greenplumn nodeWindowAgg 源码

  • 2022-08-18
  • 浏览 (350)

greenplumn nodeWindowAgg 代码

文件路径:/src/backend/executor/nodeWindowAgg.c

/*-------------------------------------------------------------------------
 *
 * nodeWindowAgg.c
 *	  routines to handle WindowAgg nodes.
 *
 * A WindowAgg node evaluates "window functions" across suitable partitions
 * of the input tuple set.  Any one WindowAgg works for just a single window
 * specification, though it can evaluate multiple window functions sharing
 * identical window specifications.  The input tuples are required to be
 * delivered in sorted order, with the PARTITION BY columns (if any) as
 * major sort keys and the ORDER BY columns (if any) as minor sort keys.
 * (The planner generates a stack of WindowAggs with intervening Sort nodes
 * as needed, if a query involves more than one window specification.)
 *
 * Since window functions can require access to any or all of the rows in
 * the current partition, we accumulate rows of the partition into a
 * tuplestore.  The window functions are called using the WindowObject API
 * so that they can access those rows as needed.
 *
 * We also support using plain aggregate functions as window functions.
 * For these, the regular Agg-node environment is emulated for each partition.
 * As required by the SQL spec, the output represents the value of the
 * aggregate function over all rows in the current row's window frame.
 *
 *
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/executor/nodeWindowAgg.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/htup_details.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "executor/executor.h"
#include "executor/nodeWindowAgg.h"
#include "miscadmin.h"
#include "nodes/execnodes.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "parser/parse_oper.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/faultinjector.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/regproc.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "windowapi.h"

#include "optimizer/optimizer.h" // for exprType
#include "parser/parse_expr.h" // for exprType

/*
 * All the window function APIs are called with this object, which is passed
 * to window functions as fcinfo->context.
 */
typedef struct WindowObjectData
{
	NodeTag		type;
	WindowAggState *winstate;	/* parent WindowAggState */
	List	   *argstates;		/* ExprState trees for fn's arguments */
	void	   *localmem;		/* WinGetPartitionLocalMemory's chunk */
	int			markptr;		/* tuplestore mark pointer for this fn */
	int			readptr;		/* tuplestore read pointer for this fn */
	int64		markpos;		/* row that markptr is positioned on */
	int64		seekpos;		/* row that readptr is positioned on */
} WindowObjectData;

/*
 * We have one WindowStatePerFunc struct for each window function and
 * window aggregate handled by this node.
 */
typedef struct WindowStatePerFuncData
{
	/* Links to WindowFunc expr and state nodes this working state is for */
	WindowFuncExprState *wfuncstate;
	WindowFunc *wfunc;

	int			numArguments;	/* number of arguments */

	FmgrInfo	flinfo;			/* fmgr lookup data for window function */

	Oid			winCollation;	/* collation derived for window function */

	/*
	 * We need the len and byval info for the result of each function in order
	 * to know how to copy/delete values.
	 */
	int16		resulttypeLen;
	bool		resulttypeByVal;

	bool		plain_agg;		/* is it just a plain aggregate function? */
	int			aggno;			/* if so, index of its PerAggData */

	WindowObject winobj;		/* object used in window function API */
}			WindowStatePerFuncData;

/*
 * For plain aggregate window functions, we also have one of these.
 */
typedef struct WindowStatePerAggData
{
	/* Oids of transition functions */
	Oid			transfn_oid;
	Oid			invtransfn_oid; /* may be InvalidOid */
	Oid			finalfn_oid;	/* may be InvalidOid */

	/*
	 * fmgr lookup data for transition functions --- only valid when
	 * corresponding oid is not InvalidOid.  Note in particular that fn_strict
	 * flags are kept here.
	 */
	FmgrInfo	transfn;
	FmgrInfo	invtransfn;
	FmgrInfo	finalfn;

	int			numFinalArgs;	/* number of arguments to pass to finalfn */

	/*
	 * initial value from pg_aggregate entry
	 */
	Datum		initValue;
	bool		initValueIsNull;

	/*
	 * cached value for current frame boundaries
	 */
	Datum		resultValue;
	bool		resultValueIsNull;

	/*
	 * Support for DISTINCT-qualified aggregates. For example:
	 *
	 * COUNT(DISTINCT foo) OVER (PARTITION BY bar)
	 *
	 * This is only supported for aggregates that take a single argument
	 * (we checked for that in parse analysis).
	 */
	bool		isDistinct;				/* is this a DISTINCT-qualified aggregate? */
	Oid			distinctType;			/* type of the argument */
	bool		distinctTypeByVal;
	Oid			distinctColl;
	/* support for sorting by the argument type */
	Oid			distinctLtOper;
	SortSupportData distinctComparator;

	/* Input values accumulated for this aggregate so far. */
	Tuplesortstate *distinctSortState;

	/*
	 * We need the len and byval info for the agg's input, result, and
	 * transition data types in order to know how to copy/delete values.
	 */
	int16		inputtypeLen,
				resulttypeLen,
				transtypeLen;
	bool		inputtypeByVal,
				resulttypeByVal,
				transtypeByVal;

	int			wfuncno;		/* index of associated PerFuncData */

	/* Context holding transition value and possibly other subsidiary data */
	MemoryContext aggcontext;	/* may be private, or winstate->aggcontext */

	/* Current transition value */
	Datum		transValue;		/* current transition value */
	bool		transValueIsNull;

	int64		transValueCount;	/* number of currently-aggregated rows */

	/* Data local to eval_windowaggregates() */
	bool		restart;		/* need to restart this agg in this cycle? */
} WindowStatePerAggData;

static void initialize_windowaggregate(WindowAggState *winstate,
									   WindowStatePerFunc perfuncstate,
									   WindowStatePerAgg peraggstate);
static void advance_windowaggregate(WindowAggState *winstate,
									WindowStatePerFunc perfuncstate,
									WindowStatePerAgg peraggstate);
static bool advance_windowaggregate_base(WindowAggState *winstate,
										 WindowStatePerFunc perfuncstate,
										 WindowStatePerAgg peraggstate);
static void call_transfunc(WindowAggState *winstate,
						   WindowStatePerFunc perfuncstate,
						   WindowStatePerAgg peraggstate,
						   FunctionCallInfo fcinfo);
static void finalize_windowaggregate(WindowAggState *winstate,
									 WindowStatePerFunc perfuncstate,
									 WindowStatePerAgg peraggstate,
									 Datum *result, bool *isnull);

static void eval_windowaggregates(WindowAggState *winstate);
static void eval_windowfunction(WindowAggState *winstate,
								WindowStatePerFunc perfuncstate,
								Datum *result, bool *isnull);

static void begin_partition(WindowAggState *winstate);
static void spool_tuples(WindowAggState *winstate, int64 pos);
static void release_partition(WindowAggState *winstate);

static int	row_is_in_frame(WindowAggState *winstate, int64 pos,
							TupleTableSlot *slot);
static void update_frameheadpos(WindowAggState *winstate);
static void update_frametailpos(WindowAggState *winstate);
static void update_grouptailpos(WindowAggState *winstate);

static WindowStatePerAggData *initialize_peragg(WindowAggState *winstate,
												WindowFunc *wfunc,
												WindowStatePerAgg peraggstate);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);

static bool are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
					  TupleTableSlot *slot2);
static bool window_gettupleslot(WindowObject winobj, int64 pos,
								TupleTableSlot *slot);

static void compute_start_end_offsets(WindowAggState *winstate);


/*
 * initialize_windowaggregate
 * parallel to initialize_aggregates in nodeAgg.c
 */
static void
initialize_windowaggregate(WindowAggState *winstate,
						   WindowStatePerFunc perfuncstate,
						   WindowStatePerAgg peraggstate)
{
	MemoryContext oldContext;

	/*
	 * If we're using a private aggcontext, we may reset it here.  But if the
	 * context is shared, we don't know which other aggregates may still need
	 * it, so we must leave it to the caller to reset at an appropriate time.
	 */
	if (peraggstate->aggcontext != winstate->aggcontext)
		MemoryContextResetAndDeleteChildren(peraggstate->aggcontext);

	if (peraggstate->initValueIsNull)
		peraggstate->transValue = peraggstate->initValue;
	else
	{
		oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
		peraggstate->transValue = datumCopy(peraggstate->initValue,
											peraggstate->transtypeByVal,
											peraggstate->transtypeLen);
		MemoryContextSwitchTo(oldContext);
	}
	peraggstate->transValueIsNull = peraggstate->initValueIsNull;
	peraggstate->transValueCount = 0;
	peraggstate->resultValue = (Datum) 0;
	peraggstate->resultValueIsNull = true;

	if (peraggstate->isDistinct)
	{
		peraggstate->distinctSortState =
			tuplesort_begin_datum(peraggstate->distinctType,
								  peraggstate->distinctLtOper,
								  peraggstate->distinctColl,
								  false, /* nullsFirstFlag */
								  PlanStateOperatorMemKB((PlanState *) winstate),
								  NULL, /* coordinate */
								  false);
	}
}

/*
 * advance_windowaggregate
 * parallel to advance_aggregates in nodeAgg.c
 */
static void
advance_windowaggregate(WindowAggState *winstate,
						WindowStatePerFunc perfuncstate,
						WindowStatePerAgg peraggstate)
{
	LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
	WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
	ListCell   *arg;
	int			i;
	MemoryContext oldContext;
	ExprContext *econtext = winstate->tmpcontext;
	ExprState  *filter = wfuncstate->aggfilter;

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	/* Skip anything FILTERed out */
	if (filter)
	{
		bool		isnull;
		Datum		res = ExecEvalExpr(filter, econtext, &isnull);

		if (isnull || !DatumGetBool(res))
		{
			MemoryContextSwitchTo(oldContext);
			return;
		}
	}

	/* We start from 1, since the 0th arg will be the transition value */
	i = 1;
	foreach(arg, wfuncstate->args)
	{
		ExprState  *argstate = (ExprState *) lfirst(arg);

		fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
											 &fcinfo->args[i].isnull);
		i++;
	}

	/*
	 * If this is a DISTINCT-qualified aggregate, we cannot call the
	 * transition function yet. Instead, we spool the input into a tuplesort.
	 * We will perform the sort, deduplicate, and call the transition
	 * function later, after we have spooled all the input values in this
	 * partition.
	 */
	if (peraggstate->isDistinct)
	{
		Assert(list_length(wfuncstate->args) == 1);

		/*
		 * For a strict transfn, nothing happens when there's a NULL input; we
		 * just keep the prior transValue.
		 */
		if (peraggstate->transfn.fn_strict && fcinfo->args[1].isnull)
		{
			/* skip it */
		}
		else
			tuplesort_putdatum(peraggstate->distinctSortState,
							   fcinfo->args[1].value,
							   fcinfo->args[1].isnull);
	}
	else
		call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);

	MemoryContextSwitchTo(oldContext);
}

/*
 * Helper function to call the transition function.
 *
 * The caller must load the arguments into fcinfo->args/argnulls already,
 * and switch to tmpcontext->ecxt_per_tuple_context.
 */
static void
call_transfunc(WindowAggState *winstate,
			   WindowStatePerFunc perfuncstate,
			   WindowStatePerAgg peraggstate,
			   FunctionCallInfo fcinfo)
{
	int			numArguments = perfuncstate->numArguments;
	Datum		newVal;
	int			i;
	MemoryContext oldContext;
	ExprContext *econtext = winstate->tmpcontext;

	/*
	 * This may seem weird, but it allows us to keep the code that follows unchanged
	 * from upstream. In the upstream, this is part of advance_windowaggregate().
	 */
	Assert(CurrentMemoryContext == econtext->ecxt_per_tuple_memory);
	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	if (peraggstate->transfn.fn_strict)
	{
		/*
		 * For a strict transfn, nothing happens when there's a NULL input; we
		 * just keep the prior transValue.  Note transValueCount doesn't
		 * change either.
		 */
		for (i = 1; i <= numArguments; i++)
		{
			if (fcinfo->args[i].isnull)
			{
				MemoryContextSwitchTo(oldContext);
				return;
			}
		}

		/*
		 * For strict transition functions with initial value NULL we use the
		 * first non-NULL input as the initial state.  (We already checked
		 * that the agg's input type is binary-compatible with its transtype,
		 * so straight copy here is OK.)
		 *
		 * We must copy the datum into aggcontext if it is pass-by-ref.  We do
		 * not need to pfree the old transValue, since it's NULL.
		 */
		if (peraggstate->transValueCount == 0 && peraggstate->transValueIsNull)
		{
			MemoryContextSwitchTo(peraggstate->aggcontext);
			peraggstate->transValue = datumCopy(fcinfo->args[1].value,
												peraggstate->transtypeByVal,
												peraggstate->transtypeLen);
			peraggstate->transValueIsNull = false;
			peraggstate->transValueCount = 1;
			MemoryContextSwitchTo(oldContext);
			return;
		}

		if (peraggstate->transValueIsNull)
		{
			/*
			 * Don't call a strict function with NULL inputs.  Note it is
			 * possible to get here despite the above tests, if the transfn is
			 * strict *and* returned a NULL on a prior cycle.  If that happens
			 * we will propagate the NULL all the way to the end.  That can
			 * only happen if there's no inverse transition function, though,
			 * since we disallow transitions back to NULL when there is one.
			 */
			MemoryContextSwitchTo(oldContext);
			Assert(!OidIsValid(peraggstate->invtransfn_oid));
			return;
		}
	}

	/*
	 * OK to call the transition function.  Set winstate->curaggcontext while
	 * calling it, for possible use by AggCheckCallContext.
	 */
	InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn),
							 numArguments + 1,
							 perfuncstate->winCollation,
							 (void *) winstate, NULL);
	fcinfo->args[0].value = peraggstate->transValue;
	fcinfo->args[0].isnull = peraggstate->transValueIsNull;
	winstate->curaggcontext = peraggstate->aggcontext;
	newVal = FunctionCallInvoke(fcinfo);
	winstate->curaggcontext = NULL;

	/*
	 * Moving-aggregate transition functions must not return null, see
	 * advance_windowaggregate_base().
	 */
	if (fcinfo->isnull && OidIsValid(peraggstate->invtransfn_oid))
		ereport(ERROR,
				(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
				 errmsg("moving-aggregate transition function must not return null")));

	/*
	 * We must track the number of rows included in transValue, since to
	 * remove the last input, advance_windowaggregate_base() mustn't call the
	 * inverse transition function, but simply reset transValue back to its
	 * initial value.
	 */
	peraggstate->transValueCount++;

	/*
	 * If pass-by-ref datatype, must copy the new value into aggcontext and
	 * free the prior transValue.  But if transfn returned a pointer to its
	 * first input, we don't need to do anything.  Also, if transfn returned a
	 * pointer to a R/W expanded object that is already a child of the
	 * aggcontext, assume we can adopt that value without copying it.
	 */
	if (!peraggstate->transtypeByVal &&
		DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
	{
		if (!fcinfo->isnull)
		{
			MemoryContextSwitchTo(peraggstate->aggcontext);
			if (DatumIsReadWriteExpandedObject(newVal,
											   false,
											   peraggstate->transtypeLen) &&
				MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
				 /* do nothing */ ;
			else
				newVal = datumCopy(newVal,
								   peraggstate->transtypeByVal,
								   peraggstate->transtypeLen);
		}
		if (!peraggstate->transValueIsNull)
		{
			if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
											   false,
											   peraggstate->transtypeLen))
				DeleteExpandedObject(peraggstate->transValue);
			else
				pfree(DatumGetPointer(peraggstate->transValue));
		}
	}

	MemoryContextSwitchTo(oldContext);
	peraggstate->transValue = newVal;
	peraggstate->transValueIsNull = fcinfo->isnull;
}

/*
 * advance_windowaggregate_base
 * Remove the oldest tuple from an aggregation.
 *
 * This is very much like advance_windowaggregate, except that we will call
 * the inverse transition function (which caller must have checked is
 * available).
 *
 * Returns true if we successfully removed the current row from this
 * aggregate, false if not (in the latter case, caller is responsible
 * for cleaning up by restarting the aggregation).
 */
static bool
advance_windowaggregate_base(WindowAggState *winstate,
							 WindowStatePerFunc perfuncstate,
							 WindowStatePerAgg peraggstate)
{
	LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
	WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
	int			numArguments = perfuncstate->numArguments;
	Datum		newVal;
	ListCell   *arg;
	int			i;
	MemoryContext oldContext;
	ExprContext *econtext = winstate->tmpcontext;
	ExprState  *filter = wfuncstate->aggfilter;

	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

	/* Skip anything FILTERed out */
	if (filter)
	{
		bool		isnull;
		Datum		res = ExecEvalExpr(filter, econtext, &isnull);

		if (isnull || !DatumGetBool(res))
		{
			MemoryContextSwitchTo(oldContext);
			return true;
		}
	}

	/* We start from 1, since the 0th arg will be the transition value */
	i = 1;
	foreach(arg, wfuncstate->args)
	{
		ExprState  *argstate = (ExprState *) lfirst(arg);

		fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
											 &fcinfo->args[i].isnull);
		i++;
	}

	if (peraggstate->invtransfn.fn_strict)
	{
		/*
		 * For a strict (inv)transfn, nothing happens when there's a NULL
		 * input; we just keep the prior transValue.  Note transValueCount
		 * doesn't change either.
		 */
		for (i = 1; i <= numArguments; i++)
		{
			if (fcinfo->args[i].isnull)
			{
				MemoryContextSwitchTo(oldContext);
				return true;
			}
		}
	}

	/* There should still be an added but not yet removed value */
	Assert(peraggstate->transValueCount > 0);

	/*
	 * In moving-aggregate mode, the state must never be NULL, except possibly
	 * before any rows have been aggregated (which is surely not the case at
	 * this point).  This restriction allows us to interpret a NULL result
	 * from the inverse function as meaning "sorry, can't do an inverse
	 * transition in this case".  We already checked this in
	 * advance_windowaggregate, but just for safety, check again.
	 */
	if (peraggstate->transValueIsNull)
		elog(ERROR, "aggregate transition value is NULL before inverse transition");

	/*
	 * We mustn't use the inverse transition function to remove the last
	 * input.  Doing so would yield a non-NULL state, whereas we should be in
	 * the initial state afterwards which may very well be NULL.  So instead,
	 * we simply re-initialize the aggregate in this case.
	 */
	if (peraggstate->transValueCount == 1)
	{
		MemoryContextSwitchTo(oldContext);
		initialize_windowaggregate(winstate,
								   &winstate->perfunc[peraggstate->wfuncno],
								   peraggstate);
		return true;
	}

	/*
	 * OK to call the inverse transition function.  Set
	 * winstate->curaggcontext while calling it, for possible use by
	 * AggCheckCallContext.
	 */
	InitFunctionCallInfoData(*fcinfo, &(peraggstate->invtransfn),
							 numArguments + 1,
							 perfuncstate->winCollation,
							 (void *) winstate, NULL);
	fcinfo->args[0].value = peraggstate->transValue;
	fcinfo->args[0].isnull = peraggstate->transValueIsNull;
	winstate->curaggcontext = peraggstate->aggcontext;
	newVal = FunctionCallInvoke(fcinfo);
	winstate->curaggcontext = NULL;

	/*
	 * If the function returns NULL, report failure, forcing a restart.
	 */
	if (fcinfo->isnull)
	{
		MemoryContextSwitchTo(oldContext);
		return false;
	}

	/* Update number of rows included in transValue */
	peraggstate->transValueCount--;

	/*
	 * If pass-by-ref datatype, must copy the new value into aggcontext and
	 * free the prior transValue.  But if invtransfn returned a pointer to its
	 * first input, we don't need to do anything.  Also, if invtransfn
	 * returned a pointer to a R/W expanded object that is already a child of
	 * the aggcontext, assume we can adopt that value without copying it.
	 *
	 * Note: the checks for null values here will never fire, but it seems
	 * best to have this stanza look just like advance_windowaggregate.
	 */
	if (!peraggstate->transtypeByVal &&
		DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
	{
		if (!fcinfo->isnull)
		{
			MemoryContextSwitchTo(peraggstate->aggcontext);
			if (DatumIsReadWriteExpandedObject(newVal,
											   false,
											   peraggstate->transtypeLen) &&
				MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
				 /* do nothing */ ;
			else
				newVal = datumCopy(newVal,
								   peraggstate->transtypeByVal,
								   peraggstate->transtypeLen);
		}
		if (!peraggstate->transValueIsNull)
		{
			if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
											   false,
											   peraggstate->transtypeLen))
				DeleteExpandedObject(peraggstate->transValue);
			else
				pfree(DatumGetPointer(peraggstate->transValue));
		}
	}

	MemoryContextSwitchTo(oldContext);
	peraggstate->transValue = newVal;
	peraggstate->transValueIsNull = fcinfo->isnull;

	return true;
}

/*
 * Call transition function for a DISTINCT-qualified aggregate.
 *
 * All the input values have been loaded into the tuplesort. Perform the sort,
 * deduplicate, and call the transition function for each unique value.
 */
static void
perform_distinct_windowaggregate(WindowAggState *winstate,
								 WindowStatePerFunc perfuncstate,
								 WindowStatePerAgg peraggstate)
{
	LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
	Datum		prevDatum = (Datum) 0;
	bool		prevNull = true;
	MemoryContext oldcontext;

	oldcontext = MemoryContextSwitchTo(winstate->tmpcontext->ecxt_per_tuple_memory);

	tuplesort_performsort(peraggstate->distinctSortState);

#ifdef FAULT_INJECTOR
	/*
	 * This routine is used for tracing whether the sort operation of DISTINCT-qualified
	 * WindowAgg spills to disk.
	 */
	if (SIMPLE_FAULT_INJECTOR("distinct_winagg_perform_sort") == FaultInjectorTypeSkip)
	{
		TuplesortInstrumentation sortstats;
		tuplesort_get_stats(peraggstate->distinctSortState, &sortstats);
		if (sortstats.spaceType == SORT_SPACE_TYPE_MEMORY)
			ereport(NOTICE,
					(errmsg("distinct winagg sortstats: sort operation fitted in memory")));
		else
			ereport(NOTICE,
					(errmsg("distinct winagg sortstats: sort operation spilled to disk")));
	}
#endif

	/* load the first tuple from spool */
	if (tuplesort_getdatum(peraggstate->distinctSortState, true,
						   &fcinfo->args[1].value, &fcinfo->args[1].isnull, NULL))
	{
		call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);
		prevDatum = fcinfo->args[1].value;
		prevNull = fcinfo->args[1].isnull;

		/* continue loading more tuples */
		while (tuplesort_getdatum(peraggstate->distinctSortState, true,
								  &fcinfo->args[1].value, &fcinfo->args[1].isnull, NULL))
		{
			int		cmp;

			cmp = ApplySortComparator(prevDatum, prevNull,
									  fcinfo->args[1].value, fcinfo->args[1].isnull,
									  &peraggstate->distinctComparator);
			if (cmp < 0)
			{
				call_transfunc(winstate, perfuncstate, peraggstate, fcinfo);
			}
			else if (cmp == 0)
			{
				/* Equal, skip it */
			}
			else
				elog(ERROR, "value came out in wrong order from sort");

			/* free the previous value, if it's pass-by-ref. */
			if (!peraggstate->distinctTypeByVal && !prevNull)
				pfree(DatumGetPointer(prevDatum));

			prevDatum = fcinfo->args[1].value;
			prevNull = fcinfo->args[1].isnull;
		}
	}

	tuplesort_end(peraggstate->distinctSortState);
	peraggstate->distinctSortState = NULL;

	MemoryContextSwitchTo(oldcontext);
}

/*
 * finalize_windowaggregate
 * parallel to finalize_aggregate in nodeAgg.c
 */
static void
finalize_windowaggregate(WindowAggState *winstate,
						 WindowStatePerFunc perfuncstate,
						 WindowStatePerAgg peraggstate,
						 Datum *result, bool *isnull)
{
	MemoryContext oldContext;

	/*
	 * If this is a distinct-qualified aggregate, then we have only spooled the
	 * inputs into the sorter so far. We haven't run the transition function over
	 * the input yet. Perform the sort now, and call the transition function on the
	 * unique values.
	 */
	if (peraggstate->isDistinct)
	{
		perform_distinct_windowaggregate(winstate,
										 perfuncstate,
										 peraggstate);
		/*
		 * Now we have the final transition value in peraggstate->transValue, like
		 * in the normal, non-DISTINCT, case.
		 */
	}

	oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);

	/*
	 * Apply the agg's finalfn if one is provided, else return transValue.
	 */
	if (OidIsValid(peraggstate->finalfn_oid))
	{
		LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
		int			numFinalArgs = peraggstate->numFinalArgs;
		bool		anynull;
		int			i;

		InitFunctionCallInfoData(fcinfodata.fcinfo, &(peraggstate->finalfn),
								 numFinalArgs,
								 perfuncstate->winCollation,
								 (void *) winstate, NULL);
		fcinfo->args[0].value =
			MakeExpandedObjectReadOnly(peraggstate->transValue,
									   peraggstate->transValueIsNull,
									   peraggstate->transtypeLen);
		fcinfo->args[0].isnull = peraggstate->transValueIsNull;
		anynull = peraggstate->transValueIsNull;

		/* Fill any remaining argument positions with nulls */
		for (i = 1; i < numFinalArgs; i++)
		{
			fcinfo->args[i].value = (Datum) 0;
			fcinfo->args[i].isnull = true;
			anynull = true;
		}

		if (fcinfo->flinfo->fn_strict && anynull)
		{
			/* don't call a strict function with NULL inputs */
			*result = (Datum) 0;
			*isnull = true;
		}
		else
		{
			winstate->curaggcontext = peraggstate->aggcontext;
			*result = FunctionCallInvoke(fcinfo);
			winstate->curaggcontext = NULL;
			*isnull = fcinfo->isnull;
		}
	}
	else
	{
		/* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */
		*result = peraggstate->transValue;
		*isnull = peraggstate->transValueIsNull;
	}

	/*
	 * If result is pass-by-ref, make sure it is in the right context.
	 */
	if (!peraggstate->resulttypeByVal && !*isnull &&
		!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
							   DatumGetPointer(*result)))
		*result = datumCopy(*result,
							peraggstate->resulttypeByVal,
							peraggstate->resulttypeLen);
	MemoryContextSwitchTo(oldContext);
}

/*
 * eval_windowaggregates
 * evaluate plain aggregates being used as window functions
 *
 * This differs from nodeAgg.c in two ways.  First, if the window's frame
 * start position moves, we use the inverse transition function (if it exists)
 * to remove rows from the transition value.  And second, we expect to be
 * able to call aggregate final functions repeatedly after aggregating more
 * data onto the same transition value.  This is not a behavior required by
 * nodeAgg.c.
 */
static void
eval_windowaggregates(WindowAggState *winstate)
{
	WindowStatePerAgg peraggstate;
	int			wfuncno,
				numaggs,
				numaggs_restart,
				i;
	int64		aggregatedupto_nonrestarted;
	MemoryContext oldContext;
	ExprContext *econtext;
	WindowObject agg_winobj;
	TupleTableSlot *agg_row_slot;
	TupleTableSlot *temp_slot;
	bool		frame_head_moved_backwards;
	bool		frame_tail_moved_backwards;

	numaggs = winstate->numaggs;
	if (numaggs == 0)
		return;					/* nothing to do */

	/* final output execution is in ps_ExprContext */
	econtext = winstate->ss.ps.ps_ExprContext;
	agg_winobj = winstate->agg_winobj;
	agg_row_slot = winstate->agg_row_slot;
	temp_slot = winstate->temp_slot_1;

	/*
	 * If the window's frame start clause is UNBOUNDED_PRECEDING and no
	 * exclusion clause is specified, then the window frame consists of a
	 * contiguous group of rows extending forward from the start of the
	 * partition, and rows only enter the frame, never exit it, as the current
	 * row advances forward.  This makes it possible to use an incremental
	 * strategy for evaluating aggregates: we run the transition function for
	 * each row added to the frame, and run the final function whenever we
	 * need the current aggregate value.  This is considerably more efficient
	 * than the naive approach of re-running the entire aggregate calculation
	 * for each current row.  It does assume that the final function doesn't
	 * damage the running transition value, but we have the same assumption in
	 * nodeAgg.c too (when it rescans an existing hash table).
	 *
	 * If the frame start does sometimes move, we can still optimize as above
	 * whenever successive rows share the same frame head, but if the frame
	 * head moves beyond the previous head we try to remove those rows using
	 * the aggregate's inverse transition function.  This function restores
	 * the aggregate's current state to what it would be if the removed row
	 * had never been aggregated in the first place.  Inverse transition
	 * functions may optionally return NULL, indicating that the function was
	 * unable to remove the tuple from aggregation.  If this happens, or if
	 * the aggregate doesn't have an inverse transition function at all, we
	 * must perform the aggregation all over again for all tuples within the
	 * new frame boundaries.
	 *
	 * If there's any exclusion clause, then we may have to aggregate over a
	 * non-contiguous set of rows, so we punt and recalculate for every row.
	 * (For some frame end choices, it might be that the frame is always
	 * contiguous anyway, but that's an optimization to investigate later.)
	 *
	 * In many common cases, multiple rows share the same frame and hence the
	 * same aggregate value. (In particular, if there's no ORDER BY in a RANGE
	 * window, then all rows are peers and so they all have window frame equal
	 * to the whole partition.)  We optimize such cases by calculating the
	 * aggregate value once when we reach the first row of a peer group, and
	 * then returning the saved value for all subsequent rows.
	 *
	 * 'aggregatedupto' keeps track of the first row that has not yet been
	 * accumulated into the aggregate transition values.  Whenever we start a
	 * new peer group, we accumulate forward to the end of the peer group.
	 */

	/*
	 * First, update the frame head position.
	 *
	 * The frame head should never move backwards, and the code below wouldn't
	 * cope if it did, so for safety we complain if it does.
	 *
	 * GPDB: We accept it if the start offset is not a constant. PostgreSQL
	 * only allows constant offsets, but we're more flexible. The code below
	 * does actually cope with it just fine.
	 */
	update_frameheadpos(winstate);
	if (winstate->start_offset_var_free &&
		winstate->frameheadpos < winstate->aggregatedbase)
		elog(ERROR, "window frame head moved backward");

	/*
	 * If the frame didn't change compared to the previous row, we can re-use
	 * the result values that were previously saved at the bottom of this
	 * function.  Since we don't know the current frame's end yet, this is not
	 * possible to check for fully.  But if the frame end mode is UNBOUNDED
	 * FOLLOWING or CURRENT ROW, no exclusion clause is specified, and the
	 * current row lies within the previous row's frame, then the two frames'
	 * ends must coincide.  Note that on the first row aggregatedbase ==
	 * aggregatedupto, meaning this test must fail, so we don't need to check
	 * the "there was no previous row" case explicitly here.
	 */
	if (winstate->aggregatedbase == winstate->frameheadpos &&
		(winstate->frameOptions & (FRAMEOPTION_END_UNBOUNDED_FOLLOWING |
								   FRAMEOPTION_END_CURRENT_ROW)) &&
		!(winstate->frameOptions & FRAMEOPTION_EXCLUSION) &&
		winstate->aggregatedbase <= winstate->currentpos &&
		winstate->aggregatedupto > winstate->currentpos &&
		winstate->start_offset_var_free &&
		winstate->end_offset_var_free)
	{
		for (i = 0; i < numaggs; i++)
		{
			peraggstate = &winstate->peragg[i];
			wfuncno = peraggstate->wfuncno;
			econtext->ecxt_aggvalues[wfuncno] = peraggstate->resultValue;
			econtext->ecxt_aggnulls[wfuncno] = peraggstate->resultValueIsNull;
		}
		return;
	}

	/*
	 * If the END offset contains a variable, then it's possible for the frame's
	 * end to move backwards. If that happens, restart all aggregates. (Depending
	 * on how much it moved, it might be faster to apply the inverse transition
	 * function to "subtract" those rows, but let's keep this simple for now.)
	 */
	frame_tail_moved_backwards = false;
	if (!winstate->end_offset_var_free && winstate->aggregatedupto > 0)
	{
		/* Fetch the last row of the previous frame */
		if (!TupIsNull(agg_row_slot))
			ExecClearTuple(agg_row_slot);
		if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto - 1,
								 agg_row_slot))
		{
			/* must be end of partition */
			/* XXX: I don't think this should ever happen. */
			frame_tail_moved_backwards = true;
		}
		/*
		 * Is the last row of the previous frame still in current frame?
		 * If not, then the end of the frame must've moved backwards.
		 * (Or it moved so much forward that there is no overlap between
		 * the old and the new frame. In that case, we would restart
		 * all the aggregates anyway.)
		 */
		else if (row_is_in_frame(winstate, winstate->aggregatedupto - 1, agg_row_slot) != 1)
		{
			frame_tail_moved_backwards = true;
		}

		ExecClearTuple(agg_row_slot);
	}

	/*
	 * Likewise, if the frame head moves backwards, then we need to restart the
	 * aggregation. (We could instead call the transition function on the rows
	 * that became part of the frame again, but let's keep this simple for now.)
	 */
	if (winstate->frameheadpos < winstate->aggregatedbase)
		frame_head_moved_backwards = true;
	else
		frame_head_moved_backwards = false;

	/*----------
	 * Initialize restart flags.
	 *
	 * We restart the aggregation:
	 *	 - if we're processing the first row in the partition, or
	 *	 - if the frame's head moved and we cannot use an inverse
	 *	   transition function, or
	 *	 - we have an EXCLUSION clause, or
	 *	 - if the new frame doesn't overlap the old one
	 *
	 * Note that we don't strictly need to restart in the last case, but if
	 * we're going to remove all rows from the aggregation anyway, a restart
	 * surely is faster.
	 *----------
	 */
	numaggs_restart = 0;
	for (i = 0; i < numaggs; i++)
	{
		peraggstate = &winstate->peragg[i];
		if (winstate->currentpos == 0 ||
			(winstate->aggregatedbase != winstate->frameheadpos &&
			 !OidIsValid(peraggstate->invtransfn_oid)) ||
			(winstate->frameOptions & FRAMEOPTION_EXCLUSION) ||
			winstate->aggregatedupto <= winstate->frameheadpos ||
			frame_head_moved_backwards ||
			frame_tail_moved_backwards)
		{
			peraggstate->restart = true;
			numaggs_restart++;
		}
		else
			peraggstate->restart = false;
	}

	/*
	 * If we have any possibly-moving aggregates, attempt to advance
	 * aggregatedbase to match the frame's head by removing input rows that
	 * fell off the top of the frame from the aggregations.  This can fail,
	 * i.e. advance_windowaggregate_base() can return false, in which case
	 * we'll restart that aggregate below.
	 */
	while (numaggs_restart < numaggs &&
		   winstate->aggregatedbase < winstate->frameheadpos)
	{
		/*
		 * Fetch the next tuple of those being removed. This should never fail
		 * as we should have been here before.
		 */
		if (!window_gettupleslot(agg_winobj, winstate->aggregatedbase,
								 temp_slot))
			elog(ERROR, "could not re-fetch previously fetched frame row");

		/* Set tuple context for evaluation of aggregate arguments */
		winstate->tmpcontext->ecxt_outertuple = temp_slot;

		/*
		 * Perform the inverse transition for each aggregate function in the
		 * window, unless it has already been marked as needing a restart.
		 */
		for (i = 0; i < numaggs; i++)
		{
			bool		ok;

			peraggstate = &winstate->peragg[i];
			if (peraggstate->restart)
				continue;

			wfuncno = peraggstate->wfuncno;
			ok = advance_windowaggregate_base(winstate,
											  &winstate->perfunc[wfuncno],
											  peraggstate);
			if (!ok)
			{
				/* Inverse transition function has failed, must restart */
				peraggstate->restart = true;
				numaggs_restart++;
			}
		}

		/* Reset per-input-tuple context after each tuple */
		ResetExprContext(winstate->tmpcontext);

		/* And advance the aggregated-row state */
		winstate->aggregatedbase++;
		ExecClearTuple(temp_slot);
	}

	/*
	 * If we successfully advanced the base rows of all the aggregates,
	 * aggregatedbase now equals frameheadpos; but if we failed for any, we
	 * must forcibly update aggregatedbase.
	 */
	winstate->aggregatedbase = winstate->frameheadpos;

	/*
	 * If we created a mark pointer for aggregates, keep it pushed up to frame
	 * head, so that tuplestore can discard unnecessary rows.
	 */
	if (agg_winobj->markptr >= 0)
		WinSetMarkPosition(agg_winobj, winstate->frameheadpos);

	/*
	 * Now restart the aggregates that require it.
	 *
	 * We assume that aggregates using the shared context always restart if
	 * *any* aggregate restarts, and we may thus clean up the shared
	 * aggcontext if that is the case.  Private aggcontexts are reset by
	 * initialize_windowaggregate() if their owning aggregate restarts. If we
	 * aren't restarting an aggregate, we need to free any previously saved
	 * result for it, else we'll leak memory.
	 */
	if (numaggs_restart > 0)
		MemoryContextResetAndDeleteChildren(winstate->aggcontext);
	for (i = 0; i < numaggs; i++)
	{
		peraggstate = &winstate->peragg[i];

		/* Aggregates using the shared ctx must restart if *any* agg does */
		Assert(peraggstate->aggcontext != winstate->aggcontext ||
			   numaggs_restart == 0 ||
			   peraggstate->restart);

		if (peraggstate->restart)
		{
			wfuncno = peraggstate->wfuncno;
			initialize_windowaggregate(winstate,
									   &winstate->perfunc[wfuncno],
									   peraggstate);
		}
		else if (!peraggstate->resultValueIsNull)
		{
			if (!peraggstate->resulttypeByVal)
				pfree(DatumGetPointer(peraggstate->resultValue));
			peraggstate->resultValue = (Datum) 0;
			peraggstate->resultValueIsNull = true;
		}
	}

	/*
	 * Non-restarted aggregates now contain the rows between aggregatedbase
	 * (i.e., frameheadpos) and aggregatedupto, while restarted aggregates
	 * contain no rows.  If there are any restarted aggregates, we must thus
	 * begin aggregating anew at frameheadpos, otherwise we may simply
	 * continue at aggregatedupto.  We must remember the old value of
	 * aggregatedupto to know how long to skip advancing non-restarted
	 * aggregates.  If we modify aggregatedupto, we must also clear
	 * agg_row_slot, per the loop invariant below.
	 */
	aggregatedupto_nonrestarted = winstate->aggregatedupto;
	if (numaggs_restart > 0 &&
		winstate->aggregatedupto != winstate->frameheadpos)
	{
		winstate->aggregatedupto = winstate->frameheadpos;
		ExecClearTuple(agg_row_slot);
	}

	/*
	 * Advance until we reach a row not in frame (or end of partition).
	 *
	 * Note the loop invariant: agg_row_slot is either empty or holds the row
	 * at position aggregatedupto.  We advance aggregatedupto after processing
	 * a row.
	 */
	for (;;)
	{
		int			ret;

		/* Fetch next row if we didn't already */
		if (TupIsNull(agg_row_slot))
		{
			if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto,
									 agg_row_slot))
				break;			/* must be end of partition */
		}

		/*
		 * Exit loop if no more rows can be in frame.  Skip aggregation if
		 * current row is not in frame but there might be more in the frame.
		 */
		ret = row_is_in_frame(winstate, winstate->aggregatedupto, agg_row_slot);
		if (ret < 0)
			break;
		if (ret == 0)
			goto next_tuple;

		/* Set tuple context for evaluation of aggregate arguments */
		winstate->tmpcontext->ecxt_outertuple = agg_row_slot;

		/* Accumulate row into the aggregates */
		for (i = 0; i < numaggs; i++)
		{
			peraggstate = &winstate->peragg[i];

			/* Non-restarted aggs skip until aggregatedupto_nonrestarted */
			if (!peraggstate->restart &&
				winstate->aggregatedupto < aggregatedupto_nonrestarted)
				continue;

			wfuncno = peraggstate->wfuncno;
			advance_windowaggregate(winstate,
									&winstate->perfunc[wfuncno],
									peraggstate);
		}

next_tuple:
		/* Reset per-input-tuple context after each tuple */
		ResetExprContext(winstate->tmpcontext);

		/* And advance the aggregated-row state */
		winstate->aggregatedupto++;
		ExecClearTuple(agg_row_slot);
	}

	/* The frame's end is not supposed to move backwards, ever */
	/*
	 * In GPDB, though, it's entirely possible, if the START or END offset is
	 * not a constant.
	 */
	Assert(frame_head_moved_backwards ||
		   frame_tail_moved_backwards ||
		   aggregatedupto_nonrestarted <= winstate->aggregatedupto);

	/*
	 * finalize aggregates and fill result/isnull fields.
	 */
	for (i = 0; i < numaggs; i++)
	{
		Datum	   *result;
		bool	   *isnull;

		peraggstate = &winstate->peragg[i];
		wfuncno = peraggstate->wfuncno;
		result = &econtext->ecxt_aggvalues[wfuncno];
		isnull = &econtext->ecxt_aggnulls[wfuncno];
		finalize_windowaggregate(winstate,
								 &winstate->perfunc[wfuncno],
								 peraggstate,
								 result, isnull);

		/*
		 * save the result in case next row shares the same frame.
		 *
		 * XXX in some framing modes, eg ROWS/END_CURRENT_ROW, we can know in
		 * advance that the next row can't possibly share the same frame. Is
		 * it worth detecting that and skipping this code?
		 */
		if (!peraggstate->resulttypeByVal && !*isnull)
		{
			oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
			peraggstate->resultValue =
				datumCopy(*result,
						  peraggstate->resulttypeByVal,
						  peraggstate->resulttypeLen);
			MemoryContextSwitchTo(oldContext);
		}
		else
		{
			peraggstate->resultValue = *result;
		}
		peraggstate->resultValueIsNull = *isnull;
	}
}

/*
 * eval_windowfunction
 *
 * Arguments of window functions are not evaluated here, because a window
 * function can need random access to arbitrary rows in the partition.
 * The window function uses the special WinGetFuncArgInPartition and
 * WinGetFuncArgInFrame functions to evaluate the arguments for the rows
 * it wants.
 */
static void
eval_windowfunction(WindowAggState *winstate, WindowStatePerFunc perfuncstate,
					Datum *result, bool *isnull)
{
	LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
	MemoryContext oldContext;

	oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);

	/*
	 * We don't pass any normal arguments to a window function, but we do pass
	 * it the number of arguments, in order to permit window function
	 * implementations to support varying numbers of arguments.  The real info
	 * goes through the WindowObject, which is passed via fcinfo->context.
	 */
	InitFunctionCallInfoData(*fcinfo, &(perfuncstate->flinfo),
							 perfuncstate->numArguments,
							 perfuncstate->winCollation,
							 (void *) perfuncstate->winobj, NULL);
	/* Just in case, make all the regular argument slots be null */
	for (int argno = 0; argno < perfuncstate->numArguments; argno++)
		fcinfo->args[argno].isnull = true;
	/* Window functions don't have a current aggregate context, either */
	winstate->curaggcontext = NULL;

	*result = FunctionCallInvoke(fcinfo);
	*isnull = fcinfo->isnull;

	/*
	 * Make sure pass-by-ref data is allocated in the appropriate context. (We
	 * need this in case the function returns a pointer into some short-lived
	 * tuple, as is entirely possible.)
	 */
	if (!perfuncstate->resulttypeByVal && !fcinfo->isnull &&
		!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
							   DatumGetPointer(*result))
		)
		*result = datumCopy(*result,
							perfuncstate->resulttypeByVal,
							perfuncstate->resulttypeLen);

	MemoryContextSwitchTo(oldContext);
}

/*
 * begin_partition
 * Start buffering rows of the next partition.
 */
static void
begin_partition(WindowAggState *winstate)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	PlanState  *outerPlan = outerPlanState(winstate);
	int			frameOptions = winstate->frameOptions;
	int			numfuncs = winstate->numfuncs;
	int			i;

	winstate->partition_spooled = false;
	winstate->framehead_valid = false;
	winstate->frametail_valid = false;
	winstate->grouptail_valid = false;
	winstate->spooled_rows = 0;
	winstate->currentpos = 0;
	winstate->frameheadpos = 0;
	winstate->frametailpos = 0;
	winstate->currentgroup = 0;
	winstate->frameheadgroup = 0;
	winstate->frametailgroup = 0;
	winstate->groupheadpos = 0;
	winstate->grouptailpos = -1;	/* see update_grouptailpos */
	ExecClearTuple(winstate->agg_row_slot);
	if (winstate->framehead_slot)
		ExecClearTuple(winstate->framehead_slot);
	if (winstate->frametail_slot)
		ExecClearTuple(winstate->frametail_slot);

	/*
	 * If this is the very first partition, we need to fetch the first input
	 * row to store in first_part_slot.
	 */
	if (TupIsNull(winstate->first_part_slot))
	{
		TupleTableSlot *outerslot = ExecProcNode(outerPlan);

		if (!TupIsNull(outerslot))
			ExecCopySlot(winstate->first_part_slot, outerslot);
		else
		{
			/* outer plan is empty, so we have nothing to do */
			winstate->partition_spooled = true;
			winstate->more_partitions = false;
			return;
		}
	}

	/* Create new tuplestore for this partition */
	winstate->buffer =
		tuplestore_begin_heap(false, false,
							  PlanStateOperatorMemKB((PlanState *) winstate));

	/*
	 * Set up read pointers for the tuplestore.  The current pointer doesn't
	 * need BACKWARD capability, but the per-window-function read pointers do,
	 * and the aggregate pointer does if we might need to restart aggregation.
	 */
	winstate->current_ptr = 0;	/* read pointer 0 is pre-allocated */

	/* reset default REWIND capability bit for current ptr */
	tuplestore_set_eflags(winstate->buffer, 0);

	/* create read pointers for aggregates, if needed */
	if (winstate->numaggs > 0)
	{
		WindowObject agg_winobj = winstate->agg_winobj;
		int			readptr_flags = 0;

		/*
		 * If the frame head is potentially movable, or we have an EXCLUSION
		 * clause, we might need to restart aggregation ...
		 */
		if (!(frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) ||
			(frameOptions & FRAMEOPTION_EXCLUSION) ||
			!winstate->end_offset_var_free)
		{
			/* ... so create a mark pointer to track the frame head */
			agg_winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, 0);
			/* and the read pointer will need BACKWARD capability */
			readptr_flags |= EXEC_FLAG_BACKWARD;
		}

		agg_winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
															readptr_flags);
		agg_winobj->markpos = -1;
		agg_winobj->seekpos = -1;

		/* Also reset the row counters for aggregates */
		winstate->aggregatedbase = 0;
		winstate->aggregatedupto = 0;
	}

	/* create mark and read pointers for each real window function */
	for (i = 0; i < numfuncs; i++)
	{
		WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);

		if (!perfuncstate->plain_agg)
		{
			WindowObject winobj = perfuncstate->winobj;

			winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer,
															0);
			winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
															EXEC_FLAG_BACKWARD);
			winobj->markpos = -1;
			winobj->seekpos = -1;
		}
	}

	/*
	 * If we are in RANGE or GROUPS mode, then determining frame boundaries
	 * requires physical access to the frame endpoint rows, except in certain
	 * degenerate cases.  We create read pointers to point to those rows, to
	 * simplify access and ensure that the tuplestore doesn't discard the
	 * endpoint rows prematurely.  (Must create pointers in exactly the same
	 * cases that update_frameheadpos and update_frametailpos need them.)
	 */
	winstate->framehead_ptr = winstate->frametail_ptr = -1; /* if not used */

	if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
	{
		if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
			 node->ordNumCols != 0) ||
			(frameOptions & FRAMEOPTION_START_OFFSET))
			winstate->framehead_ptr =
				tuplestore_alloc_read_pointer(winstate->buffer,
											  winstate->start_offset_var_free ? 0 : EXEC_FLAG_REWIND);
		if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
			 node->ordNumCols != 0) ||
			(frameOptions & FRAMEOPTION_END_OFFSET))
			winstate->frametail_ptr =
				tuplestore_alloc_read_pointer(winstate->buffer,
											  winstate->end_offset_var_free ? 0 : EXEC_FLAG_REWIND);
	}

	/*
	 * If we have an exclusion clause that requires knowing the boundaries of
	 * the current row's peer group, we create a read pointer to track the
	 * tail position of the peer group (i.e., first row of the next peer
	 * group).  The head position does not require its own pointer because we
	 * maintain that as a side effect of advancing the current row.
	 */
	winstate->grouptail_ptr = -1;

	if ((frameOptions & (FRAMEOPTION_EXCLUDE_GROUP |
						 FRAMEOPTION_EXCLUDE_TIES)) &&
		node->ordNumCols != 0)
	{
		winstate->grouptail_ptr =
			tuplestore_alloc_read_pointer(winstate->buffer, 0);
	}

	/*
	 * Store the first tuple into the tuplestore (it's always available now;
	 * we either read it above, or saved it at the end of previous partition)
	 */
	tuplestore_puttupleslot(winstate->buffer, winstate->first_part_slot);
	winstate->spooled_rows++;
}

/*
 * Read tuples from the outer node, up to and including position 'pos', and
 * store them into the tuplestore. If pos is -1, reads the whole partition.
 */
static void
spool_tuples(WindowAggState *winstate, int64 pos)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	PlanState  *outerPlan;
	TupleTableSlot *outerslot;
	MemoryContext oldcontext;

	if (!winstate->buffer)
		return;					/* just a safety check */
	if (winstate->partition_spooled)
		return;					/* whole partition done already */

	/*
	 * If the tuplestore has spilled to disk, alternate reading and writing
	 * becomes quite expensive due to frequent buffer flushes.  It's cheaper
	 * to force the entire partition to get spooled in one go.
	 *
	 * XXX this is a horrid kluge --- it'd be better to fix the performance
	 * problem inside tuplestore.  FIXME
	 */
	if (!tuplestore_in_memory(winstate->buffer))
		pos = -1;

	outerPlan = outerPlanState(winstate);

	/* Must be in query context to call outerplan */
	oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);

	while (winstate->spooled_rows <= pos || pos == -1)
	{
		outerslot = ExecProcNode(outerPlan);
		if (TupIsNull(outerslot))
		{
			/* reached the end of the last partition */
			winstate->partition_spooled = true;
			winstate->more_partitions = false;
			break;
		}

		if (node->partNumCols > 0)
		{
			ExprContext *econtext = winstate->tmpcontext;

			econtext->ecxt_innertuple = winstate->first_part_slot;
			econtext->ecxt_outertuple = outerslot;

			/* Check if this tuple still belongs to the current partition */
			if (!ExecQualAndReset(winstate->partEqfunction, econtext))
			{
				/*
				 * end of partition; copy the tuple for the next cycle.
				 */
				ExecCopySlot(winstate->first_part_slot, outerslot);
				winstate->partition_spooled = true;
				winstate->more_partitions = true;
				break;
			}
		}

		/* Still in partition, so save it into the tuplestore */
		tuplestore_puttupleslot(winstate->buffer, outerslot);
		winstate->spooled_rows++;
	}

	MemoryContextSwitchTo(oldcontext);
}

/*
 * release_partition
 * clear information kept within a partition, including
 * tuplestore and aggregate results.
 */
static void
release_partition(WindowAggState *winstate)
{
	int			i;

	for (i = 0; i < winstate->numfuncs; i++)
	{
		WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);

		/* Release any partition-local state of this window function */
		if (perfuncstate->winobj)
			perfuncstate->winobj->localmem = NULL;
	}

	/*
	 * Release all partition-local memory (in particular, any partition-local
	 * state that we might have trashed our pointers to in the above loop, and
	 * any aggregate temp data).  We don't rely on retail pfree because some
	 * aggregates might have allocated data we don't have direct pointers to.
	 */
	MemoryContextResetAndDeleteChildren(winstate->partcontext);
	MemoryContextResetAndDeleteChildren(winstate->aggcontext);
	for (i = 0; i < winstate->numaggs; i++)
	{
		if (winstate->peragg[i].aggcontext != winstate->aggcontext)
			MemoryContextResetAndDeleteChildren(winstate->peragg[i].aggcontext);
	}

	if (winstate->buffer)
		tuplestore_end(winstate->buffer);
	winstate->buffer = NULL;
	winstate->partition_spooled = false;
}

/*
 * row_is_in_frame
 * Determine whether a row is in the current row's window frame according
 * to our window framing rule
 *
 * The caller must have already determined that the row is in the partition
 * and fetched it into a slot.  This function just encapsulates the framing
 * rules.
 *
 * Returns:
 * -1, if the row is out of frame and no succeeding rows can be in frame
 * 0, if the row is out of frame but succeeding rows might be in frame
 * 1, if the row is in frame
 *
 * May clobber winstate->temp_slot_2.
 */
static int
row_is_in_frame(WindowAggState *winstate, int64 pos, TupleTableSlot *slot)
{
	int			frameOptions = winstate->frameOptions;

	compute_start_end_offsets(winstate);

	Assert(pos >= 0);			/* else caller error */

	/*
	 * First, check frame starting conditions.  We might as well delegate this
	 * to update_frameheadpos always; it doesn't add any notable cost.
	 */
	update_frameheadpos(winstate);
	if (pos < winstate->frameheadpos)
		return 0;

	/*
	 * Okay so far, now check frame ending conditions.  Here, we avoid calling
	 * update_frametailpos in simple cases, so as not to spool tuples further
	 * ahead than necessary.
	 */
	if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			/* rows after current row are out of frame */
			if (pos > winstate->currentpos)
				return -1;
		}
		else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
		{
			/* following row that is not peer is out of frame */
			if (pos > winstate->currentpos &&
				!are_peers(winstate, slot, winstate->ss.ss_ScanTupleSlot))
				return -1;
		}
		else
			Assert(false);
	}
	else if (frameOptions & FRAMEOPTION_END_OFFSET)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			int64		offset = DatumGetInt64(winstate->endOffsetValue);

			/* rows after current row + offset are out of frame */
			if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
				offset = -offset;

			if (pos > winstate->currentpos + offset)
				return -1;
		}
		else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
		{
			/* hard cases, so delegate to update_frametailpos */
			update_frametailpos(winstate);
			if (pos >= winstate->frametailpos)
				return -1;
		}
		else
			Assert(false);
	}

	/* Check exclusion clause */
	if (frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW)
	{
		if (pos == winstate->currentpos)
			return 0;
	}
	else if ((frameOptions & FRAMEOPTION_EXCLUDE_GROUP) ||
			 ((frameOptions & FRAMEOPTION_EXCLUDE_TIES) &&
			  pos != winstate->currentpos))
	{
		WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;

		/* If no ORDER BY, all rows are peers with each other */
		if (node->ordNumCols == 0)
			return 0;
		/* Otherwise, check the group boundaries */
		if (pos >= winstate->groupheadpos)
		{
			update_grouptailpos(winstate);
			if (pos < winstate->grouptailpos)
				return 0;
		}
	}

	/* If we get here, it's in frame */
	return 1;
}

/*
 * update_frameheadpos
 * make frameheadpos valid for the current row
 *
 * Note that frameheadpos is computed without regard for any window exclusion
 * clause; the current row and/or its peers are considered part of the frame
 * for this purpose even if they must be excluded later.
 *
 * May clobber winstate->temp_slot_2.
 */
static void
update_frameheadpos(WindowAggState *winstate)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	int			frameOptions = winstate->frameOptions;
	MemoryContext oldcontext;

	if (winstate->framehead_valid)
		return;					/* already known for current row */

	/* We may be called in a short-lived context */
	oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);

	compute_start_end_offsets(winstate);

	if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
	{
		/* In UNBOUNDED PRECEDING mode, frame head is always row 0 */
		winstate->frameheadpos = 0;
		winstate->framehead_valid = true;
	}
	else if (frameOptions & FRAMEOPTION_START_CURRENT_ROW)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			/* In ROWS mode, frame head is the same as current */
			winstate->frameheadpos = winstate->currentpos;
			winstate->framehead_valid = true;
		}
		else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
		{
			/* If no ORDER BY, all rows are peers with each other */
			if (node->ordNumCols == 0)
			{
				winstate->frameheadpos = 0;
				winstate->framehead_valid = true;
				MemoryContextSwitchTo(oldcontext);
				return;
			}

			/*
			 * In RANGE or GROUPS START_CURRENT_ROW mode, frame head is the
			 * first row that is a peer of current row.  We keep a copy of the
			 * last-known frame head row in framehead_slot, and advance as
			 * necessary.  Note that if we reach end of partition, we will
			 * leave frameheadpos = end+1 and framehead_slot empty.
			 */
			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->framehead_ptr);
			if (winstate->frameheadpos == 0 &&
				TupIsNull(winstate->framehead_slot))
			{
				/* fetch first row into framehead_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->framehead_slot))
			{
				if (are_peers(winstate, winstate->framehead_slot,
							  winstate->ss.ss_ScanTupleSlot))
					break;		/* this row is the correct frame head */
				/* Note we advance frameheadpos even if the fetch fails */
				winstate->frameheadpos++;
				spool_tuples(winstate, winstate->frameheadpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					break;		/* end of partition */
			}
			winstate->framehead_valid = true;
		}
		else
			Assert(false);
	}
	else if (frameOptions & FRAMEOPTION_START_OFFSET)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			/* In ROWS mode, bound is physically n before/after current */
			int64		offset = DatumGetInt64(winstate->startOffsetValue);

			if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
				offset = -offset;

			winstate->frameheadpos = winstate->currentpos + offset;
			/* frame head can't go before first row */
			if (winstate->frameheadpos < 0)
				winstate->frameheadpos = 0;
			else if (winstate->frameheadpos > winstate->currentpos + 1)
			{
				/* make sure frameheadpos is not past end of partition */
				spool_tuples(winstate, winstate->frameheadpos - 1);
				if (winstate->frameheadpos > winstate->spooled_rows)
					winstate->frameheadpos = winstate->spooled_rows;
			}
			winstate->framehead_valid = true;
		}
		else if (frameOptions & FRAMEOPTION_RANGE)
		{
			/*
			 * In RANGE START_OFFSET mode, frame head is the first row that
			 * satisfies the in_range constraint relative to the current row.
			 * We keep a copy of the last-known frame head row in
			 * framehead_slot, and advance as necessary.  Note that if we
			 * reach end of partition, we will leave frameheadpos = end+1 and
			 * framehead_slot empty.
			 */
			int			sortCol = node->ordColIdx[0];
			bool		sub,
						less;

			/* We must have an ordering column */
			Assert(node->ordNumCols == 1);

			/* Precompute flags for in_range checks */
			if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
				sub = true;		/* subtract startOffset from current row */
			else
				sub = false;	/* add it */
			less = false;		/* normally, we want frame head >= sum */
			/* If sort order is descending, flip both flags */
			if (!winstate->inRangeAsc)
			{
				sub = !sub;
				less = true;
			}

			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->framehead_ptr);
			/*
			 * GPDB: If the start offset is not a constant, always start from
			 * the beginning.
			 *
			 * XXX: This is very expensive. A smarter strategy might be
			 * to walk backwards from the previous frame head, until we reach
			 * a row that doesn't belong in the frame anymore.
			 */
			if (!winstate->start_offset_var_free)
			{
				winstate->frameheadpos = 0;
				ExecClearTuple(winstate->framehead_slot);
				tuplestore_rescan(winstate->buffer);
			}

			if (winstate->frameheadpos == 0 &&
				TupIsNull(winstate->framehead_slot))
			{
				/* fetch first row into framehead_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->framehead_slot))
			{
				Datum		headval,
							currval;
				bool		headisnull,
							currisnull;

				headval = slot_getattr(winstate->framehead_slot, sortCol,
									   &headisnull);
				currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
									   &currisnull);
				if (headisnull || currisnull)
				{
					/* order of the rows depends only on nulls_first */
					if (winstate->inRangeNullsFirst)
					{
						/* advance head if head is null and curr is not */
						if (!headisnull || currisnull)
							break;
					}
					else
					{
						/* advance head if head is not null and curr is null */
						if (headisnull || !currisnull)
							break;
					}
				}
				else
				{
					if (DatumGetBool(FunctionCall5Coll(&winstate->startInRangeFunc,
													   winstate->inRangeColl,
													   headval,
													   currval,
													   winstate->startOffsetValue,
													   BoolGetDatum(sub),
													   BoolGetDatum(less))))
						break;	/* this row is the correct frame head */
				}
				/* Note we advance frameheadpos even if the fetch fails */
				winstate->frameheadpos++;
				spool_tuples(winstate, winstate->frameheadpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					break;		/* end of partition */
			}
			winstate->framehead_valid = true;
		}
		else if (frameOptions & FRAMEOPTION_GROUPS)
		{
			/*
			 * In GROUPS START_OFFSET mode, frame head is the first row of the
			 * first peer group whose number satisfies the offset constraint.
			 * We keep a copy of the last-known frame head row in
			 * framehead_slot, and advance as necessary.  Note that if we
			 * reach end of partition, we will leave frameheadpos = end+1 and
			 * framehead_slot empty.
			 */
			int64		offset = DatumGetInt64(winstate->startOffsetValue);
			int64		minheadgroup;

			if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
				minheadgroup = winstate->currentgroup - offset;
			else
				minheadgroup = winstate->currentgroup + offset;

			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->framehead_ptr);
			if (winstate->frameheadpos == 0 &&
				TupIsNull(winstate->framehead_slot))
			{
				/* fetch first row into framehead_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->framehead_slot))
			{
				if (winstate->frameheadgroup >= minheadgroup)
					break;		/* this row is the correct frame head */
				ExecCopySlot(winstate->temp_slot_2, winstate->framehead_slot);
				/* Note we advance frameheadpos even if the fetch fails */
				winstate->frameheadpos++;
				spool_tuples(winstate, winstate->frameheadpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->framehead_slot))
					break;		/* end of partition */
				if (!are_peers(winstate, winstate->temp_slot_2,
							   winstate->framehead_slot))
					winstate->frameheadgroup++;
			}
			ExecClearTuple(winstate->temp_slot_2);
			winstate->framehead_valid = true;
		}
		else
			Assert(false);
	}
	else
		Assert(false);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * update_frametailpos
 * make frametailpos valid for the current row
 *
 * Note that frametailpos is computed without regard for any window exclusion
 * clause; the current row and/or its peers are considered part of the frame
 * for this purpose even if they must be excluded later.
 *
 * May clobber winstate->temp_slot_2.
 */
static void
update_frametailpos(WindowAggState *winstate)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	int			frameOptions = winstate->frameOptions;
	MemoryContext oldcontext;

	if (winstate->frametail_valid)
		return;					/* already known for current row */

	/* We may be called in a short-lived context */
	oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);

	compute_start_end_offsets(winstate);

	if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
	{
		/* In UNBOUNDED FOLLOWING mode, all partition rows are in frame */
		spool_tuples(winstate, -1);
		winstate->frametailpos = winstate->spooled_rows;
		winstate->frametail_valid = true;
	}
	else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			/* In ROWS mode, exactly the rows up to current are in frame */
			winstate->frametailpos = winstate->currentpos + 1;
			winstate->frametail_valid = true;
		}
		else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
		{
			/* If no ORDER BY, all rows are peers with each other */
			if (node->ordNumCols == 0)
			{
				spool_tuples(winstate, -1);
				winstate->frametailpos = winstate->spooled_rows;
				winstate->frametail_valid = true;
				MemoryContextSwitchTo(oldcontext);
				return;
			}

			/*
			 * In RANGE or GROUPS END_CURRENT_ROW mode, frame end is the last
			 * row that is a peer of current row, frame tail is the row after
			 * that (if any).  We keep a copy of the last-known frame tail row
			 * in frametail_slot, and advance as necessary.  Note that if we
			 * reach end of partition, we will leave frametailpos = end+1 and
			 * frametail_slot empty.
			 */
			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->frametail_ptr);
			if (winstate->frametailpos == 0 &&
				TupIsNull(winstate->frametail_slot))
			{
				/* fetch first row into frametail_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->frametail_slot))
			{
				if (winstate->frametailpos > winstate->currentpos &&
					!are_peers(winstate, winstate->frametail_slot,
							   winstate->ss.ss_ScanTupleSlot))
					break;		/* this row is the frame tail */
				/* Note we advance frametailpos even if the fetch fails */
				winstate->frametailpos++;
				spool_tuples(winstate, winstate->frametailpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					break;		/* end of partition */
			}
			winstate->frametail_valid = true;
		}
		else
			Assert(false);
	}
	else if (frameOptions & FRAMEOPTION_END_OFFSET)
	{
		if (frameOptions & FRAMEOPTION_ROWS)
		{
			/* In ROWS mode, bound is physically n before/after current */
			int64		offset = DatumGetInt64(winstate->endOffsetValue);

			if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
				offset = -offset;

			winstate->frametailpos = winstate->currentpos + offset + 1;
			/* smallest allowable value of frametailpos is 0 */
			if (winstate->frametailpos < 0)
				winstate->frametailpos = 0;
			else if (winstate->frametailpos > winstate->currentpos + 1)
			{
				/* make sure frametailpos is not past end of partition */
				spool_tuples(winstate, winstate->frametailpos - 1);
				if (winstate->frametailpos > winstate->spooled_rows)
					winstate->frametailpos = winstate->spooled_rows;
			}
			winstate->frametail_valid = true;
		}
		else if (frameOptions & FRAMEOPTION_RANGE)
		{
			/*
			 * In RANGE END_OFFSET mode, frame end is the last row that
			 * satisfies the in_range constraint relative to the current row,
			 * frame tail is the row after that (if any).  We keep a copy of
			 * the last-known frame tail row in frametail_slot, and advance as
			 * necessary.  Note that if we reach end of partition, we will
			 * leave frametailpos = end+1 and frametail_slot empty.
			 */
			int			sortCol = node->ordColIdx[0];
			bool		sub,
						less;

			/* We must have an ordering column */
			Assert(node->ordNumCols == 1);

			/* Precompute flags for in_range checks */
			if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
				sub = true;		/* subtract endOffset from current row */
			else
				sub = false;	/* add it */
			less = true;		/* normally, we want frame tail <= sum */
			/* If sort order is descending, flip both flags */
			if (!winstate->inRangeAsc)
			{
				sub = !sub;
				less = false;
			}

			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->frametail_ptr);
			/*
			 * GPDB: If the end offset is not a constant, always start from
			 * the beginning.
			 *
			 * XXX: This is very expensive. A smarter strategy might be
			 * to walk backwards from the previous frame tail until
			 * we reach the last row that's in the frame. Or at least we
			 * should begin from frame headpos.
			 */
			if (!winstate->end_offset_var_free)
			{
				winstate->frametailpos = 0;
				ExecClearTuple(winstate->frametail_slot);
				tuplestore_rescan(winstate->buffer);
			}
			if (winstate->frametailpos == 0 &&
				TupIsNull(winstate->frametail_slot))
			{
				/* fetch first row into frametail_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->frametail_slot))
			{
				Datum		tailval,
							currval;
				bool		tailisnull,
							currisnull;

				tailval = slot_getattr(winstate->frametail_slot, sortCol,
									   &tailisnull);
				currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
									   &currisnull);
				if (tailisnull || currisnull)
				{
					/* order of the rows depends only on nulls_first */
					if (winstate->inRangeNullsFirst)
					{
						/* advance tail if tail is null or curr is not */
						if (!tailisnull)
							break;
					}
					else
					{
						/* advance tail if tail is not null or curr is null */
						if (!currisnull)
							break;
					}
				}
				else
				{
					if (!DatumGetBool(FunctionCall5Coll(&winstate->endInRangeFunc,
														winstate->inRangeColl,
														tailval,
														currval,
														winstate->endOffsetValue,
														BoolGetDatum(sub),
														BoolGetDatum(less))))
						break;	/* this row is the correct frame tail */
				}
				/* Note we advance frametailpos even if the fetch fails */
				winstate->frametailpos++;
				spool_tuples(winstate, winstate->frametailpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					break;		/* end of partition */
			}
			winstate->frametail_valid = true;
		}
		else if (frameOptions & FRAMEOPTION_GROUPS)
		{
			/*
			 * In GROUPS END_OFFSET mode, frame end is the last row of the
			 * last peer group whose number satisfies the offset constraint,
			 * and frame tail is the row after that (if any).  We keep a copy
			 * of the last-known frame tail row in frametail_slot, and advance
			 * as necessary.  Note that if we reach end of partition, we will
			 * leave frametailpos = end+1 and frametail_slot empty.
			 */
			int64		offset = DatumGetInt64(winstate->endOffsetValue);
			int64		maxtailgroup;

			if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
				maxtailgroup = winstate->currentgroup - offset;
			else
				maxtailgroup = winstate->currentgroup + offset;

			tuplestore_select_read_pointer(winstate->buffer,
										   winstate->frametail_ptr);
			if (winstate->frametailpos == 0 &&
				TupIsNull(winstate->frametail_slot))
			{
				/* fetch first row into frametail_slot, if we didn't already */
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					elog(ERROR, "unexpected end of tuplestore");
			}

			while (!TupIsNull(winstate->frametail_slot))
			{
				if (winstate->frametailgroup > maxtailgroup)
					break;		/* this row is the correct frame tail */
				ExecCopySlot(winstate->temp_slot_2, winstate->frametail_slot);
				/* Note we advance frametailpos even if the fetch fails */
				winstate->frametailpos++;
				spool_tuples(winstate, winstate->frametailpos);
				if (!tuplestore_gettupleslot(winstate->buffer, true, true,
											 winstate->frametail_slot))
					break;		/* end of partition */
				if (!are_peers(winstate, winstate->temp_slot_2,
							   winstate->frametail_slot))
					winstate->frametailgroup++;
			}
			ExecClearTuple(winstate->temp_slot_2);
			winstate->frametail_valid = true;
		}
		else
			Assert(false);
	}
	else
		Assert(false);

	MemoryContextSwitchTo(oldcontext);
}

/*
 * update_grouptailpos
 * make grouptailpos valid for the current row
 *
 * May clobber winstate->temp_slot_2.
 */
static void
update_grouptailpos(WindowAggState *winstate)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	MemoryContext oldcontext;

	if (winstate->grouptail_valid)
		return;					/* already known for current row */

	/* We may be called in a short-lived context */
	oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);

	/* If no ORDER BY, all rows are peers with each other */
	if (node->ordNumCols == 0)
	{
		spool_tuples(winstate, -1);
		winstate->grouptailpos = winstate->spooled_rows;
		winstate->grouptail_valid = true;
		MemoryContextSwitchTo(oldcontext);
		return;
	}

	/*
	 * Because grouptail_valid is reset only when current row advances into a
	 * new peer group, we always reach here knowing that grouptailpos needs to
	 * be advanced by at least one row.  Hence, unlike the otherwise similar
	 * case for frame tail tracking, we do not need persistent storage of the
	 * group tail row.
	 */
	Assert(winstate->grouptailpos <= winstate->currentpos);
	tuplestore_select_read_pointer(winstate->buffer,
								   winstate->grouptail_ptr);
	for (;;)
	{
		/* Note we advance grouptailpos even if the fetch fails */
		winstate->grouptailpos++;
		spool_tuples(winstate, winstate->grouptailpos);
		if (!tuplestore_gettupleslot(winstate->buffer, true, true,
									 winstate->temp_slot_2))
			break;				/* end of partition */
		if (winstate->grouptailpos > winstate->currentpos &&
			!are_peers(winstate, winstate->temp_slot_2,
					   winstate->ss.ss_ScanTupleSlot))
			break;				/* this row is the group tail */
	}
	ExecClearTuple(winstate->temp_slot_2);
	winstate->grouptail_valid = true;

	MemoryContextSwitchTo(oldcontext);
}

static void
compute_start_end_offsets(WindowAggState *winstate)
{
	int			frameOptions = winstate->frameOptions;
	ExprContext *econtext = winstate->ss.ps.ps_ExprContext;
	Datum		value;
	bool		isnull;
	int16		len;
	bool		byval;

	/*
	 * Compute frame offset values, if any
	 */
	if (!winstate->start_offset_valid)
	{
		econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
		if (frameOptions & FRAMEOPTION_START_OFFSET)
		{
			Assert(winstate->startOffset != NULL);
			value = ExecEvalExprSwitchContext(winstate->startOffset,
											  econtext,
											  &isnull);
			if (isnull)
				ereport(ERROR,
						(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
						 errmsg("frame starting offset must not be null")));
			/* copy value into query-lifespan context */
			get_typlenbyval(exprType((Node *) winstate->startOffset->expr),
							&len, &byval);
			winstate->startOffsetValue = datumCopy(value, byval, len);
			if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
			{
				/* value is known to be int8 */
				int64		offset = DatumGetInt64(value);

				if (offset < 0)
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
							 errmsg("frame starting offset must not be negative")));
			}
		}
		winstate->start_offset_valid = true;
	}
	if (!winstate->end_offset_valid)
	{
		econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
		if (frameOptions & FRAMEOPTION_END_OFFSET)
		{
			Assert(winstate->endOffset != NULL);
			value = ExecEvalExprSwitchContext(winstate->endOffset,
											  econtext,
											  &isnull);
			if (isnull)
				ereport(ERROR,
						(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
						 errmsg("frame ending offset must not be null")));
			/* copy value into query-lifespan context */
			get_typlenbyval(exprType((Node *) winstate->endOffset->expr),
							&len, &byval);
			winstate->endOffsetValue = datumCopy(value, byval, len);
			if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
			{
				/* value is known to be int8 */
				int64		offset = DatumGetInt64(value);

				if (offset < 0)
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
							 errmsg("frame ending offset must not be negative")));
			}
		}
		winstate->end_offset_valid = true;
	}
}

/* -----------------
 * ExecWindowAgg
 *
 *	ExecWindowAgg receives tuples from its outer subplan and
 *	stores them into a tuplestore, then processes window functions.
 *	This node doesn't reduce nor qualify any row so the number of
 *	returned rows is exactly the same as its outer subplan's result.
 * -----------------
 */
static TupleTableSlot *
ExecWindowAgg(PlanState *pstate)
{
	WindowAggState *winstate = castNode(WindowAggState, pstate);
	ExprContext *econtext;
	int			i;
	int			numfuncs;

	CHECK_FOR_INTERRUPTS();

	if (winstate->all_done)
		return NULL;

	/*
	 * Compute frame offset values, if any, during first call (or after a
	 * rescan).  These are assumed to hold constant throughout the scan; if
	 * user gives us a volatile expression, we'll only use its initial value.
	 *
	 * GPDB: We accept non-constant frame offsets, too. If they're not
	 * constants, we'll compute them later.
	 */
	if (winstate->all_first &&
		winstate->start_offset_var_free &&
		winstate->end_offset_var_free)
	{
		compute_start_end_offsets(winstate);

		winstate->all_first = false;
	}

	if (winstate->buffer == NULL)
	{
		/* Initialize for first partition and set current row = 0 */
		begin_partition(winstate);
		/* If there are no input rows, we'll detect that and exit below */
	}
	else
	{
		/* Advance current row within partition */
		winstate->currentpos++;
		/* This might mean that the frame moves, too */
		winstate->framehead_valid = false;
		winstate->frametail_valid = false;
		/* we don't need to invalidate grouptail here; see below */

		if (!winstate->start_offset_var_free)
			winstate->start_offset_valid = false;
		if (!winstate->end_offset_var_free)
			winstate->end_offset_valid = false;
	}

	/*
	 * Spool all tuples up to and including the current row, if we haven't
	 * already
	 */
	spool_tuples(winstate, winstate->currentpos);

#ifdef FAULT_INJECTOR
	/*
	 * This routine is used for testing if we have allocated enough memory
	 * for the tuplestore (winstate->buffer) in begin_partition(). If all
	 * tuples of the current partition can be fitted in the memory, we
	 * emit a notice saying 'fitted in memory'. If they cannot be fitted in
	 * the memory, we emit a notice saying 'spilled to disk'. If there're
	 * no input rows, we emit a notice saying 'no input rows'.
	 *
	 * NOTE: The fault-injector only triggers once, we emit the notice when
	 * we finishes spooling all the tuples of the first partition.
	 */
	if (winstate->partition_spooled &&
		winstate->currentpos >= winstate->spooled_rows &&
		SIMPLE_FAULT_INJECTOR("winagg_after_spool_tuples") == FaultInjectorTypeSkip)
	{
		if (winstate->buffer)
		{
			if (tuplestore_in_memory(winstate->buffer))
				ereport(NOTICE, (errmsg("winagg: tuplestore fitted in memory")));
			else
				ereport(NOTICE, (errmsg("winagg: tuplestore spilled to disk")));
		}
		else
			ereport(NOTICE, (errmsg("winagg: no input rows")));
	}
#endif

	/* Move to the next partition if we reached the end of this partition */
	if (winstate->partition_spooled &&
		winstate->currentpos >= winstate->spooled_rows)
	{
		release_partition(winstate);

		if (winstate->more_partitions)
		{
			begin_partition(winstate);
			Assert(winstate->spooled_rows > 0);
		}
		else
		{
			winstate->all_done = true;
			return NULL;
		}
	}

	/* final output execution is in ps_ExprContext */
	econtext = winstate->ss.ps.ps_ExprContext;

	/* Clear the per-output-tuple context for current row */
	ResetExprContext(econtext);

	/*
	 * Read the current row from the tuplestore, and save in ScanTupleSlot.
	 * (We can't rely on the outerplan's output slot because we may have to
	 * read beyond the current row.  Also, we have to actually copy the row
	 * out of the tuplestore, since window function evaluation might cause the
	 * tuplestore to dump its state to disk.)
	 *
	 * In GROUPS mode, or when tracking a group-oriented exclusion clause, we
	 * must also detect entering a new peer group and update associated state
	 * when that happens.  We use temp_slot_2 to temporarily hold the previous
	 * row for this purpose.
	 *
	 * Current row must be in the tuplestore, since we spooled it above.
	 */
	tuplestore_select_read_pointer(winstate->buffer, winstate->current_ptr);
	if ((winstate->frameOptions & (FRAMEOPTION_GROUPS |
								   FRAMEOPTION_EXCLUDE_GROUP |
								   FRAMEOPTION_EXCLUDE_TIES)) &&
		winstate->currentpos > 0)
	{
		ExecCopySlot(winstate->temp_slot_2, winstate->ss.ss_ScanTupleSlot);
		if (!tuplestore_gettupleslot(winstate->buffer, true, true,
									 winstate->ss.ss_ScanTupleSlot))
			elog(ERROR, "unexpected end of tuplestore");
		if (!are_peers(winstate, winstate->temp_slot_2,
					   winstate->ss.ss_ScanTupleSlot))
		{
			winstate->currentgroup++;
			winstate->groupheadpos = winstate->currentpos;
			winstate->grouptail_valid = false;
		}
		ExecClearTuple(winstate->temp_slot_2);
	}
	else
	{
		if (!tuplestore_gettupleslot(winstate->buffer, true, true,
									 winstate->ss.ss_ScanTupleSlot))
			elog(ERROR, "unexpected end of tuplestore");
	}

	/*
	 * Evaluate true window functions
	 */
	numfuncs = winstate->numfuncs;
	for (i = 0; i < numfuncs; i++)
	{
		WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);

		if (perfuncstate->plain_agg)
			continue;
		eval_windowfunction(winstate, perfuncstate,
							&(econtext->ecxt_aggvalues[perfuncstate->wfuncstate->wfuncno]),
							&(econtext->ecxt_aggnulls[perfuncstate->wfuncstate->wfuncno]));
	}

	/*
	 * Evaluate aggregates
	 */
	if (winstate->numaggs > 0)
		eval_windowaggregates(winstate);

	/*
	 * If we have created auxiliary read pointers for the frame or group
	 * boundaries, force them to be kept up-to-date, because we don't know
	 * whether the window function(s) will do anything that requires that.
	 * Failing to advance the pointers would result in being unable to trim
	 * data from the tuplestore, which is bad.  (If we could know in advance
	 * whether the window functions will use frame boundary info, we could
	 * skip creating these pointers in the first place ... but unfortunately
	 * the window function API doesn't require that.)
	 */
	if (winstate->framehead_ptr >= 0)
		update_frameheadpos(winstate);
	if (winstate->frametail_ptr >= 0)
		update_frametailpos(winstate);
	if (winstate->grouptail_ptr >= 0)
		update_grouptailpos(winstate);

	/*
	 * Truncate any no-longer-needed rows from the tuplestore.
	 */
	tuplestore_trim(winstate->buffer);

	/*
	 * Form and return a projection tuple using the windowfunc results and the
	 * current row.  Setting ecxt_outertuple arranges that any Vars will be
	 * evaluated with respect to that row.
	 */
	econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;

	return ExecProject(winstate->ss.ps.ps_ProjInfo);
}

/* -----------------
 * ExecInitWindowAgg
 *
 *	Creates the run-time information for the WindowAgg node produced by the
 *	planner and initializes its outer subtree
 * -----------------
 */
WindowAggState *
ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags)
{
	WindowAggState *winstate;
	Plan	   *outerPlan;
	ExprContext *econtext;
	ExprContext *tmpcontext;
	WindowStatePerFunc perfunc;
	WindowStatePerAgg peragg;
	int			frameOptions = node->frameOptions;
	int			numfuncs,
				wfuncno,
				numaggs,
				aggno;
	TupleDesc	scanDesc;
	ListCell   *l;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	/*
	 * create state structure
	 */
	winstate = makeNode(WindowAggState);
	winstate->ss.ps.plan = (Plan *) node;
	winstate->ss.ps.state = estate;
	winstate->ss.ps.ExecProcNode = ExecWindowAgg;

	/*
	 * Create expression contexts.  We need two, one for per-input-tuple
	 * processing and one for per-output-tuple processing.  We cheat a little
	 * by using ExecAssignExprContext() to build both.
	 */
	ExecAssignExprContext(estate, &winstate->ss.ps);
	tmpcontext = winstate->ss.ps.ps_ExprContext;
	winstate->tmpcontext = tmpcontext;
	ExecAssignExprContext(estate, &winstate->ss.ps);

	/* Create long-lived context for storage of partition-local memory etc */
	winstate->partcontext =
		AllocSetContextCreate(CurrentMemoryContext,
							  "WindowAgg Partition",
							  ALLOCSET_DEFAULT_SIZES);

	/*
	 * Create mid-lived context for aggregate trans values etc.
	 *
	 * Note that moving aggregates each use their own private context, not
	 * this one.
	 */
	winstate->aggcontext =
		AllocSetContextCreate(CurrentMemoryContext,
                              "WindowAgg Aggregates",
                              ALLOCSET_DEFAULT_SIZES);

	/*
	 * WindowAgg nodes never have quals, since they can only occur at the
	 * logical top level of a query (ie, after any WHERE or HAVING filters)
	 */
	Assert(node->plan.qual == NIL);
	winstate->ss.ps.qual = NULL;

	/*
	 * initialize child nodes
	 */
	outerPlan = outerPlan(node);
	outerPlanState(winstate) = ExecInitNode(outerPlan, estate, eflags);

	/*
	 * initialize source tuple type (which is also the tuple type that we'll
	 * store in the tuplestore and use in all our working slots).
	 */
	ExecCreateScanSlotFromOuterPlan(estate, &winstate->ss, &TTSOpsMinimalTuple);
	scanDesc = winstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;

	/* the outer tuple isn't the child's tuple, but always a minimal tuple */
	winstate->ss.ps.outeropsset = true;
	winstate->ss.ps.outerops = &TTSOpsMinimalTuple;
	winstate->ss.ps.outeropsfixed = true;

	/*
	 * tuple table initialization
	 */
	winstate->first_part_slot = ExecInitExtraTupleSlot(estate, scanDesc,
													   &TTSOpsMinimalTuple);
	winstate->agg_row_slot = ExecInitExtraTupleSlot(estate, scanDesc,
													&TTSOpsMinimalTuple);
	winstate->temp_slot_1 = ExecInitExtraTupleSlot(estate, scanDesc,
												   &TTSOpsMinimalTuple);
	winstate->temp_slot_2 = ExecInitExtraTupleSlot(estate, scanDesc,
												   &TTSOpsMinimalTuple);

	/*
	 * create frame head and tail slots only if needed (must create slots in
	 * exactly the same cases that update_frameheadpos and update_frametailpos
	 * need them)
	 */
	winstate->framehead_slot = winstate->frametail_slot = NULL;

	if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
	{
		if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
			 node->ordNumCols != 0) ||
			(frameOptions & FRAMEOPTION_START_OFFSET))
			winstate->framehead_slot = ExecInitExtraTupleSlot(estate, scanDesc,
															  &TTSOpsMinimalTuple);
		if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
			 node->ordNumCols != 0) ||
			(frameOptions & FRAMEOPTION_END_OFFSET))
			winstate->frametail_slot = ExecInitExtraTupleSlot(estate, scanDesc,
															  &TTSOpsMinimalTuple);
	}

	/*
	 * Initialize result slot, type and projection.
	 */
	ExecInitResultTupleSlotTL(&winstate->ss.ps, &TTSOpsVirtual);
	ExecAssignProjectionInfo(&winstate->ss.ps, NULL);

	/* Set up data for comparing tuples */
	if (node->partNumCols > 0)
		winstate->partEqfunction =
			execTuplesMatchPrepare(scanDesc,
								   node->partNumCols,
								   node->partColIdx,
								   node->partOperators,
								   node->partCollations,
								   &winstate->ss.ps);

	if (node->ordNumCols > 0)
		winstate->ordEqfunction =
			execTuplesMatchPrepare(scanDesc,
								   node->ordNumCols,
								   node->ordColIdx,
								   node->ordOperators,
								   node->ordCollations,
								   &winstate->ss.ps);

	/*
	 * WindowAgg nodes use aggvalues and aggnulls as well as Agg nodes.
	 */
	numfuncs = winstate->numfuncs;
	numaggs = winstate->numaggs;
	econtext = winstate->ss.ps.ps_ExprContext;
	econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numfuncs);
	econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numfuncs);

	/*
	 * allocate per-wfunc/per-agg state information.
	 */
	perfunc = (WindowStatePerFunc) palloc0(sizeof(WindowStatePerFuncData) * numfuncs);
	peragg = (WindowStatePerAgg) palloc0(sizeof(WindowStatePerAggData) * numaggs);
	winstate->perfunc = perfunc;
	winstate->peragg = peragg;

	wfuncno = -1;
	aggno = -1;
	foreach(l, winstate->funcs)
	{
		WindowFuncExprState *wfuncstate = (WindowFuncExprState *) lfirst(l);
		WindowFunc *wfunc = wfuncstate->wfunc;
		WindowStatePerFunc perfuncstate;
		AclResult	aclresult;
		int			i;

		if (wfunc->winref != node->winref)	/* planner screwed up? */
			elog(ERROR, "WindowFunc with winref %u assigned to WindowAgg with winref %u",
				 wfunc->winref, node->winref);

		/* Look for a previous duplicate window function */
		for (i = 0; i <= wfuncno; i++)
		{
			if (equal(wfunc, perfunc[i].wfunc) &&
				!contain_volatile_functions((Node *) wfunc))
				break;
		}
		if (i <= wfuncno)
		{
			/* Found a match to an existing entry, so just mark it */
			wfuncstate->wfuncno = i;
			continue;
		}

		/* Nope, so assign a new PerAgg record */
		perfuncstate = &perfunc[++wfuncno];

		/* Mark WindowFunc state node with assigned index in the result array */
		wfuncstate->wfuncno = wfuncno;

		/* Check permission to call window function */
		aclresult = pg_proc_aclcheck(wfunc->winfnoid, GetUserId(),
									 ACL_EXECUTE);
		if (aclresult != ACLCHECK_OK)
			aclcheck_error(aclresult, OBJECT_FUNCTION,
						   get_func_name(wfunc->winfnoid));
		InvokeFunctionExecuteHook(wfunc->winfnoid);

		/* Fill in the perfuncstate data */
		perfuncstate->wfuncstate = wfuncstate;
		perfuncstate->wfunc = wfunc;
		perfuncstate->numArguments = list_length(wfuncstate->args);

		fmgr_info_cxt(wfunc->winfnoid, &perfuncstate->flinfo,
					  econtext->ecxt_per_query_memory);
		fmgr_info_set_expr((Node *) wfunc, &perfuncstate->flinfo);

		perfuncstate->winCollation = wfunc->inputcollid;

		get_typlenbyval(wfunc->wintype,
						&perfuncstate->resulttypeLen,
						&perfuncstate->resulttypeByVal);

		/*
		 * If it's really just a plain aggregate function, we'll emulate the
		 * Agg environment for it.
		 */
		perfuncstate->plain_agg = wfunc->winagg;
		if (wfunc->winagg)
		{
			WindowStatePerAgg peraggstate;

			perfuncstate->aggno = ++aggno;
			peraggstate = &winstate->peragg[aggno];
			initialize_peragg(winstate, wfunc, peraggstate);
			peraggstate->wfuncno = wfuncno;
		}
		else
		{
			WindowObject winobj = makeNode(WindowObjectData);

			winobj->winstate = winstate;
			winobj->argstates = wfuncstate->args;
			winobj->localmem = NULL;
			perfuncstate->winobj = winobj;
		}
	}

	/* Update numfuncs, numaggs to match number of unique functions found */
	winstate->numfuncs = wfuncno + 1;
	winstate->numaggs = aggno + 1;

	/* Set up WindowObject for aggregates, if needed */
	if (winstate->numaggs > 0)
	{
		WindowObject agg_winobj = makeNode(WindowObjectData);

		agg_winobj->winstate = winstate;
		agg_winobj->argstates = NIL;
		agg_winobj->localmem = NULL;
		/* make sure markptr = -1 to invalidate. It may not get used */
		agg_winobj->markptr = -1;
		agg_winobj->readptr = -1;
		winstate->agg_winobj = agg_winobj;
	}

	/* copy frame options to state node for easy access */
	winstate->frameOptions = frameOptions;

	/* initialize frame bound offset expressions */
	winstate->startOffset = ExecInitExpr((Expr *) node->startOffset,
										 (PlanState *) winstate);
	winstate->endOffset = ExecInitExpr((Expr *) node->endOffset,
									   (PlanState *) winstate);

	/* Lookup in_range support functions if needed */
	if (OidIsValid(node->startInRangeFunc))
		fmgr_info(node->startInRangeFunc, &winstate->startInRangeFunc);
	if (OidIsValid(node->endInRangeFunc))
		fmgr_info(node->endInRangeFunc, &winstate->endInRangeFunc);
	winstate->inRangeColl = node->inRangeColl;
	winstate->inRangeAsc = node->inRangeAsc;
	winstate->inRangeNullsFirst = node->inRangeNullsFirst;

	winstate->start_offset_var_free =
		!contain_var_clause(node->startOffset) &&
		!contain_volatile_functions(node->startOffset);
	winstate->end_offset_var_free =
		!contain_var_clause(node->endOffset) &&
		!contain_volatile_functions(node->endOffset);

	winstate->all_first = true;
	winstate->partition_spooled = false;
	winstate->more_partitions = false;

	return winstate;
}

/* -----------------
 * ExecEndWindowAgg
 * -----------------
 */
void
ExecEndWindowAgg(WindowAggState *node)
{
	PlanState  *outerPlan;
	int			i;

	release_partition(node);

	ExecClearTuple(node->ss.ss_ScanTupleSlot);
	ExecClearTuple(node->first_part_slot);
	ExecClearTuple(node->agg_row_slot);
	ExecClearTuple(node->temp_slot_1);
	ExecClearTuple(node->temp_slot_2);
	if (node->framehead_slot)
		ExecClearTuple(node->framehead_slot);
	if (node->frametail_slot)
		ExecClearTuple(node->frametail_slot);

	/*
	 * Free both the expr contexts.
	 */
	ExecFreeExprContext(&node->ss.ps);
	node->ss.ps.ps_ExprContext = node->tmpcontext;
	ExecFreeExprContext(&node->ss.ps);

	for (i = 0; i < node->numaggs; i++)
	{
		if (node->peragg[i].aggcontext != node->aggcontext)
			MemoryContextDelete(node->peragg[i].aggcontext);
	}
	MemoryContextDelete(node->partcontext);
	MemoryContextDelete(node->aggcontext);

	pfree(node->perfunc);
	pfree(node->peragg);

	outerPlan = outerPlanState(node);
	ExecEndNode(outerPlan);
}

/* -----------------
 * ExecReScanWindowAgg
 * -----------------
 */
void
ExecReScanWindowAgg(WindowAggState *node)
{
	PlanState  *outerPlan = outerPlanState(node);
	ExprContext *econtext = node->ss.ps.ps_ExprContext;

	node->all_done = false;
	node->all_first = true;

	/* release tuplestore et al */
	release_partition(node);

	/* release all temp tuples, but especially first_part_slot */
	ExecClearTuple(node->ss.ss_ScanTupleSlot);
	ExecClearTuple(node->first_part_slot);
	ExecClearTuple(node->agg_row_slot);
	ExecClearTuple(node->temp_slot_1);
	ExecClearTuple(node->temp_slot_2);
	if (node->framehead_slot)
		ExecClearTuple(node->framehead_slot);
	if (node->frametail_slot)
		ExecClearTuple(node->frametail_slot);

	/* Forget current wfunc values */
	MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numfuncs);
	MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numfuncs);

	/*
	 * if chgParam of subnode is not null then plan will be re-scanned by
	 * first ExecProcNode.
	 */
	if (outerPlan->chgParam == NULL)
		ExecReScan(outerPlan);
}

void
ExecSquelchWindowAgg(WindowAggState *node)
{
	// TODO: do some eager freeing here?
	ExecSquelchNode(outerPlanState(node));
}

/*
 * initialize_peragg
 *
 * Almost same as in nodeAgg.c, except we don't support DISTINCT currently.
 */
static WindowStatePerAggData *
initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc,
				  WindowStatePerAgg peraggstate)
{
	Oid			inputTypes[FUNC_MAX_ARGS];
	int			numArguments;
	HeapTuple	aggTuple;
	Form_pg_aggregate aggform;
	Oid			aggtranstype;
	AttrNumber	initvalAttNo;
	AclResult	aclresult;
	bool		use_ma_code;
	Oid			transfn_oid,
				invtransfn_oid,
				finalfn_oid;
	bool		finalextra;
	char		finalmodify;
	Expr	   *transfnexpr,
			   *invtransfnexpr,
			   *finalfnexpr;
	Datum		textInitVal;
	int			i;
	ListCell   *lc;

	numArguments = list_length(wfunc->args);

	i = 0;
	foreach(lc, wfunc->args)
	{
		inputTypes[i++] = exprType((Node *) lfirst(lc));
	}

	aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(wfunc->winfnoid));
	if (!HeapTupleIsValid(aggTuple))
		elog(ERROR, "cache lookup failed for aggregate %u",
			 wfunc->winfnoid);
	aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);

	/*
	 * Figure out whether we want to use the moving-aggregate implementation,
	 * and collect the right set of fields from the pg_attribute entry.
	 *
	 * It's possible that an aggregate would supply a safe moving-aggregate
	 * implementation and an unsafe normal one, in which case our hand is
	 * forced.  Otherwise, if the frame head can't move, we don't need
	 * moving-aggregate code.  Even if we'd like to use it, don't do so if the
	 * aggregate's arguments (and FILTER clause if any) contain any calls to
	 * volatile functions.  Otherwise, the difference between restarting and
	 * not restarting the aggregation would be user-visible.
	 */
	if (!OidIsValid(aggform->aggminvtransfn))
		use_ma_code = false;	/* sine qua non */
	else if (aggform->aggmfinalmodify == AGGMODIFY_READ_ONLY &&
			 aggform->aggfinalmodify != AGGMODIFY_READ_ONLY)
		use_ma_code = true;		/* decision forced by safety */
	else if (winstate->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
		use_ma_code = false;	/* non-moving frame head */
	else if (contain_volatile_functions((Node *) wfunc))
		use_ma_code = false;	/* avoid possible behavioral change */
	else
		use_ma_code = true;		/* yes, let's use it */
	if (use_ma_code)
	{
		peraggstate->transfn_oid = transfn_oid = aggform->aggmtransfn;
		peraggstate->invtransfn_oid = invtransfn_oid = aggform->aggminvtransfn;
		peraggstate->finalfn_oid = finalfn_oid = aggform->aggmfinalfn;
		finalextra = aggform->aggmfinalextra;
		finalmodify = aggform->aggmfinalmodify;
		aggtranstype = aggform->aggmtranstype;
		initvalAttNo = Anum_pg_aggregate_aggminitval;
	}
	else
	{
		peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn;
		peraggstate->invtransfn_oid = invtransfn_oid = InvalidOid;
		peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
		finalextra = aggform->aggfinalextra;
		finalmodify = aggform->aggfinalmodify;
		aggtranstype = aggform->aggtranstype;
		initvalAttNo = Anum_pg_aggregate_agginitval;
	}

	/*
	 * ExecInitWindowAgg already checked permission to call aggregate function
	 * ... but we still need to check the component functions
	 */

	/* Check that aggregate owner has permission to call component fns */
	{
		HeapTuple	procTuple;
		Oid			aggOwner;

		procTuple = SearchSysCache1(PROCOID,
									ObjectIdGetDatum(wfunc->winfnoid));
		if (!HeapTupleIsValid(procTuple))
			elog(ERROR, "cache lookup failed for function %u",
				 wfunc->winfnoid);
		aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
		ReleaseSysCache(procTuple);

		aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
									 ACL_EXECUTE);
		if (aclresult != ACLCHECK_OK)
			aclcheck_error(aclresult, OBJECT_FUNCTION,
						   get_func_name(transfn_oid));
		InvokeFunctionExecuteHook(transfn_oid);

		if (OidIsValid(invtransfn_oid))
		{
			aclresult = pg_proc_aclcheck(invtransfn_oid, aggOwner,
										 ACL_EXECUTE);
			if (aclresult != ACLCHECK_OK)
				aclcheck_error(aclresult, OBJECT_FUNCTION,
							   get_func_name(invtransfn_oid));
			InvokeFunctionExecuteHook(invtransfn_oid);
		}

		if (OidIsValid(finalfn_oid))
		{
			aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner,
										 ACL_EXECUTE);
			if (aclresult != ACLCHECK_OK)
				aclcheck_error(aclresult, OBJECT_FUNCTION,
							   get_func_name(finalfn_oid));
			InvokeFunctionExecuteHook(finalfn_oid);
		}
	}

	/*
	 * If the selected finalfn isn't read-only, we can't run this aggregate as
	 * a window function.  This is a user-facing error, so we take a bit more
	 * care with the error message than elsewhere in this function.
	 */
	if (finalmodify != AGGMODIFY_READ_ONLY)
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("aggregate function %s does not support use as a window function",
						format_procedure(wfunc->winfnoid))));

	/* Detect how many arguments to pass to the finalfn */
	if (finalextra)
		peraggstate->numFinalArgs = numArguments + 1;
	else
		peraggstate->numFinalArgs = 1;

	/* resolve actual type of transition state, if polymorphic */
	aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid,
											   aggtranstype,
											   inputTypes,
											   numArguments);

	/* build expression trees using actual argument & result types */
	build_aggregate_transfn_expr(inputTypes,
								 numArguments,
								 0, /* no ordered-set window functions yet */
								 false, /* no variadic window functions yet */
								 aggtranstype,
								 wfunc->inputcollid,
								 transfn_oid,
								 invtransfn_oid,
								 &transfnexpr,
								 &invtransfnexpr);

	/* set up infrastructure for calling the transfn(s) and finalfn */
	fmgr_info(transfn_oid, &peraggstate->transfn);
	fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn);

	if (OidIsValid(invtransfn_oid))
	{
		fmgr_info(invtransfn_oid, &peraggstate->invtransfn);
		fmgr_info_set_expr((Node *) invtransfnexpr, &peraggstate->invtransfn);
	}

	if (OidIsValid(finalfn_oid))
	{
		build_aggregate_finalfn_expr(inputTypes,
									 peraggstate->numFinalArgs,
									 aggtranstype,
									 wfunc->wintype,
									 wfunc->inputcollid,
									 finalfn_oid,
									 &finalfnexpr);
		fmgr_info(finalfn_oid, &peraggstate->finalfn);
		fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn);
	}

	/* get info about relevant datatypes */
	get_typlenbyval(wfunc->wintype,
					&peraggstate->resulttypeLen,
					&peraggstate->resulttypeByVal);
	get_typlenbyval(aggtranstype,
					&peraggstate->transtypeLen,
					&peraggstate->transtypeByVal);

	/*
	 * initval is potentially null, so don't try to access it as a struct
	 * field. Must do it the hard way with SysCacheGetAttr.
	 */
	textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, initvalAttNo,
								  &peraggstate->initValueIsNull);

	if (peraggstate->initValueIsNull)
		peraggstate->initValue = (Datum) 0;
	else
		peraggstate->initValue = GetAggInitVal(textInitVal,
											   aggtranstype);

	/*
	 * Initialize stuff needed to sort and deduplicate input to a
	 * DISTINCT-qualified aggregate.
	 */
	if (wfunc->windistinct)
	{
		/* the parser should have disallowed this case */
		if (list_length(wfunc->args) != 1)
			elog(ERROR, "DISTINCT is supported only for single-argument aggregates");

		peraggstate->isDistinct = true;

		peraggstate->distinctType = exprType(linitial(wfunc->args));
		peraggstate->distinctTypeByVal = get_typbyval(peraggstate->distinctType);
		peraggstate->distinctColl = exprCollation(linitial(wfunc->args));

		/* initialize support for sorting the argument */
		get_sort_group_operators(peraggstate->distinctType,
								 true, false, false,
								 &peraggstate->distinctLtOper,
								 NULL,
								 NULL,
								 NULL);
		memset(&peraggstate->distinctComparator, 0, sizeof(SortSupportData));

		peraggstate->distinctComparator.ssup_cxt = CurrentMemoryContext;
		peraggstate->distinctComparator.ssup_collation = peraggstate->distinctColl;
		peraggstate->distinctComparator.ssup_nulls_first = false;

		PrepareSortSupportFromOrderingOp(peraggstate->distinctLtOper,
										 &peraggstate->distinctComparator);
	}

	/*
	 * If the transfn is strict and the initval is NULL, make sure input type
	 * and transtype are the same (or at least binary-compatible), so that
	 * it's OK to use the first input value as the initial transValue.  This
	 * should have been checked at agg definition time, but we must check
	 * again in case the transfn's strictness property has been changed.
	 */
	if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
	{
		if (numArguments < 1 ||
			!IsBinaryCoercible(inputTypes[0], aggtranstype))
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
					 errmsg("aggregate %u needs to have compatible input type and transition type",
							wfunc->winfnoid)));
	}

	/*
	 * Insist that forward and inverse transition functions have the same
	 * strictness setting.  Allowing them to differ would require handling
	 * more special cases in advance_windowaggregate and
	 * advance_windowaggregate_base, for no discernible benefit.  This should
	 * have been checked at agg definition time, but we must check again in
	 * case either function's strictness property has been changed.
	 */
	if (OidIsValid(invtransfn_oid) &&
		peraggstate->transfn.fn_strict != peraggstate->invtransfn.fn_strict)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
				 errmsg("strictness of aggregate's forward and inverse transition functions must match")));

	/*
	 * Moving aggregates use their own aggcontext.
	 *
	 * This is necessary because they might restart at different times, so we
	 * might never be able to reset the shared context otherwise.  We can't
	 * make it the aggregates' responsibility to clean up after themselves,
	 * because strict aggregates must be restarted whenever we remove their
	 * last non-NULL input, which the aggregate won't be aware is happening.
	 * Also, just pfree()ing the transValue upon restarting wouldn't help,
	 * since we'd miss any indirectly referenced data.  We could, in theory,
	 * make the memory allocation rules for moving aggregates different than
	 * they have historically been for plain aggregates, but that seems grotty
	 * and likely to lead to memory leaks.
	 */
	if (OidIsValid(invtransfn_oid))
		peraggstate->aggcontext =
			AllocSetContextCreate(CurrentMemoryContext,
								  "WindowAgg Per Aggregate",
								  ALLOCSET_DEFAULT_SIZES);
	else
		peraggstate->aggcontext = winstate->aggcontext;

	ReleaseSysCache(aggTuple);

	return peraggstate;
}

static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
	Oid			typinput,
				typioparam;
	char	   *strInitVal;
	Datum		initVal;

	getTypeInputInfo(transtype, &typinput, &typioparam);
	strInitVal = TextDatumGetCString(textInitVal);
	initVal = OidInputFunctionCall(typinput, strInitVal,
								   typioparam, -1);
	pfree(strInitVal);
	return initVal;
}

/*
 * are_peers
 * compare two rows to see if they are equal according to the ORDER BY clause
 *
 * NB: this does not consider the window frame mode.
 */
static bool
are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
		  TupleTableSlot *slot2)
{
	WindowAgg  *node = (WindowAgg *) winstate->ss.ps.plan;
	ExprContext *econtext = winstate->tmpcontext;

	/* If no ORDER BY, all rows are peers with each other */
	if (node->ordNumCols == 0)
		return true;

	econtext->ecxt_outertuple = slot1;
	econtext->ecxt_innertuple = slot2;
	return ExecQualAndReset(winstate->ordEqfunction, econtext);
}

/*
 * window_gettupleslot
 *	Fetch the pos'th tuple of the current partition into the slot,
 *	using the winobj's read pointer
 *
 * Returns true if successful, false if no such row
 */
static bool
window_gettupleslot(WindowObject winobj, int64 pos, TupleTableSlot *slot)
{
	WindowAggState *winstate = winobj->winstate;
	MemoryContext oldcontext;

	/* often called repeatedly in a row */
	CHECK_FOR_INTERRUPTS();

	/* Don't allow passing -1 to spool_tuples here */
	if (pos < 0)
		return false;

	/* If necessary, fetch the tuple into the spool */
	spool_tuples(winstate, pos);

	if (pos >= winstate->spooled_rows)
		return false;

	if (pos < winobj->markpos)
		elog(ERROR, "cannot fetch row before WindowObject's mark position");

	oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);

	tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);

	/*
	 * Advance or rewind until we are within one tuple of the one we want.
	 */
	if (winobj->seekpos < pos - 1)
	{
		if (!tuplestore_skiptuples(winstate->buffer,
								   pos - 1 - winobj->seekpos,
								   true))
			elog(ERROR, "unexpected end of tuplestore");
		winobj->seekpos = pos - 1;
	}
	else if (winobj->seekpos > pos + 1)
	{
		if (!tuplestore_skiptuples(winstate->buffer,
								   winobj->seekpos - (pos + 1),
								   false))
			elog(ERROR, "unexpected end of tuplestore");
		winobj->seekpos = pos + 1;
	}
	else if (winobj->seekpos == pos)
	{
		/*
		 * There's no API to refetch the tuple at the current position.  We
		 * have to move one tuple forward, and then one backward.  (We don't
		 * do it the other way because we might try to fetch the row before
		 * our mark, which isn't allowed.)  XXX this case could stand to be
		 * optimized.
		 */
		tuplestore_advance(winstate->buffer, true);
		winobj->seekpos++;
	}

	/*
	 * Now we should be on the tuple immediately before or after the one we
	 * want, so just fetch forwards or backwards as appropriate.
	 */
	if (winobj->seekpos > pos)
	{
		if (!tuplestore_gettupleslot(winstate->buffer, false, true, slot))
			elog(ERROR, "unexpected end of tuplestore");
		winobj->seekpos--;
	}
	else
	{
		if (!tuplestore_gettupleslot(winstate->buffer, true, true, slot))
			elog(ERROR, "unexpected end of tuplestore");
		winobj->seekpos++;
	}

	Assert(winobj->seekpos == pos);

	MemoryContextSwitchTo(oldcontext);

	return true;
}


/***********************************************************************
 * API exposed to window functions
 ***********************************************************************/


/*
 * WinGetPartitionLocalMemory
 *		Get working memory that lives till end of partition processing
 *
 * On first call within a given partition, this allocates and zeroes the
 * requested amount of space.  Subsequent calls just return the same chunk.
 *
 * Memory obtained this way is normally used to hold state that should be
 * automatically reset for each new partition.  If a window function wants
 * to hold state across the whole query, fcinfo->fn_extra can be used in the
 * usual way for that.
 */
void *
WinGetPartitionLocalMemory(WindowObject winobj, Size sz)
{
	Assert(WindowObjectIsValid(winobj));
	if (winobj->localmem == NULL)
		winobj->localmem =
			MemoryContextAllocZero(winobj->winstate->partcontext, sz);
	return winobj->localmem;
}

/*
 * WinGetCurrentPosition
 *		Return the current row's position (counting from 0) within the current
 *		partition.
 */
int64
WinGetCurrentPosition(WindowObject winobj)
{
	Assert(WindowObjectIsValid(winobj));
	return winobj->winstate->currentpos;
}

/*
 * WinGetPartitionRowCount
 *		Return total number of rows contained in the current partition.
 *
 * Note: this is a relatively expensive operation because it forces the
 * whole partition to be "spooled" into the tuplestore at once.  Once
 * executed, however, additional calls within the same partition are cheap.
 */
int64
WinGetPartitionRowCount(WindowObject winobj)
{
	Assert(WindowObjectIsValid(winobj));
	spool_tuples(winobj->winstate, -1);
	return winobj->winstate->spooled_rows;
}

/*
 * WinSetMarkPosition
 *		Set the "mark" position for the window object, which is the oldest row
 *		number (counting from 0) it is allowed to fetch during all subsequent
 *		operations within the current partition.
 *
 * Window functions do not have to call this, but are encouraged to move the
 * mark forward when possible to keep the tuplestore size down and prevent
 * having to spill rows to disk.
 */
void
WinSetMarkPosition(WindowObject winobj, int64 markpos)
{
	WindowAggState *winstate;

	Assert(WindowObjectIsValid(winobj));
	winstate = winobj->winstate;

	/*
	 * In GPDB, unlike in PostgreSQL, the start and end offsets are not
	 * necessarily constant throughout the execution. In that case, don't
	 * believe it when the window function tells that it's won't need the
	 * old rows anymore, in case the window frame needs to enlarge later.
	 * In principle, it would perhaps be nicer if each window function
	 * would take this into account and not call WinSetMarkPosition in
	 * that case, but changing all the window function implementations
	 * is not very appealing. It woudl be make merging harder, and there
	 * would be the risk for bugs of omission. 3rd party extenstion,
	 * written for PostgreSQL, would also not know about it. So all in all,
	 * let's just keep the all the rows, if the start/end offsets contain
	 * variables. That is hopefully not very common in practice.
	 */
	if (!winstate->start_offset_var_free || !winstate->end_offset_var_free)
		return;

	if (markpos < winobj->markpos)
		elog(ERROR, "cannot move WindowObject's mark position backward");
	tuplestore_select_read_pointer(winstate->buffer, winobj->markptr);
	if (markpos > winobj->markpos)
	{
		tuplestore_skiptuples(winstate->buffer,
							  markpos - winobj->markpos,
							  true);
		winobj->markpos = markpos;
	}
	tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);
	if (markpos > winobj->seekpos)
	{
		tuplestore_skiptuples(winstate->buffer,
							  markpos - winobj->seekpos,
							  true);
		winobj->seekpos = markpos;
	}
}

/*
 * WinRowsArePeers
 *		Compare two rows (specified by absolute position in partition) to see
 *		if they are equal according to the ORDER BY clause.
 *
 * NB: this does not consider the window frame mode.
 */
bool
WinRowsArePeers(WindowObject winobj, int64 pos1, int64 pos2)
{
	WindowAggState *winstate;
	WindowAgg  *node;
	TupleTableSlot *slot1;
	TupleTableSlot *slot2;
	bool		res;

	Assert(WindowObjectIsValid(winobj));
	winstate = winobj->winstate;
	node = (WindowAgg *) winstate->ss.ps.plan;

	/* If no ORDER BY, all rows are peers; don't bother to fetch them */
	if (node->ordNumCols == 0)
		return true;

	/*
	 * Note: OK to use temp_slot_2 here because we aren't calling any
	 * frame-related functions (those tend to clobber temp_slot_2).
	 */
	slot1 = winstate->temp_slot_1;
	slot2 = winstate->temp_slot_2;

	if (!window_gettupleslot(winobj, pos1, slot1))
		elog(ERROR, "specified position is out of window: " INT64_FORMAT,
			 pos1);
	if (!window_gettupleslot(winobj, pos2, slot2))
		elog(ERROR, "specified position is out of window: " INT64_FORMAT,
			 pos2);

	res = are_peers(winstate, slot1, slot2);

	ExecClearTuple(slot1);
	ExecClearTuple(slot2);

	return res;
}

/*
 * WinGetFuncArgInPartition
 *		Evaluate a window function's argument expression on a specified
 *		row of the partition.  The row is identified in lseek(2) style,
 *		i.e. relative to the current, first, or last row.
 *
 * argno: argument number to evaluate (counted from 0)
 * relpos: signed rowcount offset from the seek position
 * seektype: WINDOW_SEEK_CURRENT, WINDOW_SEEK_HEAD, or WINDOW_SEEK_TAIL
 * set_mark: If the row is found and set_mark is true, the mark is moved to
 *		the row as a side-effect.
 * isnull: output argument, receives isnull status of result
 * isout: output argument, set to indicate whether target row position
 *		is out of partition (can pass NULL if caller doesn't care about this)
 *
 * Specifying a nonexistent row is not an error, it just causes a null result
 * (plus setting *isout true, if isout isn't NULL).
 */
Datum
WinGetFuncArgInPartition(WindowObject winobj, int argno,
						 int relpos, int seektype, bool set_mark,
						 bool *isnull, bool *isout)
{
	WindowAggState *winstate;
	ExprContext *econtext;
	TupleTableSlot *slot;
	bool		gottuple;
	int64		abs_pos;

	Assert(WindowObjectIsValid(winobj));
	winstate = winobj->winstate;
	econtext = winstate->ss.ps.ps_ExprContext;
	slot = winstate->temp_slot_1;

	switch (seektype)
	{
		case WINDOW_SEEK_CURRENT:
			abs_pos = winstate->currentpos + relpos;
			break;
		case WINDOW_SEEK_HEAD:
			abs_pos = relpos;
			break;
		case WINDOW_SEEK_TAIL:
			spool_tuples(winstate, -1);
			abs_pos = winstate->spooled_rows - 1 + relpos;
			break;
		default:
			elog(ERROR, "unrecognized window seek type: %d", seektype);
			abs_pos = 0;		/* keep compiler quiet */
			break;
	}

	gottuple = window_gettupleslot(winobj, abs_pos, slot);

	if (!gottuple)
	{
		if (isout)
			*isout = true;
		*isnull = true;
		return (Datum) 0;
	}
	else
	{
		if (isout)
			*isout = false;
		if (set_mark)
			WinSetMarkPosition(winobj, abs_pos);
		econtext->ecxt_outertuple = slot;
		return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
							econtext, isnull);
	}
}

/*
 * WinGetFuncArgInFrame
 *		Evaluate a window function's argument expression on a specified
 *		row of the window frame.  The row is identified in lseek(2) style,
 *		i.e. relative to the first or last row of the frame.  (We do not
 *		support WINDOW_SEEK_CURRENT here, because it's not very clear what
 *		that should mean if the current row isn't part of the frame.)
 *
 * argno: argument number to evaluate (counted from 0)
 * relpos: signed rowcount offset from the seek position
 * seektype: WINDOW_SEEK_HEAD or WINDOW_SEEK_TAIL
 * set_mark: If the row is found/in frame and set_mark is true, the mark is
 *		moved to the row as a side-effect.
 * isnull: output argument, receives isnull status of result
 * isout: output argument, set to indicate whether target row position
 *		is out of frame (can pass NULL if caller doesn't care about this)
 *
 * Specifying a nonexistent or not-in-frame row is not an error, it just
 * causes a null result (plus setting *isout true, if isout isn't NULL).
 *
 * Note that some exclusion-clause options lead to situations where the
 * rows that are in-frame are not consecutive in the partition.  But we
 * count only in-frame rows when measuring relpos.
 *
 * The set_mark flag is interpreted as meaning that the caller will specify
 * a constant (or, perhaps, monotonically increasing) relpos in successive
 * calls, so that *if there is no exclusion clause* there will be no need
 * to fetch a row before the previously fetched row.  But we do not expect
 * the caller to know how to account for exclusion clauses.  Therefore,
 * if there is an exclusion clause we take responsibility for adjusting the
 * mark request to something that will be safe given the above assumption
 * about relpos.
 */
Datum
WinGetFuncArgInFrame(WindowObject winobj, int argno,
					 int relpos, int seektype, bool set_mark,
					 bool *isnull, bool *isout)
{
	WindowAggState *winstate;
	ExprContext *econtext;
	TupleTableSlot *slot;
	int64		abs_pos;
	int64		mark_pos;

	Assert(WindowObjectIsValid(winobj));
	winstate = winobj->winstate;
	econtext = winstate->ss.ps.ps_ExprContext;
	slot = winstate->temp_slot_1;

	switch (seektype)
	{
		case WINDOW_SEEK_CURRENT:
			elog(ERROR, "WINDOW_SEEK_CURRENT is not supported for WinGetFuncArgInFrame");
			abs_pos = mark_pos = 0; /* keep compiler quiet */
			break;
		case WINDOW_SEEK_HEAD:
			/* rejecting relpos < 0 is easy and simplifies code below */
			if (relpos < 0)
				goto out_of_frame;
			update_frameheadpos(winstate);
			abs_pos = winstate->frameheadpos + relpos;
			mark_pos = abs_pos;

			/*
			 * Account for exclusion option if one is active, but advance only
			 * abs_pos not mark_pos.  This prevents changes of the current
			 * row's peer group from resulting in trying to fetch a row before
			 * some previous mark position.
			 *
			 * Note that in some corner cases such as current row being
			 * outside frame, these calculations are theoretically too simple,
			 * but it doesn't matter because we'll end up deciding the row is
			 * out of frame.  We do not attempt to avoid fetching rows past
			 * end of frame; that would happen in some cases anyway.
			 */
			switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
			{
				case 0:
					/* no adjustment needed */
					break;
				case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
					if (abs_pos >= winstate->currentpos &&
						winstate->currentpos >= winstate->frameheadpos)
						abs_pos++;
					break;
				case FRAMEOPTION_EXCLUDE_GROUP:
					update_grouptailpos(winstate);
					if (abs_pos >= winstate->groupheadpos &&
						winstate->grouptailpos > winstate->frameheadpos)
					{
						int64		overlapstart = Max(winstate->groupheadpos,
													   winstate->frameheadpos);

						abs_pos += winstate->grouptailpos - overlapstart;
					}
					break;
				case FRAMEOPTION_EXCLUDE_TIES:
					update_grouptailpos(winstate);
					if (abs_pos >= winstate->groupheadpos &&
						winstate->grouptailpos > winstate->frameheadpos)
					{
						int64		overlapstart = Max(winstate->groupheadpos,
													   winstate->frameheadpos);

						if (abs_pos == overlapstart)
							abs_pos = winstate->currentpos;
						else
							abs_pos += winstate->grouptailpos - overlapstart - 1;
					}
					break;
				default:
					elog(ERROR, "unrecognized frame option state: 0x%x",
						 winstate->frameOptions);
					break;
			}
			break;
		case WINDOW_SEEK_TAIL:
			/* rejecting relpos > 0 is easy and simplifies code below */
			if (relpos > 0)
				goto out_of_frame;
			update_frametailpos(winstate);
			abs_pos = winstate->frametailpos - 1 + relpos;

			/*
			 * Account for exclusion option if one is active.  If there is no
			 * exclusion, we can safely set the mark at the accessed row.  But
			 * if there is, we can only mark the frame start, because we can't
			 * be sure how far back in the frame the exclusion might cause us
			 * to fetch in future.  Furthermore, we have to actually check
			 * against frameheadpos here, since it's unsafe to try to fetch a
			 * row before frame start if the mark might be there already.
			 */
			switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
			{
				case 0:
					/* no adjustment needed */
					mark_pos = abs_pos;
					break;
				case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
					if (abs_pos <= winstate->currentpos &&
						winstate->currentpos < winstate->frametailpos)
						abs_pos--;
					update_frameheadpos(winstate);
					if (abs_pos < winstate->frameheadpos)
						goto out_of_frame;
					mark_pos = winstate->frameheadpos;
					break;
				case FRAMEOPTION_EXCLUDE_GROUP:
					update_grouptailpos(winstate);
					if (abs_pos < winstate->grouptailpos &&
						winstate->groupheadpos < winstate->frametailpos)
					{
						int64		overlapend = Min(winstate->grouptailpos,
													 winstate->frametailpos);

						abs_pos -= overlapend - winstate->groupheadpos;
					}
					update_frameheadpos(winstate);
					if (abs_pos < winstate->frameheadpos)
						goto out_of_frame;
					mark_pos = winstate->frameheadpos;
					break;
				case FRAMEOPTION_EXCLUDE_TIES:
					update_grouptailpos(winstate);
					if (abs_pos < winstate->grouptailpos &&
						winstate->groupheadpos < winstate->frametailpos)
					{
						int64		overlapend = Min(winstate->grouptailpos,
													 winstate->frametailpos);

						if (abs_pos == overlapend - 1)
							abs_pos = winstate->currentpos;
						else
							abs_pos -= overlapend - 1 - winstate->groupheadpos;
					}
					update_frameheadpos(winstate);
					if (abs_pos < winstate->frameheadpos)
						goto out_of_frame;
					mark_pos = winstate->frameheadpos;
					break;
				default:
					elog(ERROR, "unrecognized frame option state: 0x%x",
						 winstate->frameOptions);
					mark_pos = 0;	/* keep compiler quiet */
					break;
			}
			break;
		default:
			elog(ERROR, "unrecognized window seek type: %d", seektype);
			abs_pos = mark_pos = 0; /* keep compiler quiet */
			break;
	}

	if (!window_gettupleslot(winobj, abs_pos, slot))
		goto out_of_frame;

	/* The code above does not detect all out-of-frame cases, so check */
	if (row_is_in_frame(winstate, abs_pos, slot) <= 0)
		goto out_of_frame;

	if (isout)
		*isout = false;
	if (set_mark)
		WinSetMarkPosition(winobj, mark_pos);
	econtext->ecxt_outertuple = slot;
	return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
						econtext, isnull);

out_of_frame:
	if (isout)
		*isout = true;
	*isnull = true;
	return (Datum) 0;
}

/*
 * WinGetFuncArgCurrent
 *		Evaluate a window function's argument expression on the current row.
 *
 * argno: argument number to evaluate (counted from 0)
 * isnull: output argument, receives isnull status of result
 *
 * Note: this isn't quite equivalent to WinGetFuncArgInPartition or
 * WinGetFuncArgInFrame targeting the current row, because it will succeed
 * even if the WindowObject's mark has been set beyond the current row.
 * This should generally be used for "ordinary" arguments of a window
 * function, such as the offset argument of lead() or lag().
 */
Datum
WinGetFuncArgCurrent(WindowObject winobj, int argno, bool *isnull)
{
	WindowAggState *winstate;
	ExprContext *econtext;

	Assert(WindowObjectIsValid(winobj));
	winstate = winobj->winstate;

	econtext = winstate->ss.ps.ps_ExprContext;

	econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
	return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
						econtext, isnull);
}

相关信息

greenplumn 源码目录

相关文章

greenplumn execAmi 源码

greenplumn execCurrent 源码

greenplumn execExpr 源码

greenplumn execExprInterp 源码

greenplumn execGrouping 源码

greenplumn execIndexing 源码

greenplumn execJunk 源码

greenplumn execMain 源码

greenplumn execParallel 源码

greenplumn execPartition 源码

0  赞