greenplumn nodeWindowAgg 源码
greenplumn nodeWindowAgg 代码
文件路径:/src/backend/executor/nodeWindowAgg.c
/*-------------------------------------------------------------------------
*
* nodeWindowAgg.c
* routines to handle WindowAgg nodes.
*
* A WindowAgg node evaluates "window functions" across suitable partitions
* of the input tuple set. Any one WindowAgg works for just a single window
* specification, though it can evaluate multiple window functions sharing
* identical window specifications. The input tuples are required to be
* delivered in sorted order, with the PARTITION BY columns (if any) as
* major sort keys and the ORDER BY columns (if any) as minor sort keys.
* (The planner generates a stack of WindowAggs with intervening Sort nodes
* as needed, if a query involves more than one window specification.)
*
* Since window functions can require access to any or all of the rows in
* the current partition, we accumulate rows of the partition into a
* tuplestore. The window functions are called using the WindowObject API
* so that they can access those rows as needed.
*
* We also support using plain aggregate functions as window functions.
* For these, the regular Agg-node environment is emulated for each partition.
* As required by the SQL spec, the output represents the value of the
* aggregate function over all rows in the current row's window frame.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/nodeWindowAgg.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "executor/executor.h"
#include "executor/nodeWindowAgg.h"
#include "miscadmin.h"
#include "nodes/execnodes.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "parser/parse_oper.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/faultinjector.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/regproc.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "windowapi.h"
#include "optimizer/optimizer.h" // for exprType
#include "parser/parse_expr.h" // for exprType
/*
* All the window function APIs are called with this object, which is passed
* to window functions as fcinfo->context.
*/
typedef struct WindowObjectData
{
NodeTag type;
WindowAggState *winstate; /* parent WindowAggState */
List *argstates; /* ExprState trees for fn's arguments */
void *localmem; /* WinGetPartitionLocalMemory's chunk */
int markptr; /* tuplestore mark pointer for this fn */
int readptr; /* tuplestore read pointer for this fn */
int64 markpos; /* row that markptr is positioned on */
int64 seekpos; /* row that readptr is positioned on */
} WindowObjectData;
/*
* We have one WindowStatePerFunc struct for each window function and
* window aggregate handled by this node.
*/
typedef struct WindowStatePerFuncData
{
/* Links to WindowFunc expr and state nodes this working state is for */
WindowFuncExprState *wfuncstate;
WindowFunc *wfunc;
int numArguments; /* number of arguments */
FmgrInfo flinfo; /* fmgr lookup data for window function */
Oid winCollation; /* collation derived for window function */
/*
* We need the len and byval info for the result of each function in order
* to know how to copy/delete values.
*/
int16 resulttypeLen;
bool resulttypeByVal;
bool plain_agg; /* is it just a plain aggregate function? */
int aggno; /* if so, index of its PerAggData */
WindowObject winobj; /* object used in window function API */
} WindowStatePerFuncData;
/*
* For plain aggregate window functions, we also have one of these.
*/
typedef struct WindowStatePerAggData
{
/* Oids of transition functions */
Oid transfn_oid;
Oid invtransfn_oid; /* may be InvalidOid */
Oid finalfn_oid; /* may be InvalidOid */
/*
* fmgr lookup data for transition functions --- only valid when
* corresponding oid is not InvalidOid. Note in particular that fn_strict
* flags are kept here.
*/
FmgrInfo transfn;
FmgrInfo invtransfn;
FmgrInfo finalfn;
int numFinalArgs; /* number of arguments to pass to finalfn */
/*
* initial value from pg_aggregate entry
*/
Datum initValue;
bool initValueIsNull;
/*
* cached value for current frame boundaries
*/
Datum resultValue;
bool resultValueIsNull;
/*
* Support for DISTINCT-qualified aggregates. For example:
*
* COUNT(DISTINCT foo) OVER (PARTITION BY bar)
*
* This is only supported for aggregates that take a single argument
* (we checked for that in parse analysis).
*/
bool isDistinct; /* is this a DISTINCT-qualified aggregate? */
Oid distinctType; /* type of the argument */
bool distinctTypeByVal;
Oid distinctColl;
/* support for sorting by the argument type */
Oid distinctLtOper;
SortSupportData distinctComparator;
/* Input values accumulated for this aggregate so far. */
Tuplesortstate *distinctSortState;
/*
* We need the len and byval info for the agg's input, result, and
* transition data types in order to know how to copy/delete values.
*/
int16 inputtypeLen,
resulttypeLen,
transtypeLen;
bool inputtypeByVal,
resulttypeByVal,
transtypeByVal;
int wfuncno; /* index of associated PerFuncData */
/* Context holding transition value and possibly other subsidiary data */
MemoryContext aggcontext; /* may be private, or winstate->aggcontext */
/* Current transition value */
Datum transValue; /* current transition value */
bool transValueIsNull;
int64 transValueCount; /* number of currently-aggregated rows */
/* Data local to eval_windowaggregates() */
bool restart; /* need to restart this agg in this cycle? */
} WindowStatePerAggData;
static void initialize_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate);
static void advance_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate);
static bool advance_windowaggregate_base(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate);
static void call_transfunc(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate,
FunctionCallInfo fcinfo);
static void finalize_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate,
Datum *result, bool *isnull);
static void eval_windowaggregates(WindowAggState *winstate);
static void eval_windowfunction(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
Datum *result, bool *isnull);
static void begin_partition(WindowAggState *winstate);
static void spool_tuples(WindowAggState *winstate, int64 pos);
static void release_partition(WindowAggState *winstate);
static int row_is_in_frame(WindowAggState *winstate, int64 pos,
TupleTableSlot *slot);
static void update_frameheadpos(WindowAggState *winstate);
static void update_frametailpos(WindowAggState *winstate);
static void update_grouptailpos(WindowAggState *winstate);
static WindowStatePerAggData *initialize_peragg(WindowAggState *winstate,
WindowFunc *wfunc,
WindowStatePerAgg peraggstate);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
static bool are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
TupleTableSlot *slot2);
static bool window_gettupleslot(WindowObject winobj, int64 pos,
TupleTableSlot *slot);
static void compute_start_end_offsets(WindowAggState *winstate);
/*
* initialize_windowaggregate
* parallel to initialize_aggregates in nodeAgg.c
*/
static void
initialize_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate)
{
MemoryContext oldContext;
/*
* If we're using a private aggcontext, we may reset it here. But if the
* context is shared, we don't know which other aggregates may still need
* it, so we must leave it to the caller to reset at an appropriate time.
*/
if (peraggstate->aggcontext != winstate->aggcontext)
MemoryContextResetAndDeleteChildren(peraggstate->aggcontext);
if (peraggstate->initValueIsNull)
peraggstate->transValue = peraggstate->initValue;
else
{
oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
peraggstate->transValue = datumCopy(peraggstate->initValue,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
MemoryContextSwitchTo(oldContext);
}
peraggstate->transValueIsNull = peraggstate->initValueIsNull;
peraggstate->transValueCount = 0;
peraggstate->resultValue = (Datum) 0;
peraggstate->resultValueIsNull = true;
if (peraggstate->isDistinct)
{
peraggstate->distinctSortState =
tuplesort_begin_datum(peraggstate->distinctType,
peraggstate->distinctLtOper,
peraggstate->distinctColl,
false, /* nullsFirstFlag */
PlanStateOperatorMemKB((PlanState *) winstate),
NULL, /* coordinate */
false);
}
}
/*
* advance_windowaggregate
* parallel to advance_aggregates in nodeAgg.c
*/
static void
advance_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate)
{
LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
ListCell *arg;
int i;
MemoryContext oldContext;
ExprContext *econtext = winstate->tmpcontext;
ExprState *filter = wfuncstate->aggfilter;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/* Skip anything FILTERed out */
if (filter)
{
bool isnull;
Datum res = ExecEvalExpr(filter, econtext, &isnull);
if (isnull || !DatumGetBool(res))
{
MemoryContextSwitchTo(oldContext);
return;
}
}
/* We start from 1, since the 0th arg will be the transition value */
i = 1;
foreach(arg, wfuncstate->args)
{
ExprState *argstate = (ExprState *) lfirst(arg);
fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
&fcinfo->args[i].isnull);
i++;
}
/*
* If this is a DISTINCT-qualified aggregate, we cannot call the
* transition function yet. Instead, we spool the input into a tuplesort.
* We will perform the sort, deduplicate, and call the transition
* function later, after we have spooled all the input values in this
* partition.
*/
if (peraggstate->isDistinct)
{
Assert(list_length(wfuncstate->args) == 1);
/*
* For a strict transfn, nothing happens when there's a NULL input; we
* just keep the prior transValue.
*/
if (peraggstate->transfn.fn_strict && fcinfo->args[1].isnull)
{
/* skip it */
}
else
tuplesort_putdatum(peraggstate->distinctSortState,
fcinfo->args[1].value,
fcinfo->args[1].isnull);
}
else
call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);
MemoryContextSwitchTo(oldContext);
}
/*
* Helper function to call the transition function.
*
* The caller must load the arguments into fcinfo->args/argnulls already,
* and switch to tmpcontext->ecxt_per_tuple_context.
*/
static void
call_transfunc(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate,
FunctionCallInfo fcinfo)
{
int numArguments = perfuncstate->numArguments;
Datum newVal;
int i;
MemoryContext oldContext;
ExprContext *econtext = winstate->tmpcontext;
/*
* This may seem weird, but it allows us to keep the code that follows unchanged
* from upstream. In the upstream, this is part of advance_windowaggregate().
*/
Assert(CurrentMemoryContext == econtext->ecxt_per_tuple_memory);
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
if (peraggstate->transfn.fn_strict)
{
/*
* For a strict transfn, nothing happens when there's a NULL input; we
* just keep the prior transValue. Note transValueCount doesn't
* change either.
*/
for (i = 1; i <= numArguments; i++)
{
if (fcinfo->args[i].isnull)
{
MemoryContextSwitchTo(oldContext);
return;
}
}
/*
* For strict transition functions with initial value NULL we use the
* first non-NULL input as the initial state. (We already checked
* that the agg's input type is binary-compatible with its transtype,
* so straight copy here is OK.)
*
* We must copy the datum into aggcontext if it is pass-by-ref. We do
* not need to pfree the old transValue, since it's NULL.
*/
if (peraggstate->transValueCount == 0 && peraggstate->transValueIsNull)
{
MemoryContextSwitchTo(peraggstate->aggcontext);
peraggstate->transValue = datumCopy(fcinfo->args[1].value,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
peraggstate->transValueIsNull = false;
peraggstate->transValueCount = 1;
MemoryContextSwitchTo(oldContext);
return;
}
if (peraggstate->transValueIsNull)
{
/*
* Don't call a strict function with NULL inputs. Note it is
* possible to get here despite the above tests, if the transfn is
* strict *and* returned a NULL on a prior cycle. If that happens
* we will propagate the NULL all the way to the end. That can
* only happen if there's no inverse transition function, though,
* since we disallow transitions back to NULL when there is one.
*/
MemoryContextSwitchTo(oldContext);
Assert(!OidIsValid(peraggstate->invtransfn_oid));
return;
}
}
/*
* OK to call the transition function. Set winstate->curaggcontext while
* calling it, for possible use by AggCheckCallContext.
*/
InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn),
numArguments + 1,
perfuncstate->winCollation,
(void *) winstate, NULL);
fcinfo->args[0].value = peraggstate->transValue;
fcinfo->args[0].isnull = peraggstate->transValueIsNull;
winstate->curaggcontext = peraggstate->aggcontext;
newVal = FunctionCallInvoke(fcinfo);
winstate->curaggcontext = NULL;
/*
* Moving-aggregate transition functions must not return null, see
* advance_windowaggregate_base().
*/
if (fcinfo->isnull && OidIsValid(peraggstate->invtransfn_oid))
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("moving-aggregate transition function must not return null")));
/*
* We must track the number of rows included in transValue, since to
* remove the last input, advance_windowaggregate_base() mustn't call the
* inverse transition function, but simply reset transValue back to its
* initial value.
*/
peraggstate->transValueCount++;
/*
* If pass-by-ref datatype, must copy the new value into aggcontext and
* free the prior transValue. But if transfn returned a pointer to its
* first input, we don't need to do anything. Also, if transfn returned a
* pointer to a R/W expanded object that is already a child of the
* aggcontext, assume we can adopt that value without copying it.
*/
if (!peraggstate->transtypeByVal &&
DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
{
if (!fcinfo->isnull)
{
MemoryContextSwitchTo(peraggstate->aggcontext);
if (DatumIsReadWriteExpandedObject(newVal,
false,
peraggstate->transtypeLen) &&
MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
/* do nothing */ ;
else
newVal = datumCopy(newVal,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
}
if (!peraggstate->transValueIsNull)
{
if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
false,
peraggstate->transtypeLen))
DeleteExpandedObject(peraggstate->transValue);
else
pfree(DatumGetPointer(peraggstate->transValue));
}
}
MemoryContextSwitchTo(oldContext);
peraggstate->transValue = newVal;
peraggstate->transValueIsNull = fcinfo->isnull;
}
/*
* advance_windowaggregate_base
* Remove the oldest tuple from an aggregation.
*
* This is very much like advance_windowaggregate, except that we will call
* the inverse transition function (which caller must have checked is
* available).
*
* Returns true if we successfully removed the current row from this
* aggregate, false if not (in the latter case, caller is responsible
* for cleaning up by restarting the aggregation).
*/
static bool
advance_windowaggregate_base(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate)
{
LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
int numArguments = perfuncstate->numArguments;
Datum newVal;
ListCell *arg;
int i;
MemoryContext oldContext;
ExprContext *econtext = winstate->tmpcontext;
ExprState *filter = wfuncstate->aggfilter;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/* Skip anything FILTERed out */
if (filter)
{
bool isnull;
Datum res = ExecEvalExpr(filter, econtext, &isnull);
if (isnull || !DatumGetBool(res))
{
MemoryContextSwitchTo(oldContext);
return true;
}
}
/* We start from 1, since the 0th arg will be the transition value */
i = 1;
foreach(arg, wfuncstate->args)
{
ExprState *argstate = (ExprState *) lfirst(arg);
fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
&fcinfo->args[i].isnull);
i++;
}
if (peraggstate->invtransfn.fn_strict)
{
/*
* For a strict (inv)transfn, nothing happens when there's a NULL
* input; we just keep the prior transValue. Note transValueCount
* doesn't change either.
*/
for (i = 1; i <= numArguments; i++)
{
if (fcinfo->args[i].isnull)
{
MemoryContextSwitchTo(oldContext);
return true;
}
}
}
/* There should still be an added but not yet removed value */
Assert(peraggstate->transValueCount > 0);
/*
* In moving-aggregate mode, the state must never be NULL, except possibly
* before any rows have been aggregated (which is surely not the case at
* this point). This restriction allows us to interpret a NULL result
* from the inverse function as meaning "sorry, can't do an inverse
* transition in this case". We already checked this in
* advance_windowaggregate, but just for safety, check again.
*/
if (peraggstate->transValueIsNull)
elog(ERROR, "aggregate transition value is NULL before inverse transition");
/*
* We mustn't use the inverse transition function to remove the last
* input. Doing so would yield a non-NULL state, whereas we should be in
* the initial state afterwards which may very well be NULL. So instead,
* we simply re-initialize the aggregate in this case.
*/
if (peraggstate->transValueCount == 1)
{
MemoryContextSwitchTo(oldContext);
initialize_windowaggregate(winstate,
&winstate->perfunc[peraggstate->wfuncno],
peraggstate);
return true;
}
/*
* OK to call the inverse transition function. Set
* winstate->curaggcontext while calling it, for possible use by
* AggCheckCallContext.
*/
InitFunctionCallInfoData(*fcinfo, &(peraggstate->invtransfn),
numArguments + 1,
perfuncstate->winCollation,
(void *) winstate, NULL);
fcinfo->args[0].value = peraggstate->transValue;
fcinfo->args[0].isnull = peraggstate->transValueIsNull;
winstate->curaggcontext = peraggstate->aggcontext;
newVal = FunctionCallInvoke(fcinfo);
winstate->curaggcontext = NULL;
/*
* If the function returns NULL, report failure, forcing a restart.
*/
if (fcinfo->isnull)
{
MemoryContextSwitchTo(oldContext);
return false;
}
/* Update number of rows included in transValue */
peraggstate->transValueCount--;
/*
* If pass-by-ref datatype, must copy the new value into aggcontext and
* free the prior transValue. But if invtransfn returned a pointer to its
* first input, we don't need to do anything. Also, if invtransfn
* returned a pointer to a R/W expanded object that is already a child of
* the aggcontext, assume we can adopt that value without copying it.
*
* Note: the checks for null values here will never fire, but it seems
* best to have this stanza look just like advance_windowaggregate.
*/
if (!peraggstate->transtypeByVal &&
DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
{
if (!fcinfo->isnull)
{
MemoryContextSwitchTo(peraggstate->aggcontext);
if (DatumIsReadWriteExpandedObject(newVal,
false,
peraggstate->transtypeLen) &&
MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
/* do nothing */ ;
else
newVal = datumCopy(newVal,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
}
if (!peraggstate->transValueIsNull)
{
if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
false,
peraggstate->transtypeLen))
DeleteExpandedObject(peraggstate->transValue);
else
pfree(DatumGetPointer(peraggstate->transValue));
}
}
MemoryContextSwitchTo(oldContext);
peraggstate->transValue = newVal;
peraggstate->transValueIsNull = fcinfo->isnull;
return true;
}
/*
* Call transition function for a DISTINCT-qualified aggregate.
*
* All the input values have been loaded into the tuplesort. Perform the sort,
* deduplicate, and call the transition function for each unique value.
*/
static void
perform_distinct_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate)
{
LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
Datum prevDatum = (Datum) 0;
bool prevNull = true;
MemoryContext oldcontext;
oldcontext = MemoryContextSwitchTo(winstate->tmpcontext->ecxt_per_tuple_memory);
tuplesort_performsort(peraggstate->distinctSortState);
#ifdef FAULT_INJECTOR
/*
* This routine is used for tracing whether the sort operation of DISTINCT-qualified
* WindowAgg spills to disk.
*/
if (SIMPLE_FAULT_INJECTOR("distinct_winagg_perform_sort") == FaultInjectorTypeSkip)
{
TuplesortInstrumentation sortstats;
tuplesort_get_stats(peraggstate->distinctSortState, &sortstats);
if (sortstats.spaceType == SORT_SPACE_TYPE_MEMORY)
ereport(NOTICE,
(errmsg("distinct winagg sortstats: sort operation fitted in memory")));
else
ereport(NOTICE,
(errmsg("distinct winagg sortstats: sort operation spilled to disk")));
}
#endif
/* load the first tuple from spool */
if (tuplesort_getdatum(peraggstate->distinctSortState, true,
&fcinfo->args[1].value, &fcinfo->args[1].isnull, NULL))
{
call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);
prevDatum = fcinfo->args[1].value;
prevNull = fcinfo->args[1].isnull;
/* continue loading more tuples */
while (tuplesort_getdatum(peraggstate->distinctSortState, true,
&fcinfo->args[1].value, &fcinfo->args[1].isnull, NULL))
{
int cmp;
cmp = ApplySortComparator(prevDatum, prevNull,
fcinfo->args[1].value, fcinfo->args[1].isnull,
&peraggstate->distinctComparator);
if (cmp < 0)
{
call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);
}
else if (cmp == 0)
{
/* Equal, skip it */
}
else
elog(ERROR, "value came out in wrong order from sort");
/* free the previous value, if it's pass-by-ref. */
if (!peraggstate->distinctTypeByVal && !prevNull)
pfree(DatumGetPointer(prevDatum));
prevDatum = fcinfo->args[1].value;
prevNull = fcinfo->args[1].isnull;
}
}
tuplesort_end(peraggstate->distinctSortState);
peraggstate->distinctSortState = NULL;
MemoryContextSwitchTo(oldcontext);
}
/*
* finalize_windowaggregate
* parallel to finalize_aggregate in nodeAgg.c
*/
static void
finalize_windowaggregate(WindowAggState *winstate,
WindowStatePerFunc perfuncstate,
WindowStatePerAgg peraggstate,
Datum *result, bool *isnull)
{
MemoryContext oldContext;
/*
* If this is a distinct-qualified aggregate, then we have only spooled the
* inputs into the sorter so far. We haven't run the transition function over
* the input yet. Perform the sort now, and call the transition function on the
* unique values.
*/
if (peraggstate->isDistinct)
{
perform_distinct_windowaggregate(winstate,
perfuncstate,
peraggstate);
/*
* Now we have the final transition value in peraggstate->transValue, like
* in the normal, non-DISTINCT, case.
*/
}
oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
/*
* Apply the agg's finalfn if one is provided, else return transValue.
*/
if (OidIsValid(peraggstate->finalfn_oid))
{
LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
int numFinalArgs = peraggstate->numFinalArgs;
bool anynull;
int i;
InitFunctionCallInfoData(fcinfodata.fcinfo, &(peraggstate->finalfn),
numFinalArgs,
perfuncstate->winCollation,
(void *) winstate, NULL);
fcinfo->args[0].value =
MakeExpandedObjectReadOnly(peraggstate->transValue,
peraggstate->transValueIsNull,
peraggstate->transtypeLen);
fcinfo->args[0].isnull = peraggstate->transValueIsNull;
anynull = peraggstate->transValueIsNull;
/* Fill any remaining argument positions with nulls */
for (i = 1; i < numFinalArgs; i++)
{
fcinfo->args[i].value = (Datum) 0;
fcinfo->args[i].isnull = true;
anynull = true;
}
if (fcinfo->flinfo->fn_strict && anynull)
{
/* don't call a strict function with NULL inputs */
*result = (Datum) 0;
*isnull = true;
}
else
{
winstate->curaggcontext = peraggstate->aggcontext;
*result = FunctionCallInvoke(fcinfo);
winstate->curaggcontext = NULL;
*isnull = fcinfo->isnull;
}
}
else
{
/* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */
*result = peraggstate->transValue;
*isnull = peraggstate->transValueIsNull;
}
/*
* If result is pass-by-ref, make sure it is in the right context.
*/
if (!peraggstate->resulttypeByVal && !*isnull &&
!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
DatumGetPointer(*result)))
*result = datumCopy(*result,
peraggstate->resulttypeByVal,
peraggstate->resulttypeLen);
MemoryContextSwitchTo(oldContext);
}
/*
* eval_windowaggregates
* evaluate plain aggregates being used as window functions
*
* This differs from nodeAgg.c in two ways. First, if the window's frame
* start position moves, we use the inverse transition function (if it exists)
* to remove rows from the transition value. And second, we expect to be
* able to call aggregate final functions repeatedly after aggregating more
* data onto the same transition value. This is not a behavior required by
* nodeAgg.c.
*/
static void
eval_windowaggregates(WindowAggState *winstate)
{
WindowStatePerAgg peraggstate;
int wfuncno,
numaggs,
numaggs_restart,
i;
int64 aggregatedupto_nonrestarted;
MemoryContext oldContext;
ExprContext *econtext;
WindowObject agg_winobj;
TupleTableSlot *agg_row_slot;
TupleTableSlot *temp_slot;
bool frame_head_moved_backwards;
bool frame_tail_moved_backwards;
numaggs = winstate->numaggs;
if (numaggs == 0)
return; /* nothing to do */
/* final output execution is in ps_ExprContext */
econtext = winstate->ss.ps.ps_ExprContext;
agg_winobj = winstate->agg_winobj;
agg_row_slot = winstate->agg_row_slot;
temp_slot = winstate->temp_slot_1;
/*
* If the window's frame start clause is UNBOUNDED_PRECEDING and no
* exclusion clause is specified, then the window frame consists of a
* contiguous group of rows extending forward from the start of the
* partition, and rows only enter the frame, never exit it, as the current
* row advances forward. This makes it possible to use an incremental
* strategy for evaluating aggregates: we run the transition function for
* each row added to the frame, and run the final function whenever we
* need the current aggregate value. This is considerably more efficient
* than the naive approach of re-running the entire aggregate calculation
* for each current row. It does assume that the final function doesn't
* damage the running transition value, but we have the same assumption in
* nodeAgg.c too (when it rescans an existing hash table).
*
* If the frame start does sometimes move, we can still optimize as above
* whenever successive rows share the same frame head, but if the frame
* head moves beyond the previous head we try to remove those rows using
* the aggregate's inverse transition function. This function restores
* the aggregate's current state to what it would be if the removed row
* had never been aggregated in the first place. Inverse transition
* functions may optionally return NULL, indicating that the function was
* unable to remove the tuple from aggregation. If this happens, or if
* the aggregate doesn't have an inverse transition function at all, we
* must perform the aggregation all over again for all tuples within the
* new frame boundaries.
*
* If there's any exclusion clause, then we may have to aggregate over a
* non-contiguous set of rows, so we punt and recalculate for every row.
* (For some frame end choices, it might be that the frame is always
* contiguous anyway, but that's an optimization to investigate later.)
*
* In many common cases, multiple rows share the same frame and hence the
* same aggregate value. (In particular, if there's no ORDER BY in a RANGE
* window, then all rows are peers and so they all have window frame equal
* to the whole partition.) We optimize such cases by calculating the
* aggregate value once when we reach the first row of a peer group, and
* then returning the saved value for all subsequent rows.
*
* 'aggregatedupto' keeps track of the first row that has not yet been
* accumulated into the aggregate transition values. Whenever we start a
* new peer group, we accumulate forward to the end of the peer group.
*/
/*
* First, update the frame head position.
*
* The frame head should never move backwards, and the code below wouldn't
* cope if it did, so for safety we complain if it does.
*
* GPDB: We accept it if the start offset is not a constant. PostgreSQL
* only allows constant offsets, but we're more flexible. The code below
* does actually cope with it just fine.
*/
update_frameheadpos(winstate);
if (winstate->start_offset_var_free &&
winstate->frameheadpos < winstate->aggregatedbase)
elog(ERROR, "window frame head moved backward");
/*
* If the frame didn't change compared to the previous row, we can re-use
* the result values that were previously saved at the bottom of this
* function. Since we don't know the current frame's end yet, this is not
* possible to check for fully. But if the frame end mode is UNBOUNDED
* FOLLOWING or CURRENT ROW, no exclusion clause is specified, and the
* current row lies within the previous row's frame, then the two frames'
* ends must coincide. Note that on the first row aggregatedbase ==
* aggregatedupto, meaning this test must fail, so we don't need to check
* the "there was no previous row" case explicitly here.
*/
if (winstate->aggregatedbase == winstate->frameheadpos &&
(winstate->frameOptions & (FRAMEOPTION_END_UNBOUNDED_FOLLOWING |
FRAMEOPTION_END_CURRENT_ROW)) &&
!(winstate->frameOptions & FRAMEOPTION_EXCLUSION) &&
winstate->aggregatedbase <= winstate->currentpos &&
winstate->aggregatedupto > winstate->currentpos &&
winstate->start_offset_var_free &&
winstate->end_offset_var_free)
{
for (i = 0; i < numaggs; i++)
{
peraggstate = &winstate->peragg[i];
wfuncno = peraggstate->wfuncno;
econtext->ecxt_aggvalues[wfuncno] = peraggstate->resultValue;
econtext->ecxt_aggnulls[wfuncno] = peraggstate->resultValueIsNull;
}
return;
}
/*
* If the END offset contains a variable, then it's possible for the frame's
* end to move backwards. If that happens, restart all aggregates. (Depending
* on how much it moved, it might be faster to apply the inverse transition
* function to "subtract" those rows, but let's keep this simple for now.)
*/
frame_tail_moved_backwards = false;
if (!winstate->end_offset_var_free && winstate->aggregatedupto > 0)
{
/* Fetch the last row of the previous frame */
if (!TupIsNull(agg_row_slot))
ExecClearTuple(agg_row_slot);
if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto - 1,
agg_row_slot))
{
/* must be end of partition */
/* XXX: I don't think this should ever happen. */
frame_tail_moved_backwards = true;
}
/*
* Is the last row of the previous frame still in current frame?
* If not, then the end of the frame must've moved backwards.
* (Or it moved so much forward that there is no overlap between
* the old and the new frame. In that case, we would restart
* all the aggregates anyway.)
*/
else if (row_is_in_frame(winstate, winstate->aggregatedupto - 1, agg_row_slot) != 1)
{
frame_tail_moved_backwards = true;
}
ExecClearTuple(agg_row_slot);
}
/*
* Likewise, if the frame head moves backwards, then we need to restart the
* aggregation. (We could instead call the transition function on the rows
* that became part of the frame again, but let's keep this simple for now.)
*/
if (winstate->frameheadpos < winstate->aggregatedbase)
frame_head_moved_backwards = true;
else
frame_head_moved_backwards = false;
/*----------
* Initialize restart flags.
*
* We restart the aggregation:
* - if we're processing the first row in the partition, or
* - if the frame's head moved and we cannot use an inverse
* transition function, or
* - we have an EXCLUSION clause, or
* - if the new frame doesn't overlap the old one
*
* Note that we don't strictly need to restart in the last case, but if
* we're going to remove all rows from the aggregation anyway, a restart
* surely is faster.
*----------
*/
numaggs_restart = 0;
for (i = 0; i < numaggs; i++)
{
peraggstate = &winstate->peragg[i];
if (winstate->currentpos == 0 ||
(winstate->aggregatedbase != winstate->frameheadpos &&
!OidIsValid(peraggstate->invtransfn_oid)) ||
(winstate->frameOptions & FRAMEOPTION_EXCLUSION) ||
winstate->aggregatedupto <= winstate->frameheadpos ||
frame_head_moved_backwards ||
frame_tail_moved_backwards)
{
peraggstate->restart = true;
numaggs_restart++;
}
else
peraggstate->restart = false;
}
/*
* If we have any possibly-moving aggregates, attempt to advance
* aggregatedbase to match the frame's head by removing input rows that
* fell off the top of the frame from the aggregations. This can fail,
* i.e. advance_windowaggregate_base() can return false, in which case
* we'll restart that aggregate below.
*/
while (numaggs_restart < numaggs &&
winstate->aggregatedbase < winstate->frameheadpos)
{
/*
* Fetch the next tuple of those being removed. This should never fail
* as we should have been here before.
*/
if (!window_gettupleslot(agg_winobj, winstate->aggregatedbase,
temp_slot))
elog(ERROR, "could not re-fetch previously fetched frame row");
/* Set tuple context for evaluation of aggregate arguments */
winstate->tmpcontext->ecxt_outertuple = temp_slot;
/*
* Perform the inverse transition for each aggregate function in the
* window, unless it has already been marked as needing a restart.
*/
for (i = 0; i < numaggs; i++)
{
bool ok;
peraggstate = &winstate->peragg[i];
if (peraggstate->restart)
continue;
wfuncno = peraggstate->wfuncno;
ok = advance_windowaggregate_base(winstate,
&winstate->perfunc[wfuncno],
peraggstate);
if (!ok)
{
/* Inverse transition function has failed, must restart */
peraggstate->restart = true;
numaggs_restart++;
}
}
/* Reset per-input-tuple context after each tuple */
ResetExprContext(winstate->tmpcontext);
/* And advance the aggregated-row state */
winstate->aggregatedbase++;
ExecClearTuple(temp_slot);
}
/*
* If we successfully advanced the base rows of all the aggregates,
* aggregatedbase now equals frameheadpos; but if we failed for any, we
* must forcibly update aggregatedbase.
*/
winstate->aggregatedbase = winstate->frameheadpos;
/*
* If we created a mark pointer for aggregates, keep it pushed up to frame
* head, so that tuplestore can discard unnecessary rows.
*/
if (agg_winobj->markptr >= 0)
WinSetMarkPosition(agg_winobj, winstate->frameheadpos);
/*
* Now restart the aggregates that require it.
*
* We assume that aggregates using the shared context always restart if
* *any* aggregate restarts, and we may thus clean up the shared
* aggcontext if that is the case. Private aggcontexts are reset by
* initialize_windowaggregate() if their owning aggregate restarts. If we
* aren't restarting an aggregate, we need to free any previously saved
* result for it, else we'll leak memory.
*/
if (numaggs_restart > 0)
MemoryContextResetAndDeleteChildren(winstate->aggcontext);
for (i = 0; i < numaggs; i++)
{
peraggstate = &winstate->peragg[i];
/* Aggregates using the shared ctx must restart if *any* agg does */
Assert(peraggstate->aggcontext != winstate->aggcontext ||
numaggs_restart == 0 ||
peraggstate->restart);
if (peraggstate->restart)
{
wfuncno = peraggstate->wfuncno;
initialize_windowaggregate(winstate,
&winstate->perfunc[wfuncno],
peraggstate);
}
else if (!peraggstate->resultValueIsNull)
{
if (!peraggstate->resulttypeByVal)
pfree(DatumGetPointer(peraggstate->resultValue));
peraggstate->resultValue = (Datum) 0;
peraggstate->resultValueIsNull = true;
}
}
/*
* Non-restarted aggregates now contain the rows between aggregatedbase
* (i.e., frameheadpos) and aggregatedupto, while restarted aggregates
* contain no rows. If there are any restarted aggregates, we must thus
* begin aggregating anew at frameheadpos, otherwise we may simply
* continue at aggregatedupto. We must remember the old value of
* aggregatedupto to know how long to skip advancing non-restarted
* aggregates. If we modify aggregatedupto, we must also clear
* agg_row_slot, per the loop invariant below.
*/
aggregatedupto_nonrestarted = winstate->aggregatedupto;
if (numaggs_restart > 0 &&
winstate->aggregatedupto != winstate->frameheadpos)
{
winstate->aggregatedupto = winstate->frameheadpos;
ExecClearTuple(agg_row_slot);
}
/*
* Advance until we reach a row not in frame (or end of partition).
*
* Note the loop invariant: agg_row_slot is either empty or holds the row
* at position aggregatedupto. We advance aggregatedupto after processing
* a row.
*/
for (;;)
{
int ret;
/* Fetch next row if we didn't already */
if (TupIsNull(agg_row_slot))
{
if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto,
agg_row_slot))
break; /* must be end of partition */
}
/*
* Exit loop if no more rows can be in frame. Skip aggregation if
* current row is not in frame but there might be more in the frame.
*/
ret = row_is_in_frame(winstate, winstate->aggregatedupto, agg_row_slot);
if (ret < 0)
break;
if (ret == 0)
goto next_tuple;
/* Set tuple context for evaluation of aggregate arguments */
winstate->tmpcontext->ecxt_outertuple = agg_row_slot;
/* Accumulate row into the aggregates */
for (i = 0; i < numaggs; i++)
{
peraggstate = &winstate->peragg[i];
/* Non-restarted aggs skip until aggregatedupto_nonrestarted */
if (!peraggstate->restart &&
winstate->aggregatedupto < aggregatedupto_nonrestarted)
continue;
wfuncno = peraggstate->wfuncno;
advance_windowaggregate(winstate,
&winstate->perfunc[wfuncno],
peraggstate);
}
next_tuple:
/* Reset per-input-tuple context after each tuple */
ResetExprContext(winstate->tmpcontext);
/* And advance the aggregated-row state */
winstate->aggregatedupto++;
ExecClearTuple(agg_row_slot);
}
/* The frame's end is not supposed to move backwards, ever */
/*
* In GPDB, though, it's entirely possible, if the START or END offset is
* not a constant.
*/
Assert(frame_head_moved_backwards ||
frame_tail_moved_backwards ||
aggregatedupto_nonrestarted <= winstate->aggregatedupto);
/*
* finalize aggregates and fill result/isnull fields.
*/
for (i = 0; i < numaggs; i++)
{
Datum *result;
bool *isnull;
peraggstate = &winstate->peragg[i];
wfuncno = peraggstate->wfuncno;
result = &econtext->ecxt_aggvalues[wfuncno];
isnull = &econtext->ecxt_aggnulls[wfuncno];
finalize_windowaggregate(winstate,
&winstate->perfunc[wfuncno],
peraggstate,
result, isnull);
/*
* save the result in case next row shares the same frame.
*
* XXX in some framing modes, eg ROWS/END_CURRENT_ROW, we can know in
* advance that the next row can't possibly share the same frame. Is
* it worth detecting that and skipping this code?
*/
if (!peraggstate->resulttypeByVal && !*isnull)
{
oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
peraggstate->resultValue =
datumCopy(*result,
peraggstate->resulttypeByVal,
peraggstate->resulttypeLen);
MemoryContextSwitchTo(oldContext);
}
else
{
peraggstate->resultValue = *result;
}
peraggstate->resultValueIsNull = *isnull;
}
}
/*
* eval_windowfunction
*
* Arguments of window functions are not evaluated here, because a window
* function can need random access to arbitrary rows in the partition.
* The window function uses the special WinGetFuncArgInPartition and
* WinGetFuncArgInFrame functions to evaluate the arguments for the rows
* it wants.
*/
static void
eval_windowfunction(WindowAggState *winstate, WindowStatePerFunc perfuncstate,
Datum *result, bool *isnull)
{
LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
/*
* We don't pass any normal arguments to a window function, but we do pass
* it the number of arguments, in order to permit window function
* implementations to support varying numbers of arguments. The real info
* goes through the WindowObject, which is passed via fcinfo->context.
*/
InitFunctionCallInfoData(*fcinfo, &(perfuncstate->flinfo),
perfuncstate->numArguments,
perfuncstate->winCollation,
(void *) perfuncstate->winobj, NULL);
/* Just in case, make all the regular argument slots be null */
for (int argno = 0; argno < perfuncstate->numArguments; argno++)
fcinfo->args[argno].isnull = true;
/* Window functions don't have a current aggregate context, either */
winstate->curaggcontext = NULL;
*result = FunctionCallInvoke(fcinfo);
*isnull = fcinfo->isnull;
/*
* Make sure pass-by-ref data is allocated in the appropriate context. (We
* need this in case the function returns a pointer into some short-lived
* tuple, as is entirely possible.)
*/
if (!perfuncstate->resulttypeByVal && !fcinfo->isnull &&
!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
DatumGetPointer(*result))
)
*result = datumCopy(*result,
perfuncstate->resulttypeByVal,
perfuncstate->resulttypeLen);
MemoryContextSwitchTo(oldContext);
}
/*
* begin_partition
* Start buffering rows of the next partition.
*/
static void
begin_partition(WindowAggState *winstate)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
PlanState *outerPlan = outerPlanState(winstate);
int frameOptions = winstate->frameOptions;
int numfuncs = winstate->numfuncs;
int i;
winstate->partition_spooled = false;
winstate->framehead_valid = false;
winstate->frametail_valid = false;
winstate->grouptail_valid = false;
winstate->spooled_rows = 0;
winstate->currentpos = 0;
winstate->frameheadpos = 0;
winstate->frametailpos = 0;
winstate->currentgroup = 0;
winstate->frameheadgroup = 0;
winstate->frametailgroup = 0;
winstate->groupheadpos = 0;
winstate->grouptailpos = -1; /* see update_grouptailpos */
ExecClearTuple(winstate->agg_row_slot);
if (winstate->framehead_slot)
ExecClearTuple(winstate->framehead_slot);
if (winstate->frametail_slot)
ExecClearTuple(winstate->frametail_slot);
/*
* If this is the very first partition, we need to fetch the first input
* row to store in first_part_slot.
*/
if (TupIsNull(winstate->first_part_slot))
{
TupleTableSlot *outerslot = ExecProcNode(outerPlan);
if (!TupIsNull(outerslot))
ExecCopySlot(winstate->first_part_slot, outerslot);
else
{
/* outer plan is empty, so we have nothing to do */
winstate->partition_spooled = true;
winstate->more_partitions = false;
return;
}
}
/* Create new tuplestore for this partition */
winstate->buffer =
tuplestore_begin_heap(false, false,
PlanStateOperatorMemKB((PlanState *) winstate));
/*
* Set up read pointers for the tuplestore. The current pointer doesn't
* need BACKWARD capability, but the per-window-function read pointers do,
* and the aggregate pointer does if we might need to restart aggregation.
*/
winstate->current_ptr = 0; /* read pointer 0 is pre-allocated */
/* reset default REWIND capability bit for current ptr */
tuplestore_set_eflags(winstate->buffer, 0);
/* create read pointers for aggregates, if needed */
if (winstate->numaggs > 0)
{
WindowObject agg_winobj = winstate->agg_winobj;
int readptr_flags = 0;
/*
* If the frame head is potentially movable, or we have an EXCLUSION
* clause, we might need to restart aggregation ...
*/
if (!(frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) ||
(frameOptions & FRAMEOPTION_EXCLUSION) ||
!winstate->end_offset_var_free)
{
/* ... so create a mark pointer to track the frame head */
agg_winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, 0);
/* and the read pointer will need BACKWARD capability */
readptr_flags |= EXEC_FLAG_BACKWARD;
}
agg_winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
readptr_flags);
agg_winobj->markpos = -1;
agg_winobj->seekpos = -1;
/* Also reset the row counters for aggregates */
winstate->aggregatedbase = 0;
winstate->aggregatedupto = 0;
}
/* create mark and read pointers for each real window function */
for (i = 0; i < numfuncs; i++)
{
WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
if (!perfuncstate->plain_agg)
{
WindowObject winobj = perfuncstate->winobj;
winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer,
0);
winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
EXEC_FLAG_BACKWARD);
winobj->markpos = -1;
winobj->seekpos = -1;
}
}
/*
* If we are in RANGE or GROUPS mode, then determining frame boundaries
* requires physical access to the frame endpoint rows, except in certain
* degenerate cases. We create read pointers to point to those rows, to
* simplify access and ensure that the tuplestore doesn't discard the
* endpoint rows prematurely. (Must create pointers in exactly the same
* cases that update_frameheadpos and update_frametailpos need them.)
*/
winstate->framehead_ptr = winstate->frametail_ptr = -1; /* if not used */
if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
node->ordNumCols != 0) ||
(frameOptions & FRAMEOPTION_START_OFFSET))
winstate->framehead_ptr =
tuplestore_alloc_read_pointer(winstate->buffer,
winstate->start_offset_var_free ? 0 : EXEC_FLAG_REWIND);
if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
node->ordNumCols != 0) ||
(frameOptions & FRAMEOPTION_END_OFFSET))
winstate->frametail_ptr =
tuplestore_alloc_read_pointer(winstate->buffer,
winstate->end_offset_var_free ? 0 : EXEC_FLAG_REWIND);
}
/*
* If we have an exclusion clause that requires knowing the boundaries of
* the current row's peer group, we create a read pointer to track the
* tail position of the peer group (i.e., first row of the next peer
* group). The head position does not require its own pointer because we
* maintain that as a side effect of advancing the current row.
*/
winstate->grouptail_ptr = -1;
if ((frameOptions & (FRAMEOPTION_EXCLUDE_GROUP |
FRAMEOPTION_EXCLUDE_TIES)) &&
node->ordNumCols != 0)
{
winstate->grouptail_ptr =
tuplestore_alloc_read_pointer(winstate->buffer, 0);
}
/*
* Store the first tuple into the tuplestore (it's always available now;
* we either read it above, or saved it at the end of previous partition)
*/
tuplestore_puttupleslot(winstate->buffer, winstate->first_part_slot);
winstate->spooled_rows++;
}
/*
* Read tuples from the outer node, up to and including position 'pos', and
* store them into the tuplestore. If pos is -1, reads the whole partition.
*/
static void
spool_tuples(WindowAggState *winstate, int64 pos)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
PlanState *outerPlan;
TupleTableSlot *outerslot;
MemoryContext oldcontext;
if (!winstate->buffer)
return; /* just a safety check */
if (winstate->partition_spooled)
return; /* whole partition done already */
/*
* If the tuplestore has spilled to disk, alternate reading and writing
* becomes quite expensive due to frequent buffer flushes. It's cheaper
* to force the entire partition to get spooled in one go.
*
* XXX this is a horrid kluge --- it'd be better to fix the performance
* problem inside tuplestore. FIXME
*/
if (!tuplestore_in_memory(winstate->buffer))
pos = -1;
outerPlan = outerPlanState(winstate);
/* Must be in query context to call outerplan */
oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
while (winstate->spooled_rows <= pos || pos == -1)
{
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
{
/* reached the end of the last partition */
winstate->partition_spooled = true;
winstate->more_partitions = false;
break;
}
if (node->partNumCols > 0)
{
ExprContext *econtext = winstate->tmpcontext;
econtext->ecxt_innertuple = winstate->first_part_slot;
econtext->ecxt_outertuple = outerslot;
/* Check if this tuple still belongs to the current partition */
if (!ExecQualAndReset(winstate->partEqfunction, econtext))
{
/*
* end of partition; copy the tuple for the next cycle.
*/
ExecCopySlot(winstate->first_part_slot, outerslot);
winstate->partition_spooled = true;
winstate->more_partitions = true;
break;
}
}
/* Still in partition, so save it into the tuplestore */
tuplestore_puttupleslot(winstate->buffer, outerslot);
winstate->spooled_rows++;
}
MemoryContextSwitchTo(oldcontext);
}
/*
* release_partition
* clear information kept within a partition, including
* tuplestore and aggregate results.
*/
static void
release_partition(WindowAggState *winstate)
{
int i;
for (i = 0; i < winstate->numfuncs; i++)
{
WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
/* Release any partition-local state of this window function */
if (perfuncstate->winobj)
perfuncstate->winobj->localmem = NULL;
}
/*
* Release all partition-local memory (in particular, any partition-local
* state that we might have trashed our pointers to in the above loop, and
* any aggregate temp data). We don't rely on retail pfree because some
* aggregates might have allocated data we don't have direct pointers to.
*/
MemoryContextResetAndDeleteChildren(winstate->partcontext);
MemoryContextResetAndDeleteChildren(winstate->aggcontext);
for (i = 0; i < winstate->numaggs; i++)
{
if (winstate->peragg[i].aggcontext != winstate->aggcontext)
MemoryContextResetAndDeleteChildren(winstate->peragg[i].aggcontext);
}
if (winstate->buffer)
tuplestore_end(winstate->buffer);
winstate->buffer = NULL;
winstate->partition_spooled = false;
}
/*
* row_is_in_frame
* Determine whether a row is in the current row's window frame according
* to our window framing rule
*
* The caller must have already determined that the row is in the partition
* and fetched it into a slot. This function just encapsulates the framing
* rules.
*
* Returns:
* -1, if the row is out of frame and no succeeding rows can be in frame
* 0, if the row is out of frame but succeeding rows might be in frame
* 1, if the row is in frame
*
* May clobber winstate->temp_slot_2.
*/
static int
row_is_in_frame(WindowAggState *winstate, int64 pos, TupleTableSlot *slot)
{
int frameOptions = winstate->frameOptions;
compute_start_end_offsets(winstate);
Assert(pos >= 0); /* else caller error */
/*
* First, check frame starting conditions. We might as well delegate this
* to update_frameheadpos always; it doesn't add any notable cost.
*/
update_frameheadpos(winstate);
if (pos < winstate->frameheadpos)
return 0;
/*
* Okay so far, now check frame ending conditions. Here, we avoid calling
* update_frametailpos in simple cases, so as not to spool tuples further
* ahead than necessary.
*/
if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
/* rows after current row are out of frame */
if (pos > winstate->currentpos)
return -1;
}
else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
/* following row that is not peer is out of frame */
if (pos > winstate->currentpos &&
!are_peers(winstate, slot, winstate->ss.ss_ScanTupleSlot))
return -1;
}
else
Assert(false);
}
else if (frameOptions & FRAMEOPTION_END_OFFSET)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
int64 offset = DatumGetInt64(winstate->endOffsetValue);
/* rows after current row + offset are out of frame */
if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
offset = -offset;
if (pos > winstate->currentpos + offset)
return -1;
}
else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
/* hard cases, so delegate to update_frametailpos */
update_frametailpos(winstate);
if (pos >= winstate->frametailpos)
return -1;
}
else
Assert(false);
}
/* Check exclusion clause */
if (frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW)
{
if (pos == winstate->currentpos)
return 0;
}
else if ((frameOptions & FRAMEOPTION_EXCLUDE_GROUP) ||
((frameOptions & FRAMEOPTION_EXCLUDE_TIES) &&
pos != winstate->currentpos))
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
/* If no ORDER BY, all rows are peers with each other */
if (node->ordNumCols == 0)
return 0;
/* Otherwise, check the group boundaries */
if (pos >= winstate->groupheadpos)
{
update_grouptailpos(winstate);
if (pos < winstate->grouptailpos)
return 0;
}
}
/* If we get here, it's in frame */
return 1;
}
/*
* update_frameheadpos
* make frameheadpos valid for the current row
*
* Note that frameheadpos is computed without regard for any window exclusion
* clause; the current row and/or its peers are considered part of the frame
* for this purpose even if they must be excluded later.
*
* May clobber winstate->temp_slot_2.
*/
static void
update_frameheadpos(WindowAggState *winstate)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
int frameOptions = winstate->frameOptions;
MemoryContext oldcontext;
if (winstate->framehead_valid)
return; /* already known for current row */
/* We may be called in a short-lived context */
oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
compute_start_end_offsets(winstate);
if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
{
/* In UNBOUNDED PRECEDING mode, frame head is always row 0 */
winstate->frameheadpos = 0;
winstate->framehead_valid = true;
}
else if (frameOptions & FRAMEOPTION_START_CURRENT_ROW)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
/* In ROWS mode, frame head is the same as current */
winstate->frameheadpos = winstate->currentpos;
winstate->framehead_valid = true;
}
else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
/* If no ORDER BY, all rows are peers with each other */
if (node->ordNumCols == 0)
{
winstate->frameheadpos = 0;
winstate->framehead_valid = true;
MemoryContextSwitchTo(oldcontext);
return;
}
/*
* In RANGE or GROUPS START_CURRENT_ROW mode, frame head is the
* first row that is a peer of current row. We keep a copy of the
* last-known frame head row in framehead_slot, and advance as
* necessary. Note that if we reach end of partition, we will
* leave frameheadpos = end+1 and framehead_slot empty.
*/
tuplestore_select_read_pointer(winstate->buffer,
winstate->framehead_ptr);
if (winstate->frameheadpos == 0 &&
TupIsNull(winstate->framehead_slot))
{
/* fetch first row into framehead_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->framehead_slot))
{
if (are_peers(winstate, winstate->framehead_slot,
winstate->ss.ss_ScanTupleSlot))
break; /* this row is the correct frame head */
/* Note we advance frameheadpos even if the fetch fails */
winstate->frameheadpos++;
spool_tuples(winstate, winstate->frameheadpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
break; /* end of partition */
}
winstate->framehead_valid = true;
}
else
Assert(false);
}
else if (frameOptions & FRAMEOPTION_START_OFFSET)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
/* In ROWS mode, bound is physically n before/after current */
int64 offset = DatumGetInt64(winstate->startOffsetValue);
if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
offset = -offset;
winstate->frameheadpos = winstate->currentpos + offset;
/* frame head can't go before first row */
if (winstate->frameheadpos < 0)
winstate->frameheadpos = 0;
else if (winstate->frameheadpos > winstate->currentpos + 1)
{
/* make sure frameheadpos is not past end of partition */
spool_tuples(winstate, winstate->frameheadpos - 1);
if (winstate->frameheadpos > winstate->spooled_rows)
winstate->frameheadpos = winstate->spooled_rows;
}
winstate->framehead_valid = true;
}
else if (frameOptions & FRAMEOPTION_RANGE)
{
/*
* In RANGE START_OFFSET mode, frame head is the first row that
* satisfies the in_range constraint relative to the current row.
* We keep a copy of the last-known frame head row in
* framehead_slot, and advance as necessary. Note that if we
* reach end of partition, we will leave frameheadpos = end+1 and
* framehead_slot empty.
*/
int sortCol = node->ordColIdx[0];
bool sub,
less;
/* We must have an ordering column */
Assert(node->ordNumCols == 1);
/* Precompute flags for in_range checks */
if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
sub = true; /* subtract startOffset from current row */
else
sub = false; /* add it */
less = false; /* normally, we want frame head >= sum */
/* If sort order is descending, flip both flags */
if (!winstate->inRangeAsc)
{
sub = !sub;
less = true;
}
tuplestore_select_read_pointer(winstate->buffer,
winstate->framehead_ptr);
/*
* GPDB: If the start offset is not a constant, always start from
* the beginning.
*
* XXX: This is very expensive. A smarter strategy might be
* to walk backwards from the previous frame head, until we reach
* a row that doesn't belong in the frame anymore.
*/
if (!winstate->start_offset_var_free)
{
winstate->frameheadpos = 0;
ExecClearTuple(winstate->framehead_slot);
tuplestore_rescan(winstate->buffer);
}
if (winstate->frameheadpos == 0 &&
TupIsNull(winstate->framehead_slot))
{
/* fetch first row into framehead_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->framehead_slot))
{
Datum headval,
currval;
bool headisnull,
currisnull;
headval = slot_getattr(winstate->framehead_slot, sortCol,
&headisnull);
currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
&currisnull);
if (headisnull || currisnull)
{
/* order of the rows depends only on nulls_first */
if (winstate->inRangeNullsFirst)
{
/* advance head if head is null and curr is not */
if (!headisnull || currisnull)
break;
}
else
{
/* advance head if head is not null and curr is null */
if (headisnull || !currisnull)
break;
}
}
else
{
if (DatumGetBool(FunctionCall5Coll(&winstate->startInRangeFunc,
winstate->inRangeColl,
headval,
currval,
winstate->startOffsetValue,
BoolGetDatum(sub),
BoolGetDatum(less))))
break; /* this row is the correct frame head */
}
/* Note we advance frameheadpos even if the fetch fails */
winstate->frameheadpos++;
spool_tuples(winstate, winstate->frameheadpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
break; /* end of partition */
}
winstate->framehead_valid = true;
}
else if (frameOptions & FRAMEOPTION_GROUPS)
{
/*
* In GROUPS START_OFFSET mode, frame head is the first row of the
* first peer group whose number satisfies the offset constraint.
* We keep a copy of the last-known frame head row in
* framehead_slot, and advance as necessary. Note that if we
* reach end of partition, we will leave frameheadpos = end+1 and
* framehead_slot empty.
*/
int64 offset = DatumGetInt64(winstate->startOffsetValue);
int64 minheadgroup;
if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
minheadgroup = winstate->currentgroup - offset;
else
minheadgroup = winstate->currentgroup + offset;
tuplestore_select_read_pointer(winstate->buffer,
winstate->framehead_ptr);
if (winstate->frameheadpos == 0 &&
TupIsNull(winstate->framehead_slot))
{
/* fetch first row into framehead_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->framehead_slot))
{
if (winstate->frameheadgroup >= minheadgroup)
break; /* this row is the correct frame head */
ExecCopySlot(winstate->temp_slot_2, winstate->framehead_slot);
/* Note we advance frameheadpos even if the fetch fails */
winstate->frameheadpos++;
spool_tuples(winstate, winstate->frameheadpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->framehead_slot))
break; /* end of partition */
if (!are_peers(winstate, winstate->temp_slot_2,
winstate->framehead_slot))
winstate->frameheadgroup++;
}
ExecClearTuple(winstate->temp_slot_2);
winstate->framehead_valid = true;
}
else
Assert(false);
}
else
Assert(false);
MemoryContextSwitchTo(oldcontext);
}
/*
* update_frametailpos
* make frametailpos valid for the current row
*
* Note that frametailpos is computed without regard for any window exclusion
* clause; the current row and/or its peers are considered part of the frame
* for this purpose even if they must be excluded later.
*
* May clobber winstate->temp_slot_2.
*/
static void
update_frametailpos(WindowAggState *winstate)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
int frameOptions = winstate->frameOptions;
MemoryContext oldcontext;
if (winstate->frametail_valid)
return; /* already known for current row */
/* We may be called in a short-lived context */
oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
compute_start_end_offsets(winstate);
if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
{
/* In UNBOUNDED FOLLOWING mode, all partition rows are in frame */
spool_tuples(winstate, -1);
winstate->frametailpos = winstate->spooled_rows;
winstate->frametail_valid = true;
}
else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
/* In ROWS mode, exactly the rows up to current are in frame */
winstate->frametailpos = winstate->currentpos + 1;
winstate->frametail_valid = true;
}
else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
/* If no ORDER BY, all rows are peers with each other */
if (node->ordNumCols == 0)
{
spool_tuples(winstate, -1);
winstate->frametailpos = winstate->spooled_rows;
winstate->frametail_valid = true;
MemoryContextSwitchTo(oldcontext);
return;
}
/*
* In RANGE or GROUPS END_CURRENT_ROW mode, frame end is the last
* row that is a peer of current row, frame tail is the row after
* that (if any). We keep a copy of the last-known frame tail row
* in frametail_slot, and advance as necessary. Note that if we
* reach end of partition, we will leave frametailpos = end+1 and
* frametail_slot empty.
*/
tuplestore_select_read_pointer(winstate->buffer,
winstate->frametail_ptr);
if (winstate->frametailpos == 0 &&
TupIsNull(winstate->frametail_slot))
{
/* fetch first row into frametail_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->frametail_slot))
{
if (winstate->frametailpos > winstate->currentpos &&
!are_peers(winstate, winstate->frametail_slot,
winstate->ss.ss_ScanTupleSlot))
break; /* this row is the frame tail */
/* Note we advance frametailpos even if the fetch fails */
winstate->frametailpos++;
spool_tuples(winstate, winstate->frametailpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
break; /* end of partition */
}
winstate->frametail_valid = true;
}
else
Assert(false);
}
else if (frameOptions & FRAMEOPTION_END_OFFSET)
{
if (frameOptions & FRAMEOPTION_ROWS)
{
/* In ROWS mode, bound is physically n before/after current */
int64 offset = DatumGetInt64(winstate->endOffsetValue);
if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
offset = -offset;
winstate->frametailpos = winstate->currentpos + offset + 1;
/* smallest allowable value of frametailpos is 0 */
if (winstate->frametailpos < 0)
winstate->frametailpos = 0;
else if (winstate->frametailpos > winstate->currentpos + 1)
{
/* make sure frametailpos is not past end of partition */
spool_tuples(winstate, winstate->frametailpos - 1);
if (winstate->frametailpos > winstate->spooled_rows)
winstate->frametailpos = winstate->spooled_rows;
}
winstate->frametail_valid = true;
}
else if (frameOptions & FRAMEOPTION_RANGE)
{
/*
* In RANGE END_OFFSET mode, frame end is the last row that
* satisfies the in_range constraint relative to the current row,
* frame tail is the row after that (if any). We keep a copy of
* the last-known frame tail row in frametail_slot, and advance as
* necessary. Note that if we reach end of partition, we will
* leave frametailpos = end+1 and frametail_slot empty.
*/
int sortCol = node->ordColIdx[0];
bool sub,
less;
/* We must have an ordering column */
Assert(node->ordNumCols == 1);
/* Precompute flags for in_range checks */
if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
sub = true; /* subtract endOffset from current row */
else
sub = false; /* add it */
less = true; /* normally, we want frame tail <= sum */
/* If sort order is descending, flip both flags */
if (!winstate->inRangeAsc)
{
sub = !sub;
less = false;
}
tuplestore_select_read_pointer(winstate->buffer,
winstate->frametail_ptr);
/*
* GPDB: If the end offset is not a constant, always start from
* the beginning.
*
* XXX: This is very expensive. A smarter strategy might be
* to walk backwards from the previous frame tail until
* we reach the last row that's in the frame. Or at least we
* should begin from frame headpos.
*/
if (!winstate->end_offset_var_free)
{
winstate->frametailpos = 0;
ExecClearTuple(winstate->frametail_slot);
tuplestore_rescan(winstate->buffer);
}
if (winstate->frametailpos == 0 &&
TupIsNull(winstate->frametail_slot))
{
/* fetch first row into frametail_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->frametail_slot))
{
Datum tailval,
currval;
bool tailisnull,
currisnull;
tailval = slot_getattr(winstate->frametail_slot, sortCol,
&tailisnull);
currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
&currisnull);
if (tailisnull || currisnull)
{
/* order of the rows depends only on nulls_first */
if (winstate->inRangeNullsFirst)
{
/* advance tail if tail is null or curr is not */
if (!tailisnull)
break;
}
else
{
/* advance tail if tail is not null or curr is null */
if (!currisnull)
break;
}
}
else
{
if (!DatumGetBool(FunctionCall5Coll(&winstate->endInRangeFunc,
winstate->inRangeColl,
tailval,
currval,
winstate->endOffsetValue,
BoolGetDatum(sub),
BoolGetDatum(less))))
break; /* this row is the correct frame tail */
}
/* Note we advance frametailpos even if the fetch fails */
winstate->frametailpos++;
spool_tuples(winstate, winstate->frametailpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
break; /* end of partition */
}
winstate->frametail_valid = true;
}
else if (frameOptions & FRAMEOPTION_GROUPS)
{
/*
* In GROUPS END_OFFSET mode, frame end is the last row of the
* last peer group whose number satisfies the offset constraint,
* and frame tail is the row after that (if any). We keep a copy
* of the last-known frame tail row in frametail_slot, and advance
* as necessary. Note that if we reach end of partition, we will
* leave frametailpos = end+1 and frametail_slot empty.
*/
int64 offset = DatumGetInt64(winstate->endOffsetValue);
int64 maxtailgroup;
if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
maxtailgroup = winstate->currentgroup - offset;
else
maxtailgroup = winstate->currentgroup + offset;
tuplestore_select_read_pointer(winstate->buffer,
winstate->frametail_ptr);
if (winstate->frametailpos == 0 &&
TupIsNull(winstate->frametail_slot))
{
/* fetch first row into frametail_slot, if we didn't already */
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
elog(ERROR, "unexpected end of tuplestore");
}
while (!TupIsNull(winstate->frametail_slot))
{
if (winstate->frametailgroup > maxtailgroup)
break; /* this row is the correct frame tail */
ExecCopySlot(winstate->temp_slot_2, winstate->frametail_slot);
/* Note we advance frametailpos even if the fetch fails */
winstate->frametailpos++;
spool_tuples(winstate, winstate->frametailpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->frametail_slot))
break; /* end of partition */
if (!are_peers(winstate, winstate->temp_slot_2,
winstate->frametail_slot))
winstate->frametailgroup++;
}
ExecClearTuple(winstate->temp_slot_2);
winstate->frametail_valid = true;
}
else
Assert(false);
}
else
Assert(false);
MemoryContextSwitchTo(oldcontext);
}
/*
* update_grouptailpos
* make grouptailpos valid for the current row
*
* May clobber winstate->temp_slot_2.
*/
static void
update_grouptailpos(WindowAggState *winstate)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
MemoryContext oldcontext;
if (winstate->grouptail_valid)
return; /* already known for current row */
/* We may be called in a short-lived context */
oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
/* If no ORDER BY, all rows are peers with each other */
if (node->ordNumCols == 0)
{
spool_tuples(winstate, -1);
winstate->grouptailpos = winstate->spooled_rows;
winstate->grouptail_valid = true;
MemoryContextSwitchTo(oldcontext);
return;
}
/*
* Because grouptail_valid is reset only when current row advances into a
* new peer group, we always reach here knowing that grouptailpos needs to
* be advanced by at least one row. Hence, unlike the otherwise similar
* case for frame tail tracking, we do not need persistent storage of the
* group tail row.
*/
Assert(winstate->grouptailpos <= winstate->currentpos);
tuplestore_select_read_pointer(winstate->buffer,
winstate->grouptail_ptr);
for (;;)
{
/* Note we advance grouptailpos even if the fetch fails */
winstate->grouptailpos++;
spool_tuples(winstate, winstate->grouptailpos);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->temp_slot_2))
break; /* end of partition */
if (winstate->grouptailpos > winstate->currentpos &&
!are_peers(winstate, winstate->temp_slot_2,
winstate->ss.ss_ScanTupleSlot))
break; /* this row is the group tail */
}
ExecClearTuple(winstate->temp_slot_2);
winstate->grouptail_valid = true;
MemoryContextSwitchTo(oldcontext);
}
static void
compute_start_end_offsets(WindowAggState *winstate)
{
int frameOptions = winstate->frameOptions;
ExprContext *econtext = winstate->ss.ps.ps_ExprContext;
Datum value;
bool isnull;
int16 len;
bool byval;
/*
* Compute frame offset values, if any
*/
if (!winstate->start_offset_valid)
{
econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
if (frameOptions & FRAMEOPTION_START_OFFSET)
{
Assert(winstate->startOffset != NULL);
value = ExecEvalExprSwitchContext(winstate->startOffset,
econtext,
&isnull);
if (isnull)
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("frame starting offset must not be null")));
/* copy value into query-lifespan context */
get_typlenbyval(exprType((Node *) winstate->startOffset->expr),
&len, &byval);
winstate->startOffsetValue = datumCopy(value, byval, len);
if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
{
/* value is known to be int8 */
int64 offset = DatumGetInt64(value);
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("frame starting offset must not be negative")));
}
}
winstate->start_offset_valid = true;
}
if (!winstate->end_offset_valid)
{
econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
if (frameOptions & FRAMEOPTION_END_OFFSET)
{
Assert(winstate->endOffset != NULL);
value = ExecEvalExprSwitchContext(winstate->endOffset,
econtext,
&isnull);
if (isnull)
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("frame ending offset must not be null")));
/* copy value into query-lifespan context */
get_typlenbyval(exprType((Node *) winstate->endOffset->expr),
&len, &byval);
winstate->endOffsetValue = datumCopy(value, byval, len);
if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
{
/* value is known to be int8 */
int64 offset = DatumGetInt64(value);
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("frame ending offset must not be negative")));
}
}
winstate->end_offset_valid = true;
}
}
/* -----------------
* ExecWindowAgg
*
* ExecWindowAgg receives tuples from its outer subplan and
* stores them into a tuplestore, then processes window functions.
* This node doesn't reduce nor qualify any row so the number of
* returned rows is exactly the same as its outer subplan's result.
* -----------------
*/
static TupleTableSlot *
ExecWindowAgg(PlanState *pstate)
{
WindowAggState *winstate = castNode(WindowAggState, pstate);
ExprContext *econtext;
int i;
int numfuncs;
CHECK_FOR_INTERRUPTS();
if (winstate->all_done)
return NULL;
/*
* Compute frame offset values, if any, during first call (or after a
* rescan). These are assumed to hold constant throughout the scan; if
* user gives us a volatile expression, we'll only use its initial value.
*
* GPDB: We accept non-constant frame offsets, too. If they're not
* constants, we'll compute them later.
*/
if (winstate->all_first &&
winstate->start_offset_var_free &&
winstate->end_offset_var_free)
{
compute_start_end_offsets(winstate);
winstate->all_first = false;
}
if (winstate->buffer == NULL)
{
/* Initialize for first partition and set current row = 0 */
begin_partition(winstate);
/* If there are no input rows, we'll detect that and exit below */
}
else
{
/* Advance current row within partition */
winstate->currentpos++;
/* This might mean that the frame moves, too */
winstate->framehead_valid = false;
winstate->frametail_valid = false;
/* we don't need to invalidate grouptail here; see below */
if (!winstate->start_offset_var_free)
winstate->start_offset_valid = false;
if (!winstate->end_offset_var_free)
winstate->end_offset_valid = false;
}
/*
* Spool all tuples up to and including the current row, if we haven't
* already
*/
spool_tuples(winstate, winstate->currentpos);
#ifdef FAULT_INJECTOR
/*
* This routine is used for testing if we have allocated enough memory
* for the tuplestore (winstate->buffer) in begin_partition(). If all
* tuples of the current partition can be fitted in the memory, we
* emit a notice saying 'fitted in memory'. If they cannot be fitted in
* the memory, we emit a notice saying 'spilled to disk'. If there're
* no input rows, we emit a notice saying 'no input rows'.
*
* NOTE: The fault-injector only triggers once, we emit the notice when
* we finishes spooling all the tuples of the first partition.
*/
if (winstate->partition_spooled &&
winstate->currentpos >= winstate->spooled_rows &&
SIMPLE_FAULT_INJECTOR("winagg_after_spool_tuples") == FaultInjectorTypeSkip)
{
if (winstate->buffer)
{
if (tuplestore_in_memory(winstate->buffer))
ereport(NOTICE, (errmsg("winagg: tuplestore fitted in memory")));
else
ereport(NOTICE, (errmsg("winagg: tuplestore spilled to disk")));
}
else
ereport(NOTICE, (errmsg("winagg: no input rows")));
}
#endif
/* Move to the next partition if we reached the end of this partition */
if (winstate->partition_spooled &&
winstate->currentpos >= winstate->spooled_rows)
{
release_partition(winstate);
if (winstate->more_partitions)
{
begin_partition(winstate);
Assert(winstate->spooled_rows > 0);
}
else
{
winstate->all_done = true;
return NULL;
}
}
/* final output execution is in ps_ExprContext */
econtext = winstate->ss.ps.ps_ExprContext;
/* Clear the per-output-tuple context for current row */
ResetExprContext(econtext);
/*
* Read the current row from the tuplestore, and save in ScanTupleSlot.
* (We can't rely on the outerplan's output slot because we may have to
* read beyond the current row. Also, we have to actually copy the row
* out of the tuplestore, since window function evaluation might cause the
* tuplestore to dump its state to disk.)
*
* In GROUPS mode, or when tracking a group-oriented exclusion clause, we
* must also detect entering a new peer group and update associated state
* when that happens. We use temp_slot_2 to temporarily hold the previous
* row for this purpose.
*
* Current row must be in the tuplestore, since we spooled it above.
*/
tuplestore_select_read_pointer(winstate->buffer, winstate->current_ptr);
if ((winstate->frameOptions & (FRAMEOPTION_GROUPS |
FRAMEOPTION_EXCLUDE_GROUP |
FRAMEOPTION_EXCLUDE_TIES)) &&
winstate->currentpos > 0)
{
ExecCopySlot(winstate->temp_slot_2, winstate->ss.ss_ScanTupleSlot);
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->ss.ss_ScanTupleSlot))
elog(ERROR, "unexpected end of tuplestore");
if (!are_peers(winstate, winstate->temp_slot_2,
winstate->ss.ss_ScanTupleSlot))
{
winstate->currentgroup++;
winstate->groupheadpos = winstate->currentpos;
winstate->grouptail_valid = false;
}
ExecClearTuple(winstate->temp_slot_2);
}
else
{
if (!tuplestore_gettupleslot(winstate->buffer, true, true,
winstate->ss.ss_ScanTupleSlot))
elog(ERROR, "unexpected end of tuplestore");
}
/*
* Evaluate true window functions
*/
numfuncs = winstate->numfuncs;
for (i = 0; i < numfuncs; i++)
{
WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
if (perfuncstate->plain_agg)
continue;
eval_windowfunction(winstate, perfuncstate,
&(econtext->ecxt_aggvalues[perfuncstate->wfuncstate->wfuncno]),
&(econtext->ecxt_aggnulls[perfuncstate->wfuncstate->wfuncno]));
}
/*
* Evaluate aggregates
*/
if (winstate->numaggs > 0)
eval_windowaggregates(winstate);
/*
* If we have created auxiliary read pointers for the frame or group
* boundaries, force them to be kept up-to-date, because we don't know
* whether the window function(s) will do anything that requires that.
* Failing to advance the pointers would result in being unable to trim
* data from the tuplestore, which is bad. (If we could know in advance
* whether the window functions will use frame boundary info, we could
* skip creating these pointers in the first place ... but unfortunately
* the window function API doesn't require that.)
*/
if (winstate->framehead_ptr >= 0)
update_frameheadpos(winstate);
if (winstate->frametail_ptr >= 0)
update_frametailpos(winstate);
if (winstate->grouptail_ptr >= 0)
update_grouptailpos(winstate);
/*
* Truncate any no-longer-needed rows from the tuplestore.
*/
tuplestore_trim(winstate->buffer);
/*
* Form and return a projection tuple using the windowfunc results and the
* current row. Setting ecxt_outertuple arranges that any Vars will be
* evaluated with respect to that row.
*/
econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
return ExecProject(winstate->ss.ps.ps_ProjInfo);
}
/* -----------------
* ExecInitWindowAgg
*
* Creates the run-time information for the WindowAgg node produced by the
* planner and initializes its outer subtree
* -----------------
*/
WindowAggState *
ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags)
{
WindowAggState *winstate;
Plan *outerPlan;
ExprContext *econtext;
ExprContext *tmpcontext;
WindowStatePerFunc perfunc;
WindowStatePerAgg peragg;
int frameOptions = node->frameOptions;
int numfuncs,
wfuncno,
numaggs,
aggno;
TupleDesc scanDesc;
ListCell *l;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
winstate = makeNode(WindowAggState);
winstate->ss.ps.plan = (Plan *) node;
winstate->ss.ps.state = estate;
winstate->ss.ps.ExecProcNode = ExecWindowAgg;
/*
* Create expression contexts. We need two, one for per-input-tuple
* processing and one for per-output-tuple processing. We cheat a little
* by using ExecAssignExprContext() to build both.
*/
ExecAssignExprContext(estate, &winstate->ss.ps);
tmpcontext = winstate->ss.ps.ps_ExprContext;
winstate->tmpcontext = tmpcontext;
ExecAssignExprContext(estate, &winstate->ss.ps);
/* Create long-lived context for storage of partition-local memory etc */
winstate->partcontext =
AllocSetContextCreate(CurrentMemoryContext,
"WindowAgg Partition",
ALLOCSET_DEFAULT_SIZES);
/*
* Create mid-lived context for aggregate trans values etc.
*
* Note that moving aggregates each use their own private context, not
* this one.
*/
winstate->aggcontext =
AllocSetContextCreate(CurrentMemoryContext,
"WindowAgg Aggregates",
ALLOCSET_DEFAULT_SIZES);
/*
* WindowAgg nodes never have quals, since they can only occur at the
* logical top level of a query (ie, after any WHERE or HAVING filters)
*/
Assert(node->plan.qual == NIL);
winstate->ss.ps.qual = NULL;
/*
* initialize child nodes
*/
outerPlan = outerPlan(node);
outerPlanState(winstate) = ExecInitNode(outerPlan, estate, eflags);
/*
* initialize source tuple type (which is also the tuple type that we'll
* store in the tuplestore and use in all our working slots).
*/
ExecCreateScanSlotFromOuterPlan(estate, &winstate->ss, &TTSOpsMinimalTuple);
scanDesc = winstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
/* the outer tuple isn't the child's tuple, but always a minimal tuple */
winstate->ss.ps.outeropsset = true;
winstate->ss.ps.outerops = &TTSOpsMinimalTuple;
winstate->ss.ps.outeropsfixed = true;
/*
* tuple table initialization
*/
winstate->first_part_slot = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
winstate->agg_row_slot = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
winstate->temp_slot_1 = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
winstate->temp_slot_2 = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
/*
* create frame head and tail slots only if needed (must create slots in
* exactly the same cases that update_frameheadpos and update_frametailpos
* need them)
*/
winstate->framehead_slot = winstate->frametail_slot = NULL;
if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
{
if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
node->ordNumCols != 0) ||
(frameOptions & FRAMEOPTION_START_OFFSET))
winstate->framehead_slot = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
node->ordNumCols != 0) ||
(frameOptions & FRAMEOPTION_END_OFFSET))
winstate->frametail_slot = ExecInitExtraTupleSlot(estate, scanDesc,
&TTSOpsMinimalTuple);
}
/*
* Initialize result slot, type and projection.
*/
ExecInitResultTupleSlotTL(&winstate->ss.ps, &TTSOpsVirtual);
ExecAssignProjectionInfo(&winstate->ss.ps, NULL);
/* Set up data for comparing tuples */
if (node->partNumCols > 0)
winstate->partEqfunction =
execTuplesMatchPrepare(scanDesc,
node->partNumCols,
node->partColIdx,
node->partOperators,
node->partCollations,
&winstate->ss.ps);
if (node->ordNumCols > 0)
winstate->ordEqfunction =
execTuplesMatchPrepare(scanDesc,
node->ordNumCols,
node->ordColIdx,
node->ordOperators,
node->ordCollations,
&winstate->ss.ps);
/*
* WindowAgg nodes use aggvalues and aggnulls as well as Agg nodes.
*/
numfuncs = winstate->numfuncs;
numaggs = winstate->numaggs;
econtext = winstate->ss.ps.ps_ExprContext;
econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numfuncs);
econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numfuncs);
/*
* allocate per-wfunc/per-agg state information.
*/
perfunc = (WindowStatePerFunc) palloc0(sizeof(WindowStatePerFuncData) * numfuncs);
peragg = (WindowStatePerAgg) palloc0(sizeof(WindowStatePerAggData) * numaggs);
winstate->perfunc = perfunc;
winstate->peragg = peragg;
wfuncno = -1;
aggno = -1;
foreach(l, winstate->funcs)
{
WindowFuncExprState *wfuncstate = (WindowFuncExprState *) lfirst(l);
WindowFunc *wfunc = wfuncstate->wfunc;
WindowStatePerFunc perfuncstate;
AclResult aclresult;
int i;
if (wfunc->winref != node->winref) /* planner screwed up? */
elog(ERROR, "WindowFunc with winref %u assigned to WindowAgg with winref %u",
wfunc->winref, node->winref);
/* Look for a previous duplicate window function */
for (i = 0; i <= wfuncno; i++)
{
if (equal(wfunc, perfunc[i].wfunc) &&
!contain_volatile_functions((Node *) wfunc))
break;
}
if (i <= wfuncno)
{
/* Found a match to an existing entry, so just mark it */
wfuncstate->wfuncno = i;
continue;
}
/* Nope, so assign a new PerAgg record */
perfuncstate = &perfunc[++wfuncno];
/* Mark WindowFunc state node with assigned index in the result array */
wfuncstate->wfuncno = wfuncno;
/* Check permission to call window function */
aclresult = pg_proc_aclcheck(wfunc->winfnoid, GetUserId(),
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(wfunc->winfnoid));
InvokeFunctionExecuteHook(wfunc->winfnoid);
/* Fill in the perfuncstate data */
perfuncstate->wfuncstate = wfuncstate;
perfuncstate->wfunc = wfunc;
perfuncstate->numArguments = list_length(wfuncstate->args);
fmgr_info_cxt(wfunc->winfnoid, &perfuncstate->flinfo,
econtext->ecxt_per_query_memory);
fmgr_info_set_expr((Node *) wfunc, &perfuncstate->flinfo);
perfuncstate->winCollation = wfunc->inputcollid;
get_typlenbyval(wfunc->wintype,
&perfuncstate->resulttypeLen,
&perfuncstate->resulttypeByVal);
/*
* If it's really just a plain aggregate function, we'll emulate the
* Agg environment for it.
*/
perfuncstate->plain_agg = wfunc->winagg;
if (wfunc->winagg)
{
WindowStatePerAgg peraggstate;
perfuncstate->aggno = ++aggno;
peraggstate = &winstate->peragg[aggno];
initialize_peragg(winstate, wfunc, peraggstate);
peraggstate->wfuncno = wfuncno;
}
else
{
WindowObject winobj = makeNode(WindowObjectData);
winobj->winstate = winstate;
winobj->argstates = wfuncstate->args;
winobj->localmem = NULL;
perfuncstate->winobj = winobj;
}
}
/* Update numfuncs, numaggs to match number of unique functions found */
winstate->numfuncs = wfuncno + 1;
winstate->numaggs = aggno + 1;
/* Set up WindowObject for aggregates, if needed */
if (winstate->numaggs > 0)
{
WindowObject agg_winobj = makeNode(WindowObjectData);
agg_winobj->winstate = winstate;
agg_winobj->argstates = NIL;
agg_winobj->localmem = NULL;
/* make sure markptr = -1 to invalidate. It may not get used */
agg_winobj->markptr = -1;
agg_winobj->readptr = -1;
winstate->agg_winobj = agg_winobj;
}
/* copy frame options to state node for easy access */
winstate->frameOptions = frameOptions;
/* initialize frame bound offset expressions */
winstate->startOffset = ExecInitExpr((Expr *) node->startOffset,
(PlanState *) winstate);
winstate->endOffset = ExecInitExpr((Expr *) node->endOffset,
(PlanState *) winstate);
/* Lookup in_range support functions if needed */
if (OidIsValid(node->startInRangeFunc))
fmgr_info(node->startInRangeFunc, &winstate->startInRangeFunc);
if (OidIsValid(node->endInRangeFunc))
fmgr_info(node->endInRangeFunc, &winstate->endInRangeFunc);
winstate->inRangeColl = node->inRangeColl;
winstate->inRangeAsc = node->inRangeAsc;
winstate->inRangeNullsFirst = node->inRangeNullsFirst;
winstate->start_offset_var_free =
!contain_var_clause(node->startOffset) &&
!contain_volatile_functions(node->startOffset);
winstate->end_offset_var_free =
!contain_var_clause(node->endOffset) &&
!contain_volatile_functions(node->endOffset);
winstate->all_first = true;
winstate->partition_spooled = false;
winstate->more_partitions = false;
return winstate;
}
/* -----------------
* ExecEndWindowAgg
* -----------------
*/
void
ExecEndWindowAgg(WindowAggState *node)
{
PlanState *outerPlan;
int i;
release_partition(node);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
ExecClearTuple(node->first_part_slot);
ExecClearTuple(node->agg_row_slot);
ExecClearTuple(node->temp_slot_1);
ExecClearTuple(node->temp_slot_2);
if (node->framehead_slot)
ExecClearTuple(node->framehead_slot);
if (node->frametail_slot)
ExecClearTuple(node->frametail_slot);
/*
* Free both the expr contexts.
*/
ExecFreeExprContext(&node->ss.ps);
node->ss.ps.ps_ExprContext = node->tmpcontext;
ExecFreeExprContext(&node->ss.ps);
for (i = 0; i < node->numaggs; i++)
{
if (node->peragg[i].aggcontext != node->aggcontext)
MemoryContextDelete(node->peragg[i].aggcontext);
}
MemoryContextDelete(node->partcontext);
MemoryContextDelete(node->aggcontext);
pfree(node->perfunc);
pfree(node->peragg);
outerPlan = outerPlanState(node);
ExecEndNode(outerPlan);
}
/* -----------------
* ExecReScanWindowAgg
* -----------------
*/
void
ExecReScanWindowAgg(WindowAggState *node)
{
PlanState *outerPlan = outerPlanState(node);
ExprContext *econtext = node->ss.ps.ps_ExprContext;
node->all_done = false;
node->all_first = true;
/* release tuplestore et al */
release_partition(node);
/* release all temp tuples, but especially first_part_slot */
ExecClearTuple(node->ss.ss_ScanTupleSlot);
ExecClearTuple(node->first_part_slot);
ExecClearTuple(node->agg_row_slot);
ExecClearTuple(node->temp_slot_1);
ExecClearTuple(node->temp_slot_2);
if (node->framehead_slot)
ExecClearTuple(node->framehead_slot);
if (node->frametail_slot)
ExecClearTuple(node->frametail_slot);
/* Forget current wfunc values */
MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numfuncs);
MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numfuncs);
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
}
void
ExecSquelchWindowAgg(WindowAggState *node)
{
// TODO: do some eager freeing here?
ExecSquelchNode(outerPlanState(node));
}
/*
* initialize_peragg
*
* Almost same as in nodeAgg.c, except we don't support DISTINCT currently.
*/
static WindowStatePerAggData *
initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc,
WindowStatePerAgg peraggstate)
{
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
HeapTuple aggTuple;
Form_pg_aggregate aggform;
Oid aggtranstype;
AttrNumber initvalAttNo;
AclResult aclresult;
bool use_ma_code;
Oid transfn_oid,
invtransfn_oid,
finalfn_oid;
bool finalextra;
char finalmodify;
Expr *transfnexpr,
*invtransfnexpr,
*finalfnexpr;
Datum textInitVal;
int i;
ListCell *lc;
numArguments = list_length(wfunc->args);
i = 0;
foreach(lc, wfunc->args)
{
inputTypes[i++] = exprType((Node *) lfirst(lc));
}
aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(wfunc->winfnoid));
if (!HeapTupleIsValid(aggTuple))
elog(ERROR, "cache lookup failed for aggregate %u",
wfunc->winfnoid);
aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
/*
* Figure out whether we want to use the moving-aggregate implementation,
* and collect the right set of fields from the pg_attribute entry.
*
* It's possible that an aggregate would supply a safe moving-aggregate
* implementation and an unsafe normal one, in which case our hand is
* forced. Otherwise, if the frame head can't move, we don't need
* moving-aggregate code. Even if we'd like to use it, don't do so if the
* aggregate's arguments (and FILTER clause if any) contain any calls to
* volatile functions. Otherwise, the difference between restarting and
* not restarting the aggregation would be user-visible.
*/
if (!OidIsValid(aggform->aggminvtransfn))
use_ma_code = false; /* sine qua non */
else if (aggform->aggmfinalmodify == AGGMODIFY_READ_ONLY &&
aggform->aggfinalmodify != AGGMODIFY_READ_ONLY)
use_ma_code = true; /* decision forced by safety */
else if (winstate->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
use_ma_code = false; /* non-moving frame head */
else if (contain_volatile_functions((Node *) wfunc))
use_ma_code = false; /* avoid possible behavioral change */
else
use_ma_code = true; /* yes, let's use it */
if (use_ma_code)
{
peraggstate->transfn_oid = transfn_oid = aggform->aggmtransfn;
peraggstate->invtransfn_oid = invtransfn_oid = aggform->aggminvtransfn;
peraggstate->finalfn_oid = finalfn_oid = aggform->aggmfinalfn;
finalextra = aggform->aggmfinalextra;
finalmodify = aggform->aggmfinalmodify;
aggtranstype = aggform->aggmtranstype;
initvalAttNo = Anum_pg_aggregate_aggminitval;
}
else
{
peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn;
peraggstate->invtransfn_oid = invtransfn_oid = InvalidOid;
peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
finalextra = aggform->aggfinalextra;
finalmodify = aggform->aggfinalmodify;
aggtranstype = aggform->aggtranstype;
initvalAttNo = Anum_pg_aggregate_agginitval;
}
/*
* ExecInitWindowAgg already checked permission to call aggregate function
* ... but we still need to check the component functions
*/
/* Check that aggregate owner has permission to call component fns */
{
HeapTuple procTuple;
Oid aggOwner;
procTuple = SearchSysCache1(PROCOID,
ObjectIdGetDatum(wfunc->winfnoid));
if (!HeapTupleIsValid(procTuple))
elog(ERROR, "cache lookup failed for function %u",
wfunc->winfnoid);
aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
ReleaseSysCache(procTuple);
aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(transfn_oid));
InvokeFunctionExecuteHook(transfn_oid);
if (OidIsValid(invtransfn_oid))
{
aclresult = pg_proc_aclcheck(invtransfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(invtransfn_oid));
InvokeFunctionExecuteHook(invtransfn_oid);
}
if (OidIsValid(finalfn_oid))
{
aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_FUNCTION,
get_func_name(finalfn_oid));
InvokeFunctionExecuteHook(finalfn_oid);
}
}
/*
* If the selected finalfn isn't read-only, we can't run this aggregate as
* a window function. This is a user-facing error, so we take a bit more
* care with the error message than elsewhere in this function.
*/
if (finalmodify != AGGMODIFY_READ_ONLY)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("aggregate function %s does not support use as a window function",
format_procedure(wfunc->winfnoid))));
/* Detect how many arguments to pass to the finalfn */
if (finalextra)
peraggstate->numFinalArgs = numArguments + 1;
else
peraggstate->numFinalArgs = 1;
/* resolve actual type of transition state, if polymorphic */
aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid,
aggtranstype,
inputTypes,
numArguments);
/* build expression trees using actual argument & result types */
build_aggregate_transfn_expr(inputTypes,
numArguments,
0, /* no ordered-set window functions yet */
false, /* no variadic window functions yet */
aggtranstype,
wfunc->inputcollid,
transfn_oid,
invtransfn_oid,
&transfnexpr,
&invtransfnexpr);
/* set up infrastructure for calling the transfn(s) and finalfn */
fmgr_info(transfn_oid, &peraggstate->transfn);
fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn);
if (OidIsValid(invtransfn_oid))
{
fmgr_info(invtransfn_oid, &peraggstate->invtransfn);
fmgr_info_set_expr((Node *) invtransfnexpr, &peraggstate->invtransfn);
}
if (OidIsValid(finalfn_oid))
{
build_aggregate_finalfn_expr(inputTypes,
peraggstate->numFinalArgs,
aggtranstype,
wfunc->wintype,
wfunc->inputcollid,
finalfn_oid,
&finalfnexpr);
fmgr_info(finalfn_oid, &peraggstate->finalfn);
fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn);
}
/* get info about relevant datatypes */
get_typlenbyval(wfunc->wintype,
&peraggstate->resulttypeLen,
&peraggstate->resulttypeByVal);
get_typlenbyval(aggtranstype,
&peraggstate->transtypeLen,
&peraggstate->transtypeByVal);
/*
* initval is potentially null, so don't try to access it as a struct
* field. Must do it the hard way with SysCacheGetAttr.
*/
textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, initvalAttNo,
&peraggstate->initValueIsNull);
if (peraggstate->initValueIsNull)
peraggstate->initValue = (Datum) 0;
else
peraggstate->initValue = GetAggInitVal(textInitVal,
aggtranstype);
/*
* Initialize stuff needed to sort and deduplicate input to a
* DISTINCT-qualified aggregate.
*/
if (wfunc->windistinct)
{
/* the parser should have disallowed this case */
if (list_length(wfunc->args) != 1)
elog(ERROR, "DISTINCT is supported only for single-argument aggregates");
peraggstate->isDistinct = true;
peraggstate->distinctType = exprType(linitial(wfunc->args));
peraggstate->distinctTypeByVal = get_typbyval(peraggstate->distinctType);
peraggstate->distinctColl = exprCollation(linitial(wfunc->args));
/* initialize support for sorting the argument */
get_sort_group_operators(peraggstate->distinctType,
true, false, false,
&peraggstate->distinctLtOper,
NULL,
NULL,
NULL);
memset(&peraggstate->distinctComparator, 0, sizeof(SortSupportData));
peraggstate->distinctComparator.ssup_cxt = CurrentMemoryContext;
peraggstate->distinctComparator.ssup_collation = peraggstate->distinctColl;
peraggstate->distinctComparator.ssup_nulls_first = false;
PrepareSortSupportFromOrderingOp(peraggstate->distinctLtOper,
&peraggstate->distinctComparator);
}
/*
* If the transfn is strict and the initval is NULL, make sure input type
* and transtype are the same (or at least binary-compatible), so that
* it's OK to use the first input value as the initial transValue. This
* should have been checked at agg definition time, but we must check
* again in case the transfn's strictness property has been changed.
*/
if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
{
if (numArguments < 1 ||
!IsBinaryCoercible(inputTypes[0], aggtranstype))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("aggregate %u needs to have compatible input type and transition type",
wfunc->winfnoid)));
}
/*
* Insist that forward and inverse transition functions have the same
* strictness setting. Allowing them to differ would require handling
* more special cases in advance_windowaggregate and
* advance_windowaggregate_base, for no discernible benefit. This should
* have been checked at agg definition time, but we must check again in
* case either function's strictness property has been changed.
*/
if (OidIsValid(invtransfn_oid) &&
peraggstate->transfn.fn_strict != peraggstate->invtransfn.fn_strict)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("strictness of aggregate's forward and inverse transition functions must match")));
/*
* Moving aggregates use their own aggcontext.
*
* This is necessary because they might restart at different times, so we
* might never be able to reset the shared context otherwise. We can't
* make it the aggregates' responsibility to clean up after themselves,
* because strict aggregates must be restarted whenever we remove their
* last non-NULL input, which the aggregate won't be aware is happening.
* Also, just pfree()ing the transValue upon restarting wouldn't help,
* since we'd miss any indirectly referenced data. We could, in theory,
* make the memory allocation rules for moving aggregates different than
* they have historically been for plain aggregates, but that seems grotty
* and likely to lead to memory leaks.
*/
if (OidIsValid(invtransfn_oid))
peraggstate->aggcontext =
AllocSetContextCreate(CurrentMemoryContext,
"WindowAgg Per Aggregate",
ALLOCSET_DEFAULT_SIZES);
else
peraggstate->aggcontext = winstate->aggcontext;
ReleaseSysCache(aggTuple);
return peraggstate;
}
static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
Oid typinput,
typioparam;
char *strInitVal;
Datum initVal;
getTypeInputInfo(transtype, &typinput, &typioparam);
strInitVal = TextDatumGetCString(textInitVal);
initVal = OidInputFunctionCall(typinput, strInitVal,
typioparam, -1);
pfree(strInitVal);
return initVal;
}
/*
* are_peers
* compare two rows to see if they are equal according to the ORDER BY clause
*
* NB: this does not consider the window frame mode.
*/
static bool
are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
TupleTableSlot *slot2)
{
WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
ExprContext *econtext = winstate->tmpcontext;
/* If no ORDER BY, all rows are peers with each other */
if (node->ordNumCols == 0)
return true;
econtext->ecxt_outertuple = slot1;
econtext->ecxt_innertuple = slot2;
return ExecQualAndReset(winstate->ordEqfunction, econtext);
}
/*
* window_gettupleslot
* Fetch the pos'th tuple of the current partition into the slot,
* using the winobj's read pointer
*
* Returns true if successful, false if no such row
*/
static bool
window_gettupleslot(WindowObject winobj, int64 pos, TupleTableSlot *slot)
{
WindowAggState *winstate = winobj->winstate;
MemoryContext oldcontext;
/* often called repeatedly in a row */
CHECK_FOR_INTERRUPTS();
/* Don't allow passing -1 to spool_tuples here */
if (pos < 0)
return false;
/* If necessary, fetch the tuple into the spool */
spool_tuples(winstate, pos);
if (pos >= winstate->spooled_rows)
return false;
if (pos < winobj->markpos)
elog(ERROR, "cannot fetch row before WindowObject's mark position");
oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);
/*
* Advance or rewind until we are within one tuple of the one we want.
*/
if (winobj->seekpos < pos - 1)
{
if (!tuplestore_skiptuples(winstate->buffer,
pos - 1 - winobj->seekpos,
true))
elog(ERROR, "unexpected end of tuplestore");
winobj->seekpos = pos - 1;
}
else if (winobj->seekpos > pos + 1)
{
if (!tuplestore_skiptuples(winstate->buffer,
winobj->seekpos - (pos + 1),
false))
elog(ERROR, "unexpected end of tuplestore");
winobj->seekpos = pos + 1;
}
else if (winobj->seekpos == pos)
{
/*
* There's no API to refetch the tuple at the current position. We
* have to move one tuple forward, and then one backward. (We don't
* do it the other way because we might try to fetch the row before
* our mark, which isn't allowed.) XXX this case could stand to be
* optimized.
*/
tuplestore_advance(winstate->buffer, true);
winobj->seekpos++;
}
/*
* Now we should be on the tuple immediately before or after the one we
* want, so just fetch forwards or backwards as appropriate.
*/
if (winobj->seekpos > pos)
{
if (!tuplestore_gettupleslot(winstate->buffer, false, true, slot))
elog(ERROR, "unexpected end of tuplestore");
winobj->seekpos--;
}
else
{
if (!tuplestore_gettupleslot(winstate->buffer, true, true, slot))
elog(ERROR, "unexpected end of tuplestore");
winobj->seekpos++;
}
Assert(winobj->seekpos == pos);
MemoryContextSwitchTo(oldcontext);
return true;
}
/***********************************************************************
* API exposed to window functions
***********************************************************************/
/*
* WinGetPartitionLocalMemory
* Get working memory that lives till end of partition processing
*
* On first call within a given partition, this allocates and zeroes the
* requested amount of space. Subsequent calls just return the same chunk.
*
* Memory obtained this way is normally used to hold state that should be
* automatically reset for each new partition. If a window function wants
* to hold state across the whole query, fcinfo->fn_extra can be used in the
* usual way for that.
*/
void *
WinGetPartitionLocalMemory(WindowObject winobj, Size sz)
{
Assert(WindowObjectIsValid(winobj));
if (winobj->localmem == NULL)
winobj->localmem =
MemoryContextAllocZero(winobj->winstate->partcontext, sz);
return winobj->localmem;
}
/*
* WinGetCurrentPosition
* Return the current row's position (counting from 0) within the current
* partition.
*/
int64
WinGetCurrentPosition(WindowObject winobj)
{
Assert(WindowObjectIsValid(winobj));
return winobj->winstate->currentpos;
}
/*
* WinGetPartitionRowCount
* Return total number of rows contained in the current partition.
*
* Note: this is a relatively expensive operation because it forces the
* whole partition to be "spooled" into the tuplestore at once. Once
* executed, however, additional calls within the same partition are cheap.
*/
int64
WinGetPartitionRowCount(WindowObject winobj)
{
Assert(WindowObjectIsValid(winobj));
spool_tuples(winobj->winstate, -1);
return winobj->winstate->spooled_rows;
}
/*
* WinSetMarkPosition
* Set the "mark" position for the window object, which is the oldest row
* number (counting from 0) it is allowed to fetch during all subsequent
* operations within the current partition.
*
* Window functions do not have to call this, but are encouraged to move the
* mark forward when possible to keep the tuplestore size down and prevent
* having to spill rows to disk.
*/
void
WinSetMarkPosition(WindowObject winobj, int64 markpos)
{
WindowAggState *winstate;
Assert(WindowObjectIsValid(winobj));
winstate = winobj->winstate;
/*
* In GPDB, unlike in PostgreSQL, the start and end offsets are not
* necessarily constant throughout the execution. In that case, don't
* believe it when the window function tells that it's won't need the
* old rows anymore, in case the window frame needs to enlarge later.
* In principle, it would perhaps be nicer if each window function
* would take this into account and not call WinSetMarkPosition in
* that case, but changing all the window function implementations
* is not very appealing. It woudl be make merging harder, and there
* would be the risk for bugs of omission. 3rd party extenstion,
* written for PostgreSQL, would also not know about it. So all in all,
* let's just keep the all the rows, if the start/end offsets contain
* variables. That is hopefully not very common in practice.
*/
if (!winstate->start_offset_var_free || !winstate->end_offset_var_free)
return;
if (markpos < winobj->markpos)
elog(ERROR, "cannot move WindowObject's mark position backward");
tuplestore_select_read_pointer(winstate->buffer, winobj->markptr);
if (markpos > winobj->markpos)
{
tuplestore_skiptuples(winstate->buffer,
markpos - winobj->markpos,
true);
winobj->markpos = markpos;
}
tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);
if (markpos > winobj->seekpos)
{
tuplestore_skiptuples(winstate->buffer,
markpos - winobj->seekpos,
true);
winobj->seekpos = markpos;
}
}
/*
* WinRowsArePeers
* Compare two rows (specified by absolute position in partition) to see
* if they are equal according to the ORDER BY clause.
*
* NB: this does not consider the window frame mode.
*/
bool
WinRowsArePeers(WindowObject winobj, int64 pos1, int64 pos2)
{
WindowAggState *winstate;
WindowAgg *node;
TupleTableSlot *slot1;
TupleTableSlot *slot2;
bool res;
Assert(WindowObjectIsValid(winobj));
winstate = winobj->winstate;
node = (WindowAgg *) winstate->ss.ps.plan;
/* If no ORDER BY, all rows are peers; don't bother to fetch them */
if (node->ordNumCols == 0)
return true;
/*
* Note: OK to use temp_slot_2 here because we aren't calling any
* frame-related functions (those tend to clobber temp_slot_2).
*/
slot1 = winstate->temp_slot_1;
slot2 = winstate->temp_slot_2;
if (!window_gettupleslot(winobj, pos1, slot1))
elog(ERROR, "specified position is out of window: " INT64_FORMAT,
pos1);
if (!window_gettupleslot(winobj, pos2, slot2))
elog(ERROR, "specified position is out of window: " INT64_FORMAT,
pos2);
res = are_peers(winstate, slot1, slot2);
ExecClearTuple(slot1);
ExecClearTuple(slot2);
return res;
}
/*
* WinGetFuncArgInPartition
* Evaluate a window function's argument expression on a specified
* row of the partition. The row is identified in lseek(2) style,
* i.e. relative to the current, first, or last row.
*
* argno: argument number to evaluate (counted from 0)
* relpos: signed rowcount offset from the seek position
* seektype: WINDOW_SEEK_CURRENT, WINDOW_SEEK_HEAD, or WINDOW_SEEK_TAIL
* set_mark: If the row is found and set_mark is true, the mark is moved to
* the row as a side-effect.
* isnull: output argument, receives isnull status of result
* isout: output argument, set to indicate whether target row position
* is out of partition (can pass NULL if caller doesn't care about this)
*
* Specifying a nonexistent row is not an error, it just causes a null result
* (plus setting *isout true, if isout isn't NULL).
*/
Datum
WinGetFuncArgInPartition(WindowObject winobj, int argno,
int relpos, int seektype, bool set_mark,
bool *isnull, bool *isout)
{
WindowAggState *winstate;
ExprContext *econtext;
TupleTableSlot *slot;
bool gottuple;
int64 abs_pos;
Assert(WindowObjectIsValid(winobj));
winstate = winobj->winstate;
econtext = winstate->ss.ps.ps_ExprContext;
slot = winstate->temp_slot_1;
switch (seektype)
{
case WINDOW_SEEK_CURRENT:
abs_pos = winstate->currentpos + relpos;
break;
case WINDOW_SEEK_HEAD:
abs_pos = relpos;
break;
case WINDOW_SEEK_TAIL:
spool_tuples(winstate, -1);
abs_pos = winstate->spooled_rows - 1 + relpos;
break;
default:
elog(ERROR, "unrecognized window seek type: %d", seektype);
abs_pos = 0; /* keep compiler quiet */
break;
}
gottuple = window_gettupleslot(winobj, abs_pos, slot);
if (!gottuple)
{
if (isout)
*isout = true;
*isnull = true;
return (Datum) 0;
}
else
{
if (isout)
*isout = false;
if (set_mark)
WinSetMarkPosition(winobj, abs_pos);
econtext->ecxt_outertuple = slot;
return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
econtext, isnull);
}
}
/*
* WinGetFuncArgInFrame
* Evaluate a window function's argument expression on a specified
* row of the window frame. The row is identified in lseek(2) style,
* i.e. relative to the first or last row of the frame. (We do not
* support WINDOW_SEEK_CURRENT here, because it's not very clear what
* that should mean if the current row isn't part of the frame.)
*
* argno: argument number to evaluate (counted from 0)
* relpos: signed rowcount offset from the seek position
* seektype: WINDOW_SEEK_HEAD or WINDOW_SEEK_TAIL
* set_mark: If the row is found/in frame and set_mark is true, the mark is
* moved to the row as a side-effect.
* isnull: output argument, receives isnull status of result
* isout: output argument, set to indicate whether target row position
* is out of frame (can pass NULL if caller doesn't care about this)
*
* Specifying a nonexistent or not-in-frame row is not an error, it just
* causes a null result (plus setting *isout true, if isout isn't NULL).
*
* Note that some exclusion-clause options lead to situations where the
* rows that are in-frame are not consecutive in the partition. But we
* count only in-frame rows when measuring relpos.
*
* The set_mark flag is interpreted as meaning that the caller will specify
* a constant (or, perhaps, monotonically increasing) relpos in successive
* calls, so that *if there is no exclusion clause* there will be no need
* to fetch a row before the previously fetched row. But we do not expect
* the caller to know how to account for exclusion clauses. Therefore,
* if there is an exclusion clause we take responsibility for adjusting the
* mark request to something that will be safe given the above assumption
* about relpos.
*/
Datum
WinGetFuncArgInFrame(WindowObject winobj, int argno,
int relpos, int seektype, bool set_mark,
bool *isnull, bool *isout)
{
WindowAggState *winstate;
ExprContext *econtext;
TupleTableSlot *slot;
int64 abs_pos;
int64 mark_pos;
Assert(WindowObjectIsValid(winobj));
winstate = winobj->winstate;
econtext = winstate->ss.ps.ps_ExprContext;
slot = winstate->temp_slot_1;
switch (seektype)
{
case WINDOW_SEEK_CURRENT:
elog(ERROR, "WINDOW_SEEK_CURRENT is not supported for WinGetFuncArgInFrame");
abs_pos = mark_pos = 0; /* keep compiler quiet */
break;
case WINDOW_SEEK_HEAD:
/* rejecting relpos < 0 is easy and simplifies code below */
if (relpos < 0)
goto out_of_frame;
update_frameheadpos(winstate);
abs_pos = winstate->frameheadpos + relpos;
mark_pos = abs_pos;
/*
* Account for exclusion option if one is active, but advance only
* abs_pos not mark_pos. This prevents changes of the current
* row's peer group from resulting in trying to fetch a row before
* some previous mark position.
*
* Note that in some corner cases such as current row being
* outside frame, these calculations are theoretically too simple,
* but it doesn't matter because we'll end up deciding the row is
* out of frame. We do not attempt to avoid fetching rows past
* end of frame; that would happen in some cases anyway.
*/
switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
{
case 0:
/* no adjustment needed */
break;
case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
if (abs_pos >= winstate->currentpos &&
winstate->currentpos >= winstate->frameheadpos)
abs_pos++;
break;
case FRAMEOPTION_EXCLUDE_GROUP:
update_grouptailpos(winstate);
if (abs_pos >= winstate->groupheadpos &&
winstate->grouptailpos > winstate->frameheadpos)
{
int64 overlapstart = Max(winstate->groupheadpos,
winstate->frameheadpos);
abs_pos += winstate->grouptailpos - overlapstart;
}
break;
case FRAMEOPTION_EXCLUDE_TIES:
update_grouptailpos(winstate);
if (abs_pos >= winstate->groupheadpos &&
winstate->grouptailpos > winstate->frameheadpos)
{
int64 overlapstart = Max(winstate->groupheadpos,
winstate->frameheadpos);
if (abs_pos == overlapstart)
abs_pos = winstate->currentpos;
else
abs_pos += winstate->grouptailpos - overlapstart - 1;
}
break;
default:
elog(ERROR, "unrecognized frame option state: 0x%x",
winstate->frameOptions);
break;
}
break;
case WINDOW_SEEK_TAIL:
/* rejecting relpos > 0 is easy and simplifies code below */
if (relpos > 0)
goto out_of_frame;
update_frametailpos(winstate);
abs_pos = winstate->frametailpos - 1 + relpos;
/*
* Account for exclusion option if one is active. If there is no
* exclusion, we can safely set the mark at the accessed row. But
* if there is, we can only mark the frame start, because we can't
* be sure how far back in the frame the exclusion might cause us
* to fetch in future. Furthermore, we have to actually check
* against frameheadpos here, since it's unsafe to try to fetch a
* row before frame start if the mark might be there already.
*/
switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
{
case 0:
/* no adjustment needed */
mark_pos = abs_pos;
break;
case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
if (abs_pos <= winstate->currentpos &&
winstate->currentpos < winstate->frametailpos)
abs_pos--;
update_frameheadpos(winstate);
if (abs_pos < winstate->frameheadpos)
goto out_of_frame;
mark_pos = winstate->frameheadpos;
break;
case FRAMEOPTION_EXCLUDE_GROUP:
update_grouptailpos(winstate);
if (abs_pos < winstate->grouptailpos &&
winstate->groupheadpos < winstate->frametailpos)
{
int64 overlapend = Min(winstate->grouptailpos,
winstate->frametailpos);
abs_pos -= overlapend - winstate->groupheadpos;
}
update_frameheadpos(winstate);
if (abs_pos < winstate->frameheadpos)
goto out_of_frame;
mark_pos = winstate->frameheadpos;
break;
case FRAMEOPTION_EXCLUDE_TIES:
update_grouptailpos(winstate);
if (abs_pos < winstate->grouptailpos &&
winstate->groupheadpos < winstate->frametailpos)
{
int64 overlapend = Min(winstate->grouptailpos,
winstate->frametailpos);
if (abs_pos == overlapend - 1)
abs_pos = winstate->currentpos;
else
abs_pos -= overlapend - 1 - winstate->groupheadpos;
}
update_frameheadpos(winstate);
if (abs_pos < winstate->frameheadpos)
goto out_of_frame;
mark_pos = winstate->frameheadpos;
break;
default:
elog(ERROR, "unrecognized frame option state: 0x%x",
winstate->frameOptions);
mark_pos = 0; /* keep compiler quiet */
break;
}
break;
default:
elog(ERROR, "unrecognized window seek type: %d", seektype);
abs_pos = mark_pos = 0; /* keep compiler quiet */
break;
}
if (!window_gettupleslot(winobj, abs_pos, slot))
goto out_of_frame;
/* The code above does not detect all out-of-frame cases, so check */
if (row_is_in_frame(winstate, abs_pos, slot) <= 0)
goto out_of_frame;
if (isout)
*isout = false;
if (set_mark)
WinSetMarkPosition(winobj, mark_pos);
econtext->ecxt_outertuple = slot;
return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
econtext, isnull);
out_of_frame:
if (isout)
*isout = true;
*isnull = true;
return (Datum) 0;
}
/*
* WinGetFuncArgCurrent
* Evaluate a window function's argument expression on the current row.
*
* argno: argument number to evaluate (counted from 0)
* isnull: output argument, receives isnull status of result
*
* Note: this isn't quite equivalent to WinGetFuncArgInPartition or
* WinGetFuncArgInFrame targeting the current row, because it will succeed
* even if the WindowObject's mark has been set beyond the current row.
* This should generally be used for "ordinary" arguments of a window
* function, such as the offset argument of lead() or lag().
*/
Datum
WinGetFuncArgCurrent(WindowObject winobj, int argno, bool *isnull)
{
WindowAggState *winstate;
ExprContext *econtext;
Assert(WindowObjectIsValid(winobj));
winstate = winobj->winstate;
econtext = winstate->ss.ps.ps_ExprContext;
econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
econtext, isnull);
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦