greenplumn nodeMergejoin 源码

  • 2022-08-18
  • 浏览 (339)

greenplumn nodeMergejoin 代码

文件路径:/src/backend/executor/nodeMergejoin.c

/*-------------------------------------------------------------------------
 *
 * nodeMergejoin.c
 *	  routines supporting merge joins
 *
 * Portions Copyright (c) 2005-2008, Greenplum inc
 * Portions Copyright (c) 2012-Present VMware, Inc. or its affiliates.
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/nodeMergejoin.c
 *
 *-------------------------------------------------------------------------
 */
/*
 * INTERFACE ROUTINES
 *		ExecMergeJoin			mergejoin outer and inner relations.
 *		ExecInitMergeJoin		creates and initializes run time states
 *		ExecEndMergeJoin		cleans up the node.
 *
 * NOTES
 *
 *		Merge-join is done by joining the inner and outer tuples satisfying
 *		join clauses of the form ((= outerKey innerKey) ...).
 *		The join clause list is provided by the query planner and may contain
 *		more than one (= outerKey innerKey) clause (for composite sort key).
 *
 *		However, the query executor needs to know whether an outer
 *		tuple is "greater/smaller" than an inner tuple so that it can
 *		"synchronize" the two relations. For example, consider the following
 *		relations:
 *
 *				outer: (0 ^1 1 2 5 5 5 6 6 7)	current tuple: 1
 *				inner: (1 ^3 5 5 5 5 6)			current tuple: 3
 *
 *		To continue the merge-join, the executor needs to scan both inner
 *		and outer relations till the matching tuples 5. It needs to know
 *		that currently inner tuple 3 is "greater" than outer tuple 1 and
 *		therefore it should scan the outer relation first to find a
 *		matching tuple and so on.
 *
 *		Therefore, rather than directly executing the merge join clauses,
 *		we evaluate the left and right key expressions separately and then
 *		compare the columns one at a time (see MJCompare).  The planner
 *		passes us enough information about the sort ordering of the inputs
 *		to allow us to determine how to make the comparison.  We may use the
 *		appropriate btree comparison function, since Postgres' only notion
 *		of ordering is specified by btree opfamilies.
 *
 *
 *		Consider the above relations and suppose that the executor has
 *		just joined the first outer "5" with the last inner "5". The
 *		next step is of course to join the second outer "5" with all
 *		the inner "5's". This requires repositioning the inner "cursor"
 *		to point at the first inner "5". This is done by "marking" the
 *		first inner 5 so we can restore the "cursor" to it before joining
 *		with the second outer 5. The access method interface provides
 *		routines to mark and restore to a tuple.
 *
 *
 *		Essential operation of the merge join algorithm is as follows:
 *
 *		Join {
 *			get initial outer and inner tuples				INITIALIZE
 *			do forever {
 *				while (outer != inner) {					SKIP_TEST
 *					if (outer < inner)
 *						advance outer						SKIPOUTER_ADVANCE
 *					else
 *						advance inner						SKIPINNER_ADVANCE
 *				}
 *				mark inner position							SKIP_TEST
 *				do forever {
 *					while (outer == inner) {
 *						join tuples							JOINTUPLES
 *						advance inner position				NEXTINNER
 *					}
 *					advance outer position					NEXTOUTER
 *					if (outer == mark)						TESTOUTER
 *						restore inner position to mark		TESTOUTER
 *					else
 *						break	// return to top of outer loop
 *				}
 *			}
 *		}
 *
 *		The merge join operation is coded in the fashion
 *		of a state machine.  At each state, we do something and then
 *		proceed to another state.  This state is stored in the node's
 *		execution state information and is preserved across calls to
 *		ExecMergeJoin. -cim 10/31/89
 */
#include "postgres.h"

#include "access/nbtree.h"
#include "cdb/cdbvars.h"
#include "executor/execdebug.h"
#include "executor/nodeMergejoin.h"
#include "miscadmin.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"


/*
 * States of the ExecMergeJoin state machine
 */
#define EXEC_MJ_INITIALIZE_OUTER		1
#define EXEC_MJ_INITIALIZE_INNER		2
#define EXEC_MJ_JOINTUPLES				3
#define EXEC_MJ_NEXTOUTER				4
#define EXEC_MJ_TESTOUTER				5
#define EXEC_MJ_NEXTINNER				6
#define EXEC_MJ_SKIP_TEST				7
#define EXEC_MJ_SKIPOUTER_ADVANCE		8
#define EXEC_MJ_SKIPINNER_ADVANCE		9
#define EXEC_MJ_ENDOUTER				10
#define EXEC_MJ_ENDINNER				11

/*
 * Runtime data for each mergejoin clause
 */
typedef struct MergeJoinClauseData
{
	/* Executable expression trees */
	ExprState  *lexpr;			/* left-hand (outer) input expression */
	ExprState  *rexpr;			/* right-hand (inner) input expression */

	/*
	 * If we have a current left or right input tuple, the values of the
	 * expressions are loaded into these fields:
	 */
	Datum		ldatum;			/* current left-hand value */
	Datum		rdatum;			/* current right-hand value */
	bool		lisnull;		/* and their isnull flags */
	bool		risnull;

	/*
	 * CDB: Remember whether the mergejoin operation was actually an "is
	 *      not distinct from" predicate.
	 */
	bool		notdistinct;

	/*
	 * Everything we need to know to compare the left and right values is
	 * stored here.
	 */
	SortSupportData ssup;
}			MergeJoinClauseData;

/* Result type for MJEvalOuterValues and MJEvalInnerValues */
typedef enum
{
	MJEVAL_MATCHABLE,			/* normal, potentially matchable tuple */
	MJEVAL_NONMATCHABLE,		/* tuple cannot join because it has a null */
	MJEVAL_ENDOFJOIN			/* end of input (physical or effective) */
} MJEvalResult;


#define MarkInnerTuple(innerTupleSlot, mergestate) \
	ExecCopySlot((mergestate)->mj_MarkedTupleSlot, (innerTupleSlot))

extern bool Test_print_prefetch_joinqual;

/*
 * MJExamineQuals
 *
 * This deconstructs the list of mergejoinable expressions, which is given
 * to us by the planner in the form of a list of "leftexpr = rightexpr"
 * expression trees in the order matching the sort columns of the inputs.
 * We build an array of MergeJoinClause structs containing the information
 * we will need at runtime.  Each struct essentially tells us how to compare
 * the two expressions from the original clause.
 *
 * In addition to the expressions themselves, the planner passes the btree
 * opfamily OID, collation OID, btree strategy number (BTLessStrategyNumber or
 * BTGreaterStrategyNumber), and nulls-first flag that identify the intended
 * sort ordering for each merge key.  The mergejoinable operator is an
 * equality operator in the opfamily, and the two inputs are guaranteed to be
 * ordered in either increasing or decreasing (respectively) order according
 * to the opfamily and collation, with nulls at the indicated end of the range.
 * This allows us to obtain the needed comparison function from the opfamily.
 *
 * CDB: We also recognize the "is not distinct from" predicate which is
 *      interesting for sequential window plans.  The pseudo-Lisp for this
 *      predicate is (BoolExpr_NOT (DistinctExpr_= leftexpr rightexpr)).
 */
static MergeJoinClause
MJExamineQuals(List *mergeclauses,
			   Oid *mergefamilies,
			   Oid *mergecollations,
			   int *mergestrategies,
			   bool *mergenullsfirst,
			   PlanState *parent)
{
	MergeJoinClause clauses;
	int			nClauses = list_length(mergeclauses);
	int			iClause;
	ListCell   *cl;

	clauses = (MergeJoinClause) palloc0(nClauses * sizeof(MergeJoinClauseData));

	iClause = 0;
	foreach(cl, mergeclauses)
	{
		OpExpr	   *qual = (OpExpr *) lfirst(cl);
		MergeJoinClause clause = &clauses[iClause];
		Oid			opfamily = mergefamilies[iClause];
		Oid			collation = mergecollations[iClause];
		StrategyNumber opstrategy = mergestrategies[iClause];
		bool		nulls_first = mergenullsfirst[iClause];
		int			op_strategy;
		Oid			op_lefttype;
		Oid			op_righttype;
		Oid			sortfunc;

		if (!IsA(qual, OpExpr))
		{
			BoolExpr *bx = (BoolExpr*)qual;
			bool ok = false;
			
			if ( IsA(bx, BoolExpr) && bx->boolop == NOT_EXPR && list_length(bx->args) == 1 )
			{
				DistinctExpr *dx = (DistinctExpr*)linitial(bx->args);
				
				if ( IsA(dx, DistinctExpr) )
				{
					clause->notdistinct = true;
					qual = (OpExpr *)dx;
					ok = true;
				}
			}
			if (!ok)
				elog(ERROR, "mergejoin clause is not an OpExpr");
		}

		/*
		 * Prepare the input expressions for execution.
		 */
		clause->lexpr = ExecInitExpr((Expr *) linitial(qual->args), parent);
		clause->rexpr = ExecInitExpr((Expr *) lsecond(qual->args), parent);

		/* Set up sort support data */
		clause->ssup.ssup_cxt = CurrentMemoryContext;
		clause->ssup.ssup_collation = collation;
		if (opstrategy == BTLessStrategyNumber)
			clause->ssup.ssup_reverse = false;
		else if (opstrategy == BTGreaterStrategyNumber)
			clause->ssup.ssup_reverse = true;
		else					/* planner screwed up */
			elog(ERROR, "unsupported mergejoin strategy %d", opstrategy);
		clause->ssup.ssup_nulls_first = nulls_first;

		/* Extract the operator's declared left/right datatypes */
		get_op_opfamily_properties(qual->opno, opfamily, false,
								   &op_strategy,
								   &op_lefttype,
								   &op_righttype);
		if (op_strategy != BTEqualStrategyNumber)	/* should not happen */
			elog(ERROR, "cannot merge using non-equality operator %u",
				 qual->opno);

		/*
		 * sortsupport routine must know if abbreviation optimization is
		 * applicable in principle.  It is never applicable for merge joins
		 * because there is no convenient opportunity to convert to
		 * alternative representation.
		 */
		clause->ssup.abbreviate = false;

		/* And get the matching support or comparison function */
		Assert(clause->ssup.comparator == NULL);
		sortfunc = get_opfamily_proc(opfamily,
									 op_lefttype,
									 op_righttype,
									 BTSORTSUPPORT_PROC);
		if (OidIsValid(sortfunc))
		{
			/* The sort support function can provide a comparator */
			OidFunctionCall1(sortfunc, PointerGetDatum(&clause->ssup));
		}
		if (clause->ssup.comparator == NULL)
		{
			/* support not available, get comparison func */
			sortfunc = get_opfamily_proc(opfamily,
										 op_lefttype,
										 op_righttype,
										 BTORDER_PROC);
			if (!OidIsValid(sortfunc))	/* should not happen */
				elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
					 BTORDER_PROC, op_lefttype, op_righttype, opfamily);
			/* We'll use a shim to call the old-style btree comparator */
			PrepareSortSupportComparisonShim(sortfunc, &clause->ssup);
		}

		iClause++;
	}

	return clauses;
}

/*
 * MJEvalOuterValues
 *
 * Compute the values of the mergejoined expressions for the current
 * outer tuple.  We also detect whether it's impossible for the current
 * outer tuple to match anything --- this is true if it yields a NULL
 * input, since we assume mergejoin operators are strict.  If the NULL
 * is in the first join column, and that column sorts nulls last, then
 * we can further conclude that no following tuple can match anything
 * either, since they must all have nulls in the first column.  However,
 * that case is only interesting if we're not in FillOuter mode, else
 * we have to visit all the tuples anyway.
 *
 * For the convenience of callers, we also make this routine responsible
 * for testing for end-of-input (null outer tuple), and returning
 * MJEVAL_ENDOFJOIN when that's seen.  This allows the same code to be used
 * for both real end-of-input and the effective end-of-input represented by
 * a first-column NULL.
 *
 * We evaluate the values in OuterEContext, which can be reset each
 * time we move to a new tuple.
 */
static MJEvalResult
MJEvalOuterValues(MergeJoinState *mergestate)
{
	ExprContext *econtext = mergestate->mj_OuterEContext;
	MJEvalResult result = MJEVAL_MATCHABLE;
	int			i;
	MemoryContext oldContext;

	/* Check for end of outer subplan */
	if (TupIsNull(mergestate->mj_OuterTupleSlot))
		return MJEVAL_ENDOFJOIN;

	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	econtext->ecxt_outertuple = mergestate->mj_OuterTupleSlot;

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		clause->ldatum = ExecEvalExpr(clause->lexpr, econtext,
									  &clause->lisnull);
		if (clause->lisnull && !clause->notdistinct)
		{
			/* match is impossible; can we end the join early? */
			if (i == 0 && !clause->ssup.ssup_nulls_first &&
				!mergestate->mj_FillOuter)
				result = MJEVAL_ENDOFJOIN;
			else if (result == MJEVAL_MATCHABLE)
				result = MJEVAL_NONMATCHABLE;
		}
	}

	MemoryContextSwitchTo(oldContext);

	return result;
}

/*
 * MJEvalInnerValues
 *
 * Same as above, but for the inner tuple.  Here, we have to be prepared
 * to load data from either the true current inner, or the marked inner,
 * so caller must tell us which slot to load from.
 */
static MJEvalResult
MJEvalInnerValues(MergeJoinState *mergestate, TupleTableSlot *innerslot)
{
	ExprContext *econtext = mergestate->mj_InnerEContext;
	MJEvalResult result = MJEVAL_MATCHABLE;
	int			i;
	MemoryContext oldContext;

	/* Check for end of inner subplan */
	if (TupIsNull(innerslot))
		return MJEVAL_ENDOFJOIN;

	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	econtext->ecxt_innertuple = innerslot;

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		clause->rdatum = ExecEvalExpr(clause->rexpr, econtext,
									  &clause->risnull);
		if (clause->risnull && !clause->notdistinct)
		{
			/* match is impossible; can we end the join early? */
			if (i == 0 && !clause->ssup.ssup_nulls_first &&
				!mergestate->mj_FillInner)
				result = MJEVAL_ENDOFJOIN;
			else if (result == MJEVAL_MATCHABLE)
				result = MJEVAL_NONMATCHABLE;
		}
	}

	MemoryContextSwitchTo(oldContext);

	return result;
}

/*
 * MJCompare
 *
 * Compare the mergejoinable values of the current two input tuples
 * and return 0 if they are equal (ie, the mergejoin equalities all
 * succeed), >0 if outer > inner, <0 if outer < inner.
 *
 * MJEvalOuterValues and MJEvalInnerValues must already have been called
 * for the current outer and inner tuples, respectively.
 */
static int
MJCompare(MergeJoinState *mergestate)
{
	int			result = 0;
	bool		nulleqnull = false;
	ExprContext *econtext = mergestate->js.ps.ps_ExprContext;
	int			i;
	MemoryContext oldContext;

	/*
	 * Call the comparison functions in short-lived context, in case they leak
	 * memory.
	 */
	ResetExprContext(econtext);

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	for (i = 0; i < mergestate->mj_NumClauses; i++)
	{
		MergeJoinClause clause = &mergestate->mj_Clauses[i];

		/*
		 * Special case for NULL-vs-NULL, else use standard comparison.
		 */
		if (clause->lisnull && clause->risnull)
		{
			nulleqnull = true;	/* NULL "=" NULL */
			continue;
		}

		result = ApplySortComparator(clause->ldatum, clause->lisnull,
									 clause->rdatum, clause->risnull,
									 &clause->ssup);

		if (result != 0)
			break;
	}

	/*
	 * If we had any NULL-vs-NULL inputs, we do not want to report that the
	 * tuples are equal.  Instead, if result is still 0, change it to +1. This
	 * will result in advancing the inner side of the join.
	 *
	 * Likewise, if there was a constant-false joinqual, do not report
	 * equality.  We have to check this as part of the mergequals, else the
	 * rescan logic will do the wrong thing.
	 */
	if (result == 0 &&
		(nulleqnull || mergestate->mj_ConstFalseJoin))
		result = 1;

	MemoryContextSwitchTo(oldContext);

	return result;
}


/*
 * Generate a fake join tuple with nulls for the inner tuple,
 * and return it if it passes the non-join quals.
 */
static TupleTableSlot *
MJFillOuter(MergeJoinState *node)
{
	ExprContext *econtext = node->js.ps.ps_ExprContext;
	ExprState  *otherqual = node->js.ps.qual;

	ResetExprContext(econtext);

	econtext->ecxt_outertuple = node->mj_OuterTupleSlot;
	econtext->ecxt_innertuple = node->mj_NullInnerTupleSlot;

	if (TupIsNull(node->mj_OuterTupleSlot))
		return NULL;

	if (ExecQual(otherqual, econtext))
	{
		/*
		 * qualification succeeded.  now form the desired projection tuple and
		 * return the slot containing it.
		 */
		MJ_printf("ExecMergeJoin: returning outer fill tuple\n");

		return ExecProject(node->js.ps.ps_ProjInfo);
	}
	else
		InstrCountFiltered2(node, 1);

	return NULL;
}

/*
 * Generate a fake join tuple with nulls for the outer tuple,
 * and return it if it passes the non-join quals.
 */
static TupleTableSlot *
MJFillInner(MergeJoinState *node)
{
	ExprContext *econtext = node->js.ps.ps_ExprContext;
	ExprState  *otherqual = node->js.ps.qual;

	ResetExprContext(econtext);

	/* If we don't have an inner, return NULL */
	if(TupIsNull(node->mj_InnerTupleSlot))
		return NULL;

	econtext->ecxt_outertuple = node->mj_NullOuterTupleSlot;
	econtext->ecxt_innertuple = node->mj_InnerTupleSlot;

	if (ExecQual(otherqual, econtext))
	{
		/*
		 * qualification succeeded.  now form the desired projection tuple and
		 * return the slot containing it.
		 */
		MJ_printf("ExecMergeJoin: returning inner fill tuple\n");

		return ExecProject(node->js.ps.ps_ProjInfo);
	}
	else
		InstrCountFiltered2(node, 1);

	return NULL;
}


/*
 * Check that a qual condition is constant true or constant false.
 * If it is constant false (or null), set *is_const_false to true.
 *
 * Constant true would normally be represented by a NIL list, but we allow an
 * actual bool Const as well.  We do expect that the planner will have thrown
 * away any non-constant terms that have been ANDed with a constant false.
 */
static bool
check_constant_qual(List *qual, bool *is_const_false)
{
	ListCell   *lc;

	foreach(lc, qual)
	{
		Const	   *con = (Const *) lfirst(lc);

		if (!con || !IsA(con, Const))
			return false;
		if (con->constisnull || !DatumGetBool(con->constvalue))
			*is_const_false = true;
	}
	return true;
}


/* ----------------------------------------------------------------
 *		ExecMergeTupleDump
 *
 *		This function is called through the MJ_dump() macro
 *		when EXEC_MERGEJOINDEBUG is defined
 * ----------------------------------------------------------------
 */
#ifdef EXEC_MERGEJOINDEBUG

static void
ExecMergeTupleDumpOuter(MergeJoinState *mergestate)
{
	TupleTableSlot *outerSlot = mergestate->mj_OuterTupleSlot;

	printf("==== outer tuple ====\n");
	if (TupIsNull(outerSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(outerSlot);
}

static void
ExecMergeTupleDumpInner(MergeJoinState *mergestate)
{
	TupleTableSlot *innerSlot = mergestate->mj_InnerTupleSlot;

	printf("==== inner tuple ====\n");
	if (TupIsNull(innerSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(innerSlot);
}

static void
ExecMergeTupleDumpMarked(MergeJoinState *mergestate)
{
	TupleTableSlot *markedSlot = mergestate->mj_MarkedTupleSlot;

	printf("==== marked tuple ====\n");
	if (TupIsNull(markedSlot))
		printf("(nil)\n");
	else
		MJ_debugtup(markedSlot);
}

static void
ExecMergeTupleDump(MergeJoinState *mergestate)
{
	printf("******** ExecMergeTupleDump ********\n");

	ExecMergeTupleDumpOuter(mergestate);
	ExecMergeTupleDumpInner(mergestate);
	ExecMergeTupleDumpMarked(mergestate);

	printf("********\n");
}
#endif

/* ----------------------------------------------------------------
 *		ExecMergeJoin
 * ----------------------------------------------------------------
 */
static TupleTableSlot *
ExecMergeJoin_guts(PlanState *pstate)
{
	MergeJoinState *node = castNode(MergeJoinState, pstate);
	ExprState  *joinqual;
	ExprState  *otherqual;
	bool		qualResult;
	int			compareResult;
	PlanState  *innerPlan;
	TupleTableSlot *innerTupleSlot;
	PlanState  *outerPlan;
	TupleTableSlot *outerTupleSlot;
	ExprContext *econtext;
	bool		doFillOuter;
	bool		doFillInner;

	CHECK_FOR_INTERRUPTS();

	/*
	 * get information from node
	 */
	innerPlan = innerPlanState(node);
	outerPlan = outerPlanState(node);
	econtext = node->js.ps.ps_ExprContext;
	joinqual = node->js.joinqual;
	otherqual = node->js.ps.qual;
	doFillOuter = node->mj_FillOuter;
	doFillInner = node->mj_FillInner;

	/*
	 * Reset per-tuple memory context to free any expression evaluation
	 * storage allocated in the previous tuple cycle.
	 */
	ResetExprContext(econtext);

	/*
	 * MPP-4165: My fix for MPP-3300 was correct in that we avoided
	 * the *deadlock* but had very unexpected (and painful)
	 * performance characteristics: we basically de-pipeline and
	 * de-parallelize execution of any query which has motion below
	 * us.
	 *
	 * So now prefetch_inner is set (see createplan.c) if we have *any* motion
	 * below us. If we don't have any motion, it doesn't matter.
	 *
	 * See motion_sanity_walker() for details on how a deadlock may occur.
	 */
	if (node->prefetch_inner)
	{
		innerTupleSlot = ExecProcNode(innerPlan);
		node->mj_InnerTupleSlot = innerTupleSlot;

		ExecReScan(innerPlan);
		ResetExprContext(econtext);

		node->prefetch_inner = false;
	}

	/*
	 * Prefetch JoinQual or NonJoinQual to prevent motion hazard.
	 *
	 * See ExecPrefetchQual() for details.
	 */
	if (node->prefetch_joinqual)
	{
		ExecPrefetchQual(&node->js, true);
		node->prefetch_joinqual = false;
	}

	if (node->prefetch_qual)
	{
		ExecPrefetchQual(&node->js, false);
		node->prefetch_qual = false;
	}

	/*
	 * ok, everything is setup.. let's go to work
	 */
	for (;;)
	{
		MJ_dump(node);

		/*
		 * get the current state of the join and do things accordingly.
		 */
		switch (node->mj_JoinState)
		{
				/*
				 * EXEC_MJ_INITIALIZE_OUTER means that this is the first time
				 * ExecMergeJoin() has been called and so we have to fetch the
				 * first matchable tuple for both outer and inner subplans. We
				 * do the outer side in INITIALIZE_OUTER state, then advance
				 * to INITIALIZE_INNER state for the inner subplan.
				 */
			case EXEC_MJ_INITIALIZE_OUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_OUTER\n");

				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						/* OK to go get the first inner tuple */
						node->mj_JoinState = EXEC_MJ_INITIALIZE_INNER;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Stay in same state to fetch next outer tuple */
						if (doFillOuter)
						{
							/*
							 * Generate a fake join tuple with nulls for the
							 * inner tuple, and return it if it passes the
							 * non-join quals.
							 */
							TupleTableSlot *result;

							result = MJFillOuter(node);
							if (result)
								return result;
						}
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: nothing in outer subplan\n");
						if (doFillInner)
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples. We set MatchedInner = true to
							 * force the ENDOUTER state to advance inner.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							node->mj_MatchedInner = true;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

			case EXEC_MJ_INITIALIZE_INNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_INITIALIZE_INNER\n");

				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:
						/*
						 * OK, we have the initial tuples.  Begin by skipping
						 * non-matching tuples.
						 */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Mark before advancing, if wanted */
						if (node->mj_ExtraMarks)
							ExecMarkPos(innerPlan);
						/* Stay in same state to fetch next inner tuple */
						if (doFillInner)
						{
							/*
							 * Generate a fake join tuple with nulls for the
							 * outer tuple, and return it if it passes the
							 * non-join quals.
							 */
							TupleTableSlot *result;

							result = MJFillInner(node);
							if (result)
								return result;
						}
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more inner tuples */
						MJ_printf("ExecMergeJoin: nothing in inner subplan\n");
						if (doFillOuter)
						{
							/*
							 * Need to emit left-join tuples for all outer
							 * tuples, including the one we just fetched.  We
							 * set MatchedOuter = false to force the ENDINNER
							 * state to emit first tuple before advancing
							 * outer.
							 */
							node->mj_JoinState = EXEC_MJ_ENDINNER;
							node->mj_MatchedOuter = false;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * EXEC_MJ_JOINTUPLES means we have two tuples which satisfied
				 * the merge clause so we join them and then proceed to get
				 * the next inner tuple (EXEC_MJ_NEXTINNER).
				 */
			case EXEC_MJ_JOINTUPLES:
				MJ_printf("ExecMergeJoin: EXEC_MJ_JOINTUPLES\n");

				/*
				 * Set the next state machine state.  The right things will
				 * happen whether we return this join tuple or just fall
				 * through to continue the state machine execution.
				 */
				node->mj_JoinState = EXEC_MJ_NEXTINNER;

				/*
				 * Check the extra qual conditions to see if we actually want
				 * to return this join tuple.  If not, can proceed with merge.
				 * We must distinguish the additional joinquals (which must
				 * pass to consider the tuples "matched" for outer-join logic)
				 * from the otherquals (which must pass before we actually
				 * return the tuple).
				 *
				 * We don't bother with a ResetExprContext here, on the
				 * assumption that we just did one while checking the merge
				 * qual.  One per tuple should be sufficient.  We do have to
				 * set up the econtext links to the tuples for ExecQual to
				 * use.
				 */
				outerTupleSlot = node->mj_OuterTupleSlot;
				econtext->ecxt_outertuple = outerTupleSlot;
				innerTupleSlot = node->mj_InnerTupleSlot;
				econtext->ecxt_innertuple = innerTupleSlot;

				qualResult = (joinqual == NULL ||
							  ExecQual(joinqual, econtext));
				MJ_DEBUG_QUAL(joinqual, qualResult);

				if (qualResult)
				{
					node->mj_MatchedOuter = true;
					node->mj_MatchedInner = true;

					/* In an antijoin, we never return a matched tuple */
					if (node->js.jointype == JOIN_ANTI)
					{
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					}

					/*
					 * If we only need to join to the first matching inner
					 * tuple, then consider returning this one, but after that
					 * continue with next outer tuple.
					 */
					if (node->js.single_match)
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;

					qualResult = (otherqual == NULL ||
								  ExecQual(otherqual, econtext));
					MJ_DEBUG_QUAL(otherqual, qualResult);

					if (qualResult)
					{
						/*
						 * qualification succeeded.  now form the desired
						 * projection tuple and return the slot containing it.
						 */
						MJ_printf("ExecMergeJoin: returning tuple\n");

						return ExecProject(node->js.ps.ps_ProjInfo);
					}
					else
						InstrCountFiltered2(node, 1);
				}
				else
					InstrCountFiltered1(node, 1);
				break;

				/*
				 * EXEC_MJ_NEXTINNER means advance the inner scan to the next
				 * tuple. If the tuple is not nil, we then proceed to test it
				 * against the join qualification.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this inner tuple.
				 */
			case EXEC_MJ_NEXTINNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTINNER\n");

				if (doFillInner && !node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;	/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next inner tuple, if any.  If there's none,
				 * advance to next outer tuple (which may be able to join to
				 * previously marked tuples).
				 *
				 * NB: must NOT do "extraMarks" here, since we may need to
				 * return to previously marked tuples.
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:

						/*
						 * Test the new inner tuple to see if it matches
						 * outer.
						 *
						 * If they do match, then we join them and move on to
						 * the next inner tuple (EXEC_MJ_JOINTUPLES).
						 *
						 * If they do not match then advance to next outer
						 * tuple.
						 */
						compareResult = MJCompare(node);
						MJ_DEBUG_COMPARE(compareResult);

						if (compareResult == 0)
							node->mj_JoinState = EXEC_MJ_JOINTUPLES;
						else
						{
							Assert(compareResult < 0);
							node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						}
						break;
					case MJEVAL_NONMATCHABLE:

						/*
						 * It contains a NULL and hence can't match any outer
						 * tuple, so we can skip the comparison and assume the
						 * new tuple is greater than current outer.
						 */
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					case MJEVAL_ENDOFJOIN:

						/*
						 * No more inner tuples.  However, this might be only
						 * effective and not physical end of inner plan, so
						 * force mj_InnerTupleSlot to null to make sure we
						 * don't fetch more inner tuples.  (We need this hack
						 * because we are not transiting to a state where the
						 * inner plan is assumed to be exhausted.)
						 */
						node->mj_InnerTupleSlot = NULL;
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;

						if (((MergeJoin*)node->js.ps.plan)->unique_outer)
						{
							/* we are done */
							return NULL;
						}
						break;
				}
				break;

				/*-------------------------------------------
				 * EXEC_MJ_NEXTOUTER means
				 *
				 *				outer inner
				 * outer tuple -  5		5  - marked tuple
				 *				  5		5
				 *				  6		6  - inner tuple
				 *				  7		7
				 *
				 * we know we just bumped into the
				 * first inner tuple > current outer tuple (or possibly
				 * the end of the inner stream)
				 * so get a new outer tuple and then
				 * proceed to test it against the marked tuple
				 * (EXEC_MJ_TESTOUTER)
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this outer tuple.
				 *------------------------------------------------
				 */
			case EXEC_MJ_NEXTOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_NEXTOUTER\n");

				if (doFillOuter && !node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;	/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						if (((MergeJoin*)node->js.ps.plan)->unique_outer)
						{
							/* The current innerTuple will match with this outerTuple.*/
							node->mj_JoinState = EXEC_MJ_JOINTUPLES;
						}
						else
						{
							/* Go test the new tuple against the marked tuple */
							node->mj_JoinState = EXEC_MJ_TESTOUTER;
						}
						break;
					case MJEVAL_NONMATCHABLE:
						/* Can't match, so fetch next outer tuple */
						node->mj_JoinState = EXEC_MJ_NEXTOUTER;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: end of outer subplan\n");
						innerTupleSlot = node->mj_InnerTupleSlot;
						if (doFillInner && !TupIsNull(innerTupleSlot))
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*--------------------------------------------------------
				 * EXEC_MJ_TESTOUTER If the new outer tuple and the marked
				 * tuple satisfy the merge clause then we know we have
				 * duplicates in the outer scan so we have to restore the
				 * inner scan to the marked tuple and proceed to join the
				 * new outer tuple with the inner tuples.
				 *
				 * This is the case when
				 *						  outer inner
				 *							4	  5  - marked tuple
				 *			 outer tuple -	5	  5
				 *		 new outer tuple -	5	  5
				 *							6	  8  - inner tuple
				 *							7	 12
				 *
				 *				new outer tuple == marked tuple
				 *
				 * If the outer tuple fails the test, then we are done
				 * with the marked tuples, and we have to look for a
				 * match to the current inner tuple.  So we will
				 * proceed to skip outer tuples until outer >= inner
				 * (EXEC_MJ_SKIP_TEST).
				 *
				 *		This is the case when
				 *
				 *						  outer inner
				 *							5	  5  - marked tuple
				 *			 outer tuple -	5	  5
				 *		 new outer tuple -	6	  8  - inner tuple
				 *							7	 12
				 *
				 *				new outer tuple > marked tuple
				 *
				 *---------------------------------------------------------
				 */
			case EXEC_MJ_TESTOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_TESTOUTER\n");

				/*
				 * Here we must compare the outer tuple with the marked inner
				 * tuple.  (We can ignore the result of MJEvalInnerValues,
				 * since the marked inner tuple is certainly matchable.)
				 */
				innerTupleSlot = node->mj_MarkedTupleSlot;
				(void) MJEvalInnerValues(node, innerTupleSlot);

				compareResult = MJCompare(node);
				MJ_DEBUG_COMPARE(compareResult);

				if (compareResult == 0)
				{
					/*
					 * the merge clause matched so now we restore the inner
					 * scan position to the first mark, and go join that tuple
					 * (and any following ones) to the new outer.
					 *
					 * If we were able to determine mark and restore are not
					 * needed, then we don't have to back up; the current
					 * inner is already the first possible match.
					 *
					 * NOTE: we do not need to worry about the MatchedInner
					 * state for the rescanned inner tuples.  We know all of
					 * them will match this new outer tuple and therefore
					 * won't be emitted as fill tuples.  This works *only*
					 * because we require the extra joinquals to be constant
					 * when doing a right or full join --- otherwise some of
					 * the rescanned tuples might fail the extra joinquals.
					 * This obviously won't happen for a constant-true extra
					 * joinqual, while the constant-false case is handled by
					 * forcing the merge clause to never match, so we never
					 * get here.
					 */
					if (!node->mj_SkipMarkRestore)
					{
						ExecRestrPos(innerPlan);

						/*
						 * ExecRestrPos probably should give us back a new
						 * Slot, but since it doesn't, use the marked slot.
						 * (The previously returned mj_InnerTupleSlot cannot
						 * be assumed to hold the required tuple.)
						 */
						node->mj_InnerTupleSlot = innerTupleSlot;
						/* we need not do MJEvalInnerValues again */
					}

					node->mj_JoinState = EXEC_MJ_JOINTUPLES;
				}
				else
				{
					/* ----------------
					 *	if the new outer tuple didn't match the marked inner
					 *	tuple then we have a case like:
					 *
					 *			 outer inner
					 *			   4	 4	- marked tuple
					 * new outer - 5	 4
					 *			   6	 5	- inner tuple
					 *			   7
					 *
					 *	which means that all subsequent outer tuples will be
					 *	larger than our marked inner tuples.  So we need not
					 *	revisit any of the marked tuples but can proceed to
					 *	look for a match to the current inner.  If there's
					 *	no more inners, no more matches are possible.
					 * ----------------
					 */
					if (compareResult <= 0 && !((MergeJoin*)node->js.ps.plan)->unique_outer)
						elog(ERROR, "Mergejoin: compareResult > 0, bad plan ?");
					innerTupleSlot = node->mj_InnerTupleSlot;

					/* reload comparison data for current inner */
					switch (MJEvalInnerValues(node, innerTupleSlot))
					{
						case MJEVAL_MATCHABLE:
							/* proceed to compare it to the current outer */
							node->mj_JoinState = EXEC_MJ_SKIP_TEST;
							break;
						case MJEVAL_NONMATCHABLE:

							/*
							 * current inner can't possibly match any outer;
							 * better to advance the inner scan than the
							 * outer.
							 */
							node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
							break;
						case MJEVAL_ENDOFJOIN:
							/* No more inner tuples */
							if (doFillOuter)
							{
								/*
								 * Need to emit left-join tuples for remaining
								 * outer tuples.
								 */
								node->mj_JoinState = EXEC_MJ_ENDINNER;
								break;
							}
							/* Otherwise we're done. */
							return NULL;
					}
				}
				break;

				/*----------------------------------------------------------
				 * EXEC_MJ_SKIP means compare tuples and if they do not
				 * match, skip whichever is lesser.
				 *
				 * For example:
				 *
				 *				outer inner
				 *				  5		5
				 *				  5		5
				 * outer tuple -  6		8  - inner tuple
				 *				  7    12
				 *				  8    14
				 *
				 * we have to advance the outer scan
				 * until we find the outer 8.
				 *
				 * On the other hand:
				 *
				 *				outer inner
				 *				  5		5
				 *				  5		5
				 * outer tuple - 12		8  - inner tuple
				 *				 14    10
				 *				 17    12
				 *
				 * we have to advance the inner scan
				 * until we find the inner 12.
				 *----------------------------------------------------------
				 */
			case EXEC_MJ_SKIP_TEST:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIP_TEST\n");

				/*
				 * before we advance, make sure the current tuples do not
				 * satisfy the mergeclauses.  If they do, then we update the
				 * marked tuple position and go join them.
				 */
				compareResult = MJCompare(node);
				MJ_DEBUG_COMPARE(compareResult);

				if (compareResult == 0)
				{
					if (!node->mj_SkipMarkRestore)
						ExecMarkPos(innerPlan);

					MarkInnerTuple(node->mj_InnerTupleSlot, node);

					node->mj_JoinState = EXEC_MJ_JOINTUPLES;
				}
				else if (compareResult < 0)
					node->mj_JoinState = EXEC_MJ_SKIPOUTER_ADVANCE;
				else
					/* compareResult > 0 */
					node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
				break;

				/*
				 * SKIPOUTER_ADVANCE: advance over an outer tuple that is
				 * known not to join to any inner tuple.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this outer tuple.
				 */
			case EXEC_MJ_SKIPOUTER_ADVANCE:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPOUTER_ADVANCE\n");

				if (doFillOuter && !node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;	/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalOuterValues(node))
				{
					case MJEVAL_MATCHABLE:
						/* Go test the new tuple against the current inner */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:
						/* Can't match, so fetch next outer tuple */
						node->mj_JoinState = EXEC_MJ_SKIPOUTER_ADVANCE;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more outer tuples */
						MJ_printf("ExecMergeJoin: end of outer subplan\n");
						innerTupleSlot = node->mj_InnerTupleSlot;
						if (doFillInner && !TupIsNull(innerTupleSlot))
						{
							/*
							 * Need to emit right-join tuples for remaining
							 * inner tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDOUTER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * SKIPINNER_ADVANCE: advance over an inner tuple that is
				 * known not to join to any outer tuple.
				 *
				 * Before advancing, we check to see if we must emit an
				 * outer-join fill tuple for this inner tuple.
				 */
			case EXEC_MJ_SKIPINNER_ADVANCE:
				MJ_printf("ExecMergeJoin: EXEC_MJ_SKIPINNER_ADVANCE\n");

				if (doFillInner && !node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;	/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/* Mark before advancing, if wanted */
				if (node->mj_ExtraMarks)
					ExecMarkPos(innerPlan);

				/*
				 * now we get the next inner tuple, if any
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				/* Compute join values and check for unmatchability */
				switch (MJEvalInnerValues(node, innerTupleSlot))
				{
					case MJEVAL_MATCHABLE:
						/* proceed to compare it to the current outer */
						node->mj_JoinState = EXEC_MJ_SKIP_TEST;
						break;
					case MJEVAL_NONMATCHABLE:

						/*
						 * current inner can't possibly match any outer;
						 * better to advance the inner scan than the outer.
						 */
						node->mj_JoinState = EXEC_MJ_SKIPINNER_ADVANCE;
						break;
					case MJEVAL_ENDOFJOIN:
						/* No more inner tuples */
						MJ_printf("ExecMergeJoin: end of inner subplan\n");
						outerTupleSlot = node->mj_OuterTupleSlot;
						if (doFillOuter && !TupIsNull(outerTupleSlot))
						{
							/*
							 * Need to emit left-join tuples for remaining
							 * outer tuples.
							 */
							node->mj_JoinState = EXEC_MJ_ENDINNER;
							break;
						}
						/* Otherwise we're done. */
						return NULL;
				}
				break;

				/*
				 * EXEC_MJ_ENDOUTER means we have run out of outer tuples, but
				 * are doing a right/full join and therefore must null-fill
				 * any remaining unmatched inner tuples.
				 */
			case EXEC_MJ_ENDOUTER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_ENDOUTER\n");

				Assert(doFillInner);

				if (!node->mj_MatchedInner)
				{
					/*
					 * Generate a fake join tuple with nulls for the outer
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedInner = true;	/* do it only once */

					result = MJFillInner(node);
					if (result)
						return result;
				}

				/* Mark before advancing, if wanted */
				if (node->mj_ExtraMarks)
					ExecMarkPos(innerPlan);

				/*
				 * now we get the next inner tuple, if any
				 */
				innerTupleSlot = ExecProcNode(innerPlan);
				node->mj_InnerTupleSlot = innerTupleSlot;
				MJ_DEBUG_PROC_NODE(innerTupleSlot);
				node->mj_MatchedInner = false;

				if (TupIsNull(innerTupleSlot))
				{
					MJ_printf("ExecMergeJoin: end of inner subplan\n");
					return NULL;
				}

				/* Else remain in ENDOUTER state and process next tuple. */
				break;

				/*
				 * EXEC_MJ_ENDINNER means we have run out of inner tuples, but
				 * are doing a left/full join and therefore must null- fill
				 * any remaining unmatched outer tuples.
				 */
			case EXEC_MJ_ENDINNER:
				MJ_printf("ExecMergeJoin: EXEC_MJ_ENDINNER\n");

				Assert(doFillOuter);

				if (!node->mj_MatchedOuter)
				{
					/*
					 * Generate a fake join tuple with nulls for the inner
					 * tuple, and return it if it passes the non-join quals.
					 */
					TupleTableSlot *result;

					node->mj_MatchedOuter = true;	/* do it only once */

					result = MJFillOuter(node);
					if (result)
						return result;
				}

				/*
				 * now we get the next outer tuple, if any
				 */
				outerTupleSlot = ExecProcNode(outerPlan);
				node->mj_OuterTupleSlot = outerTupleSlot;
				MJ_DEBUG_PROC_NODE(outerTupleSlot);
				node->mj_MatchedOuter = false;

				if (TupIsNull(outerTupleSlot))
				{
					MJ_printf("ExecMergeJoin: end of outer subplan\n");
					return NULL;
				}

				/* Else remain in ENDINNER state and process next tuple. */
				break;

				/*
				 * broken state value?
				 */
			default:
				elog(ERROR, "unrecognized mergejoin state: %d",
					 (int) node->mj_JoinState);
		}
	}
}

static TupleTableSlot *
ExecMergeJoin(PlanState *pstate)
{
	TupleTableSlot *result;

	result = ExecMergeJoin_guts(pstate);

	if (TupIsNull(result))
	{
		/*
		 * CDB: We'll read no more from inner subtree. To keep our sibling
		 * QEs from being starved, tell source QEs not to clog up the
		 * pipeline with our never-to-be-consumed data.
		 */
		ExecSquelchNode(pstate);
	}

	return result;
}

/* ----------------------------------------------------------------
 *		ExecInitMergeJoin
 * ----------------------------------------------------------------
 */
MergeJoinState *
ExecInitMergeJoin(MergeJoin *node, EState *estate, int eflags)
{
	MergeJoinState *mergestate;
	int rewindflag;
	TupleDesc	outerDesc,
				innerDesc;
	const TupleTableSlotOps *innerOps;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	MJ1_printf("ExecInitMergeJoin: %s\n",
			   "initializing node");

	/*
	 * create state structure
	 */
	mergestate = makeNode(MergeJoinState);
	mergestate->js.ps.plan = (Plan *) node;
	mergestate->js.ps.state = estate;
	mergestate->js.ps.ExecProcNode = ExecMergeJoin;
	mergestate->js.jointype = node->join.jointype;
	mergestate->mj_ConstFalseJoin = false;

	/*
	 * Miscellaneous initialization
	 *
	 * create expression context for node
	 */
	ExecAssignExprContext(estate, &mergestate->js.ps);

	/*
	 * we need two additional econtexts in which we can compute the join
	 * expressions from the left and right input tuples.  The node's regular
	 * econtext won't do because it gets reset too often.
	 */
	mergestate->mj_OuterEContext = CreateExprContext(estate);
	mergestate->mj_InnerEContext = CreateExprContext(estate);


	mergestate->prefetch_inner = node->join.prefetch_inner;
	mergestate->prefetch_joinqual = node->join.prefetch_joinqual;
	mergestate->prefetch_qual = node->join.prefetch_qual;

	if (Test_print_prefetch_joinqual && mergestate->prefetch_joinqual)
		elog(NOTICE,
			 "prefetch join qual in slice %d of plannode %d",
			 currentSliceId, ((Plan *) node)->plan_node_id);

	/*
	 * reuse GUC Test_print_prefetch_joinqual to output debug information for
	 * prefetching non join qual
	 */
	if (Test_print_prefetch_joinqual && mergestate->prefetch_qual)
		elog(NOTICE,
			 "prefetch non join qual in slice %d of plannode %d",
			 currentSliceId, ((Plan *) node)->plan_node_id);

	/* Prepare inner operators for rewind after the prefetch */
	rewindflag = mergestate->prefetch_inner ? EXEC_FLAG_REWIND : 0;

    /*
     * initialize child nodes
     *
     * inner child must support MARK/RESTORE, unless we have detected that we
     * don't need that.  Note that skip_mark_restore must never be set if
     * there are non-mergeclause joinquals, since the logic wouldn't work.
     */
	Assert(node->join.joinqual == NIL || !node->skip_mark_restore);
	mergestate->mj_SkipMarkRestore = node->skip_mark_restore;

	outerPlanState(mergestate) = ExecInitNode(outerPlan(node), estate, eflags);
	outerDesc = ExecGetResultType(outerPlanState(mergestate));
	innerPlanState(mergestate) = ExecInitNode(innerPlan(node), estate,
											  mergestate->mj_SkipMarkRestore ?
											  eflags | rewindflag:
											  (eflags | EXEC_FLAG_MARK | rewindflag));
	innerDesc = ExecGetResultType(innerPlanState(mergestate));

	/*
	 * For certain types of inner child nodes, it is advantageous to issue
	 * MARK every time we advance past an inner tuple we will never return to.
	 * For other types, MARK on a tuple we cannot return to is a waste of
	 * cycles.  Detect which case applies and set mj_ExtraMarks if we want to
	 * issue "unnecessary" MARK calls.
	 *
	 * Currently, only Material wants the extra MARKs, and it will be helpful
	 * only if eflags doesn't specify REWIND.
	 *
	 * Note that for IndexScan and IndexOnlyScan, it is *necessary* that we
	 * not set mj_ExtraMarks; otherwise we might attempt to set a mark before
	 * the first inner tuple, which they do not support.
	 */
	if (IsA(innerPlan(node), Material) &&
		(eflags & EXEC_FLAG_REWIND) == 0 &&
		!mergestate->mj_SkipMarkRestore)
		mergestate->mj_ExtraMarks = true;
	else
		mergestate->mj_ExtraMarks = false;

	/*
	 * Initialize result slot, type and projection.
	 */
	ExecInitResultTupleSlotTL(&mergestate->js.ps, &TTSOpsVirtual);
	ExecAssignProjectionInfo(&mergestate->js.ps, NULL);

	/*
	 * tuple table initialization
	 */
	innerOps = ExecGetResultSlotOps(innerPlanState(mergestate), NULL);
	mergestate->mj_MarkedTupleSlot = ExecInitExtraTupleSlot(estate, innerDesc,
															innerOps);

	/*
	 * initialize child expressions
	 */
	mergestate->js.ps.qual =
		ExecInitQual(node->join.plan.qual, (PlanState *) mergestate);
	mergestate->js.joinqual =
		ExecInitQual(node->join.joinqual, (PlanState *) mergestate);
	/* mergeclauses are handled below */

	/*
	 * detect whether we need only consider the first matching inner tuple
	 */
	mergestate->js.single_match = (node->join.inner_unique ||
								   node->join.jointype == JOIN_SEMI);

	/* set up null tuples for outer joins, if needed */
	switch (node->join.jointype)
	{
		case JOIN_INNER:
		case JOIN_SEMI:
			mergestate->mj_FillOuter = false;
			mergestate->mj_FillInner = false;
			break;
		case JOIN_LEFT:
		case JOIN_ANTI:
			mergestate->mj_FillOuter = true;
			mergestate->mj_FillInner = false;
			mergestate->mj_NullInnerTupleSlot =
				ExecInitNullTupleSlot(estate, innerDesc, &TTSOpsVirtual);
			break;
		case JOIN_RIGHT:
			mergestate->mj_FillOuter = false;
			mergestate->mj_FillInner = true;
			mergestate->mj_NullOuterTupleSlot =
				ExecInitNullTupleSlot(estate, outerDesc, &TTSOpsVirtual);

			/*
			 * Can't handle right or full join with non-constant extra
			 * joinclauses.  This should have been caught by planner.
			 */
			if (!check_constant_qual(node->join.joinqual,
									 &mergestate->mj_ConstFalseJoin))
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("RIGHT JOIN is only supported with merge-joinable join conditions")));
			break;
		case JOIN_FULL:
			mergestate->mj_FillOuter = true;
			mergestate->mj_FillInner = true;
			mergestate->mj_NullOuterTupleSlot =
				ExecInitNullTupleSlot(estate, outerDesc, &TTSOpsVirtual);
			mergestate->mj_NullInnerTupleSlot =
				ExecInitNullTupleSlot(estate, innerDesc, &TTSOpsVirtual);

			/*
			 * Can't handle right or full join with non-constant extra
			 * joinclauses.  This should have been caught by planner.
			 */
			if (!check_constant_qual(node->join.joinqual,
									 &mergestate->mj_ConstFalseJoin))
				ereport(ERROR,
						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						 errmsg("FULL JOIN is only supported with merge-joinable join conditions")));
			break;
		case JOIN_LASJ_NOTIN:
			elog(ERROR, "join type not supported");
			break;
		default:
			elog(ERROR, "unrecognized join type: %d",
				 (int) node->join.jointype);
	}

	/*
	 * preprocess the merge clauses
	 */
	mergestate->mj_NumClauses = list_length(node->mergeclauses);
	mergestate->mj_Clauses = MJExamineQuals(node->mergeclauses,
											node->mergeFamilies,
											node->mergeCollations,
											node->mergeStrategies,
											node->mergeNullsFirst,
											(PlanState *) mergestate);

	/*
	 * initialize join state
	 */
	mergestate->mj_JoinState = EXEC_MJ_INITIALIZE_OUTER;
	mergestate->mj_MatchedOuter = false;
	mergestate->mj_MatchedInner = false;
	mergestate->mj_OuterTupleSlot = NULL;
	mergestate->mj_InnerTupleSlot = NULL;

	/*
	 * initialization successful
	 */
	MJ1_printf("ExecInitMergeJoin: %s\n",
			   "node initialized");

	return mergestate;
}

/* ----------------------------------------------------------------
 *		ExecEndMergeJoin
 *
 * old comments
 *		frees storage allocated through C routines.
 * ----------------------------------------------------------------
 */
void
ExecEndMergeJoin(MergeJoinState *node)
{
	MJ1_printf("ExecEndMergeJoin: %s\n",
			   "ending node processing");

	/*
	 * Free the exprcontext
	 */
	ExecFreeExprContext(&node->js.ps);

	/*
	 * clean out the tuple table
	 */
	ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
	ExecClearTuple(node->mj_MarkedTupleSlot);

	/*
	 * shut down the subplans
	 */
	ExecEndNode(innerPlanState(node));
	ExecEndNode(outerPlanState(node));

	MJ1_printf("ExecEndMergeJoin: %s\n",
			   "node processing ended");
}

void
ExecReScanMergeJoin(MergeJoinState *node)
{
	ExecClearTuple(node->mj_MarkedTupleSlot);

	node->mj_JoinState = EXEC_MJ_INITIALIZE_OUTER;
	node->mj_MatchedOuter = false;
	node->mj_MatchedInner = false;
	node->mj_OuterTupleSlot = NULL;
	node->mj_InnerTupleSlot = NULL;

	/*
	 * if chgParam of subnodes is not null then plans will be re-scanned by
	 * first ExecProcNode.
	 */
	if (node->js.ps.lefttree->chgParam == NULL)
		ExecReScan(node->js.ps.lefttree);
	if (node->js.ps.righttree->chgParam == NULL)
		ExecReScan(node->js.ps.righttree);

}

相关信息

greenplumn 源码目录

相关文章

greenplumn execAmi 源码

greenplumn execCurrent 源码

greenplumn execExpr 源码

greenplumn execExprInterp 源码

greenplumn execGrouping 源码

greenplumn execIndexing 源码

greenplumn execJunk 源码

greenplumn execMain 源码

greenplumn execParallel 源码

greenplumn execPartition 源码

0  赞