain how the aggregating algorithm works.

	Suppose a parent table 'lineitem' has 3 partitions 'lineitem_prt_1', 'lineitem_prt_2',
	'lineitem_prt_3'. The histograms of the column of interest of the parts are:

	hist(prt_1): {0,19,38,59}
	hist(prt_2): {2,18,40,62}
	hist(prt_3): {1,22,39,61}

	Note the histograms are equi-depth, which implies each bucket should contain the same number of tuples.

	The number of tuples in each part is:

	nTuples(prt_1) = 300
	nTuples(prt_2) = 270
	nTuples(prt_3) = 330

	Some notation:

	hist(agg): the aggregated histogram
	hist(parts): the histograms of the partitions, i.e., {hist(prt_1), hist(prt_2), hist(prt_3)}
	nEntries: the target number of histogram buckets in hist(agg). Usually this is the same as in the partitions. In this example, nEntries = 3.
	nParts: the number of partitions. nParts = 3 in this example.

	Since we know the target number of tuples in each bucket of hist(agg), the basic idea is to fill the buckets of hist(agg) using the buckets in hist(parts). And once a bucket in hist(agg) is filled up, we look at which bucket from hist(parts) is the current bucket, and use its bound as the bucket bound in hist(agg).
	Continue with our example we have,

	bucketSize(prt_1) = 300/3 = 100
	bucketSize(prt_2) = 270/3 = 90
	bucketSize(prt_3) = 330/3 = 110
	bucketSize(agg) = (300+270+330)/3 = 300

	Now, to begin with, we find the minimum of the first boundary point across hist(parts) and use it as the first boundary of hist(agg), i.e.,
	hist(agg) = {min({0,2,1})} = {0}

	We need to maintain a priority queue in order to decide on the next bucket from hist(parts) to work with.
	Each element in the queue is a (Datum, partID) pair, where Datum is a boundary from hist(parts) and partID is the ID of the part the Datum comes from.
	Each time we dequeue(), we get the minimum datum in the queue as the next datum we will work on.
	The priority queue contains up to nParts entries. In our example, we first enqueue
	the second boundary across hist(parts), i.e., 19, 18, 22, along with their part ID.

	Continue with filling the bucket of hist(agg), we dequeue '18' from the queue and fill in
	the first bucket (having 90 tuples). Since bucketSize(agg) = 300, we need more buckets
	from hist(parts) to fill it. At the same time, we dequeue 18 and enqueue the next bound (which is 40).
	The first bucket of hist(agg) will be filled up by '22' (90+100+110 >= 300), at this time we put '22' as the next boundary value in hist(agg), i.e.
	hist(agg) = {0,22}

	Continue with the iteration, we will finally fill all the buckets
	hist(agg) = {0,22,40,62}
 *
 */
int
aggregate_leaf_partition_histograms(Oid relationOid,
									AttrNumber attnum,
									int nParts,
									HeapTuple *heaptupleStats,
									float4 *relTuples,
									unsigned int nEntries,
									MCVFreqPair **mcvpairArray,
									int rem_mcv,
									void **result)
{
	AssertImply(rem_mcv != 0, mcvpairArray != NULL);
	Assert(nParts > 0);

	/* get type information */
	TypInfo		typInfo;

	initTypInfo(&typInfo, relationOid, attnum);

	AttStatsSlot **histSlots = (AttStatsSlot * *) palloc0((nParts + rem_mcv) * sizeof(AttStatsSlot *));
	float4		sumReltuples = 0;

	int			numNotNullParts = 0;

	/* populate histData, nBounds, partsReltuples and sumReltuples */
	float4	   *eachBucket = palloc0((nParts + rem_mcv) * sizeof(float4));	/* the number of data
																			 * points in each bucket
																			 * for each histogram */

	getHistogramHeapTuple(histSlots, heaptupleStats, &numNotNullParts, nParts);
	if (0 == numNotNullParts + rem_mcv)
	{
		/* if all the parts histograms are empty, we return nothing */
		result = NULL;
		return 0;
	}
	getHistogramMCVTuple(histSlots, mcvpairArray, numNotNullParts, rem_mcv);
	sumReltuples = getBucketSizes(heaptupleStats, relTuples, nParts, mcvpairArray, rem_mcv, eachBucket);

	/* reset nParts to the number of non-null parts */
	nParts = numNotNullParts + rem_mcv;

	/* now define the state variables needed for the aggregation loop */
	float4		bucketSize = sumReltuples / nEntries;	/* target bucket size in
														 * the aggregated
														 * histogram */
	float4		nTuplesToFill = bucketSize; /* remaining number of tuples to
											 * fill in the current bucket of
											 * the aggregated histogram, reset
											 * to bucketSize when a new bucket
											 * is added */
	int		   *cursors = palloc0(nParts * sizeof(int));	/* the index of current
															 * bucket for each
															 * histogram, set to -1
															 * after the histogram
															 * has been traversed */
	float4	   *remainingSize = palloc0(nParts * sizeof(float4));	/* remaining number of
																	 * tuples in the current
																	 * bucket of a part */

	/* initialize eachBucket[] and remainingSize[] */
	for (int i = 0; i < nParts; i++)
	{
		if (1 < histSlots[i]->nvalues)
		{
			remainingSize[i] = eachBucket[i];
		}
	}

	/* we maintain a priority queue (min heap) of PartDatum */
	binaryheap *dhp = binaryheap_allocate(nParts,
										  DatumHeapComparator,
										  &typInfo);

	List	   *ldatum = NIL;	/* list of pointers to the selected bounds */

	/*
	 * the first bound in the aggregated histogram will be the minimum of the
	 * first bounds of all parts
	 */
	Datum		minBound = getMinBound(histSlots, cursors, nParts,
									   typInfo.ltFuncOp, typInfo.collid);

	ldatum = lappend(ldatum, &minBound);

	/*
	 * continue filling the aggregated histogram, starting from the second
	 * bound
	 */
	initDatumHeap(dhp, histSlots, cursors, nParts);

	/*
	 * loop continues when DatumHeap is not empty yet and the number of
	 * histogram boundaries has not reached nEntries
	 */
	while (!binaryheap_empty(dhp) && list_length(ldatum) < nEntries)
	{
		PartDatum  *pd = (PartDatum *) DatumGetPointer(binaryheap_first(dhp));
		int			pid = pd->partId;

		if (remainingSize[pid] < nTuplesToFill)
		{
			nTuplesToFill -= remainingSize[pid];
			advanceCursor(pid, cursors, histSlots);
			remainingSize[pid] = eachBucket[pid];
			if (cursors[pid] > 0)
			{
				pd->datum = histSlots[pid]->values[cursors[pid]];
				binaryheap_replace_first(dhp, PointerGetDatum(pd));
			}
			else
				(void) binaryheap_remove_first(dhp);
		}
		else
		{
			ldatum = lappend(ldatum, &histSlots[pid]->values[cursors[pid]]);
			remainingSize[pid] -= nTuplesToFill;
			nTuplesToFill = bucketSize;
		}
	}

	/*
	 * adding the max boundary across all histograms to the aggregated
	 * histogram
	 */
	Datum		maxBound = getMaxBound(histSlots, nParts, typInfo.ltFuncOp, typInfo.collid);

	ldatum = lappend(ldatum, &maxBound);

	/* now ldatum contains the resulting boundaries */
	int			num_hist;
	Datum	   *out = buildHistogramEntryForStats(ldatum, &typInfo, &num_hist);

	/* clean up */
	binaryheap_free(dhp);

	*result = out;

	return num_hist;
}

static float4
getBucketSizes(const HeapTuple *heaptupleStats, const float4 *relTuples, int nParts,
			   MCVFreqPair **mcvPairRemaining, int rem_mcv,
			   float4 *eachBucket)
{
	float4	   *total = palloc(nParts * sizeof(float4));
	float4		sumTotal = 0;
	int			pid = 0;

	Assert(total != NULL);
	for (int i = 0; i < nParts; ++i)
	{
		AttStatsSlot mcvSlot;

		total[i] = relTuples[i];
		if (heaptupleStats[i] == NULL)
			continue;

		Form_pg_statistic stat = (Form_pg_statistic) GETSTRUCT(heaptupleStats[i]);

		if (get_attstatsslot(&mcvSlot, heaptupleStats[i], STATISTIC_KIND_MCV,
							 InvalidOid,
							 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
		{
			Assert(mcvSlot.nvalues == mcvSlot.nnumbers);

			for (int j = 0; j < mcvSlot.nnumbers; ++j)
			{
				total[i] -= relTuples[i] * mcvSlot.numbers[j];
			}
		}
		total[i] -= relTuples[i] * stat->stanullfrac;
		if (total[i] < 0.0)		/* will this happen? */
		{
			total[i] = 0.0;
		}

		/* We assume eachBucket[i] is initialized to 0.0 */
		if (get_attstatsslot(&mcvSlot, heaptupleStats[i],
							 STATISTIC_KIND_HISTOGRAM, InvalidOid,
							 ATTSTATSSLOT_VALUES))
		{
			eachBucket[pid] = total[i] / (mcvSlot.nvalues - 1);
			pid++;
		}

		sumTotal += total[i];
	}

	for (int i = pid; i < pid + rem_mcv; ++i)
	{
		eachBucket[i] = mcvPairRemaining[i - pid]->count;
		sumTotal += eachBucket[i];
	}
	pfree(total);
	return sumTotal;
}

/*
 *	needs_sample() -- checks if the analyze requires sampling the actual data
 */
bool
needs_sample(VacAttrStats **vacattrstats, int attr_cnt)
{
	Assert(vacattrstats != NULL);
	int			i;

	for (i = 0; i < attr_cnt; i++)
	{
		Assert(vacattrstats[i] != NULL);
		if (!vacattrstats[i]->merge_stats)
			return true;
	}
	return false;
}

/*
 * fetch_leaf_attnum - retrieve leaf table's attribute number by the
 * attribute name through index scan on pg_attribute table.
 */
AttrNumber
fetch_leaf_attnum(Oid leafRelid, const char* attname)
{
	Relation	rel;
	ScanKeyData skey[2];
	SysScanDesc sscan;
	HeapTuple	tuple = NULL;
	Form_pg_attribute attForm;
	AttrNumber	result = InvalidAttrNumber;

	rel = heap_open(AttributeRelationId, AccessShareLock);

	ScanKeyInit(&skey[0],
				Anum_pg_attribute_attrelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(leafRelid));
	ScanKeyInit(&skey[1],
				Anum_pg_attribute_attname,
				BTEqualStrategyNumber, F_NAMEEQ,
				CStringGetDatum(attname));

	sscan = systable_beginscan(rel, AttributeRelidNameIndexId, true,
							   NULL, 2, skey);

	tuple = systable_getnext(sscan);
	if (HeapTupleIsValid(tuple))
	{
		attForm = (Form_pg_attribute) GETSTRUCT(tuple);
		result = attForm->attnum;
	}

	systable_endscan(sscan);
	heap_close(rel, AccessShareLock);

	return result;
}

/*
 * fetch_leaf_att_stats - retrieve leaf table's stats info
 * through index scan on pg_statistic table and copy the tuple.
 *
 * Remember to free the returned tuple if not NULL.
 */
HeapTuple
fetch_leaf_att_stats(Oid leafRelid, AttrNumber leafAttNum)
{
	Relation	rel;
	ScanKeyData skey[3];
	SysScanDesc sscan;
	HeapTuple	tuple = NULL;

	rel = table_open(StatisticRelationId, AccessShareLock);

	ScanKeyInit(&skey[0],
				Anum_pg_statistic_starelid,
				BTEqualStrategyNumber, F_OIDEQ,
				ObjectIdGetDatum(leafRelid));
	ScanKeyInit(&skey[1],
				Anum_pg_statistic_staattnum,
				BTEqualStrategyNumber, F_INT2EQ,
				Int16GetDatum(leafAttNum));
	ScanKeyInit(&skey[2],
				Anum_pg_statistic_stainherit,
				BTEqualStrategyNumber, F_BOOLEQ,
				BoolGetDatum(false));

	sscan = systable_beginscan(rel, StatisticRelidAttnumInhIndexId, true,
							   NULL, 3, skey);

	tuple = systable_getnext(sscan);
	if (HeapTupleIsValid(tuple))
	{
		tuple = heap_copytuple(tuple);
	}

	systable_endscan(sscan);
	heap_close(rel, AccessShareLock);

	return tuple;
}

/*
 *	leaf_parts_analyzed() -- checks if all the leaf partitions are analyzed
 *                           for each requested column to be analyzed
 *
 *	We use this function to determine if all the leaf partitions are analyzed
 *  for the requested columns and the statistics are in place to be able to
 *  merge and generate meaningful statistics for the root partition. If any
 *  partition is analyzed and the attstattarget is set to collect stats, but
 *  there are no statistics for the partition in pg_statistics, root
 *  statistics will be bogus if we continue merging.
 *  0. A requested column in a single partition is not analyzed - return FALSE
 *  1. All partitions are analyzed
 *	  1.1. All partitions are empty - return FALSE
 *    1.2. Some empty & rest have stats - return TRUE
 *    1.3. Some empty & at least one don't have stats - return FALSE
 *    1.4. None empty & at least one don't have stats - return FALSE
 *    1.5. None empty & all have stats - return TRUE
 *
 *
 *  attrelid - the relation id of the root table
 *  relid_exclude - it is the relid that is excluded to check for the stats.
 *  It is used when we are asked to auto merge statistics when analyzing a
 *  single leaf partition. As we are going to produce stats for that
 *  specific leaf partition, we should not check its stats availability.
 *  va_cols - list of column names to be analyzed. (The corresponding attnums
 *             in partitions might differ.)
 */
bool
leaf_parts_analyzed(Oid attrelid, Oid relid_exclude, List *va_cols, int elevel)
{
	List	   *oid_list;
	bool		all_parts_empty = true;
	ListCell   *lc,
			   *lc_col;

	/* empty list means "all columns" */
	if (va_cols == NIL)
	{
		Relation        parentrel = table_open(attrelid, AccessShareLock);
		TupleDesc       tupdesc = RelationGetDescr(parentrel);

		for (int i = 0; i < tupdesc->natts; i++)
		{
			Form_pg_attribute att = TupleDescAttr(tupdesc, i);
			char       *attname;

			if (att->attisdropped || att->attstattarget == 0)
				continue;

			attname = pstrdup(NameStr(att->attname));

			va_cols = lappend(va_cols, makeString(attname));
		}
		table_close(parentrel, NoLock);
	}

	/*
	 * The first loop only make sure all leaf tables are analyzed through
	 * pg_class catalog, and don't touch any leaf tables' pg_statistic
	 * and pg_attribute tuples to avoid overhead cost if there still leaf
	 * tables not analyzed. Return false once find a leaf table not analyzed.
	 */
	oid_list = find_all_inheritors(attrelid, NoLock, NULL);
	foreach(lc, oid_list)
	{
		Oid			partRelid = lfirst_oid(lc);

		if (partRelid == relid_exclude)
			continue;

		/* Ignore all but leaf partition */
		if (get_rel_relkind(partRelid) == RELKIND_PARTITIONED_TABLE)
			continue;

		float4		relTuples = get_rel_reltuples(partRelid);
		int32		relpages = get_rel_relpages(partRelid);

		/* Partition is not analyzed */
		if (relTuples == 0.0 && relpages == 0)
		{
			if (relid_exclude == InvalidOid)
				ereport(elevel,
						(errmsg("partition %s is not analyzed, so ANALYZE will collect sample for stats calculation",
								get_rel_name(partRelid))));
			else
				ereport(elevel,
						(errmsg("auto merging of leaf partition stats to calculate root partition stats is not possible because partition %s is not analyzed",
								get_rel_name(partRelid))));
			return false;
		}
	}

	foreach(lc, oid_list)
	{
		Oid			partRelid = lfirst_oid(lc);

		if (partRelid == relid_exclude)
			continue;

		float4		relTuples = get_rel_reltuples(partRelid);

		/* Partition is analyzed and we detect it is empty */
		if (relTuples == 0.0)
			continue;

		all_parts_empty = false;

		foreach(lc_col, va_cols)
		{
			/*
			 * Check stats availability for each column that asked to be
			 * analyzed.
			 */
			const char *attname = strVal(lfirst(lc_col));

			/*
			 * fetch_leaf_attnum and fetch_leaf_att_stats retrieve leaf partition
			 * table's pg_attribute tuple and pg_statistic tuple through index scan
			 * instead of system catalog cache. Since if using system catalog cache,
			 * the total tuple entries insert into the cache will up to:
			 * (number_of_leaf_tables * number_of_column_in_this_table) pg_attribute tuples
			 * +
			 * (number_of_leaf_tables * number_of_column_in_this_table) pg_statistic tuples
			 * which could use extremely large memroy in CacheMemoryContext.
			 * This happens when most of the leaf tables are analyzed. And the current loop
			 * will loop lots of leaf tables.
			 *
			 * fetch_leaf_att_stats copy the original tuple, so remember to free it.
			 *
			 * As a side-effect, if insert/update/copy several leaf tables which under same
			 * root partition table in same session will be much slower since auto_stats
			 * will call this function everytime the leaf table gets update, and we don't
			 * rely on system catalog cache now.
			 */
			AttrNumber	child_attno = fetch_leaf_attnum(partRelid, attname);
			HeapTuple	heaptupleStats = fetch_leaf_att_stats(partRelid, child_attno);

			/* if there is no colstats */
			if (!HeapTupleIsValid(heaptupleStats))
			{
				if (relid_exclude == InvalidOid)
					ereport(elevel,
							(errmsg("column %s of partition %s is not analyzed, so ANALYZE will collect sample for stats calculation",
									attname, get_rel_name(partRelid))));
				else
					ereport(elevel,
							(errmsg("auto merging of leaf partition stats to calculate root partition stats is not possible because column %s of partition %s is not analyzed",
									attname, get_rel_name(partRelid))));
				return false;
			}
			heap_freetuple(heaptupleStats);
		}
	}

	return !all_parts_empty;
}

相关信息

greenplumn 源码目录

相关文章

greenplumn aggregatecmds 源码

greenplumn alter 源码

greenplumn amcmds 源码

greenplumn analyze 源码

greenplumn analyzefuncs 源码

greenplumn async 源码

greenplumn cluster 源码

greenplumn collationcmds 源码

greenplumn comment 源码

greenplumn constraint 源码

0  赞