greenplumn nodeAgg 源码

  • 2022-08-18
  • 浏览 (381)

greenplumn nodeAgg 代码

文件路径:/src/backend/executor/nodeAgg.c

/*-------------------------------------------------------------------------
 *
 * nodeAgg.c
 *	  Routines to handle aggregate nodes.
 *
 *	  ExecAgg normally evaluates each aggregate in the following steps:
 *
 *		 transvalue = initcond
 *		 foreach input_tuple do
 *			transvalue = transfunc(transvalue, input_value(s))
 *		 result = finalfunc(transvalue, direct_argument(s))
 *
 *	  If a finalfunc is not supplied then the result is just the ending
 *	  value of transvalue.
 *
 *	  Other behaviors can be selected by the "aggsplit" mode, which exists
 *	  to support partial aggregation.  It is possible to:
 *	  * Skip running the finalfunc, so that the output is always the
 *	  final transvalue state.
 *	  * Substitute the combinefunc for the transfunc, so that transvalue
 *	  states (propagated up from a child partial-aggregation step) are merged
 *	  rather than processing raw input rows.  (The statements below about
 *	  the transfunc apply equally to the combinefunc, when it's selected.)
 *	  * Apply the serializefunc to the output values (this only makes sense
 *	  when skipping the finalfunc, since the serializefunc works on the
 *	  transvalue data type).
 *	  * Apply the deserializefunc to the input values (this only makes sense
 *	  when using the combinefunc, for similar reasons).
 *	  It is the planner's responsibility to connect up Agg nodes using these
 *	  alternate behaviors in a way that makes sense, with partial aggregation
 *	  results being fed to nodes that expect them.
 *
 *	  If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the
 *	  input tuples and eliminate duplicates (if required) before performing
 *	  the above-depicted process.  (However, we don't do that for ordered-set
 *	  aggregates; their "ORDER BY" inputs are ordinary aggregate arguments
 *	  so far as this module is concerned.)	Note that partial aggregation
 *	  is not supported in these cases, since we couldn't ensure global
 *	  ordering or distinctness of the inputs.
 *
 *	  If transfunc is marked "strict" in pg_proc and initcond is NULL,
 *	  then the first non-NULL input_value is assigned directly to transvalue,
 *	  and transfunc isn't applied until the second non-NULL input_value.
 *	  The agg's first input type and transtype must be the same in this case!
 *
 *	  If transfunc is marked "strict" then NULL input_values are skipped,
 *	  keeping the previous transvalue.  If transfunc is not strict then it
 *	  is called for every input tuple and must deal with NULL initcond
 *	  or NULL input_values for itself.
 *
 *	  If finalfunc is marked "strict" then it is not called when the
 *	  ending transvalue is NULL, instead a NULL result is created
 *	  automatically (this is just the usual handling of strict functions,
 *	  of course).  A non-strict finalfunc can make its own choice of
 *	  what to return for a NULL ending transvalue.
 *
 *	  Ordered-set aggregates are treated specially in one other way: we
 *	  evaluate any "direct" arguments and pass them to the finalfunc along
 *	  with the transition value.
 *
 *	  A finalfunc can have additional arguments beyond the transvalue and
 *	  any "direct" arguments, corresponding to the input arguments of the
 *	  aggregate.  These are always just passed as NULL.  Such arguments may be
 *	  needed to allow resolution of a polymorphic aggregate's result type.
 *
 *	  We compute aggregate input expressions and run the transition functions
 *	  in a temporary econtext (aggstate->tmpcontext).  This is reset at least
 *	  once per input tuple, so when the transvalue datatype is
 *	  pass-by-reference, we have to be careful to copy it into a longer-lived
 *	  memory context, and free the prior value to avoid memory leakage.  We
 *	  store transvalues in another set of econtexts, aggstate->aggcontexts
 *	  (one per grouping set, see below), which are also used for the hashtable
 *	  structures in AGG_HASHED mode.  These econtexts are rescanned, not just
 *	  reset, at group boundaries so that aggregate transition functions can
 *	  register shutdown callbacks via AggRegisterCallback.
 *
 *	  The node's regular econtext (aggstate->ss.ps.ps_ExprContext) is used to
 *	  run finalize functions and compute the output tuple; this context can be
 *	  reset once per output tuple.
 *
 *	  The executor's AggState node is passed as the fmgr "context" value in
 *	  all transfunc and finalfunc calls.  It is not recommended that the
 *	  transition functions look at the AggState node directly, but they can
 *	  use AggCheckCallContext() to verify that they are being called by
 *	  nodeAgg.c (and not as ordinary SQL functions).  The main reason a
 *	  transition function might want to know this is so that it can avoid
 *	  palloc'ing a fixed-size pass-by-ref transition value on every call:
 *	  it can instead just scribble on and return its left input.  Ordinarily
 *	  it is completely forbidden for functions to modify pass-by-ref inputs,
 *	  but in the aggregate case we know the left input is either the initial
 *	  transition value or a previous function result, and in either case its
 *	  value need not be preserved.  See int8inc() for an example.  Notice that
 *	  the EEOP_AGG_PLAIN_TRANS step is coded to avoid a data copy step when
 *	  the previous transition value pointer is returned.  It is also possible
 *	  to avoid repeated data copying when the transition value is an expanded
 *	  object: to do that, the transition function must take care to return
 *	  an expanded object that is in a child context of the memory context
 *	  returned by AggCheckCallContext().  Also, some transition functions want
 *	  to store working state in addition to the nominal transition value; they
 *	  can use the memory context returned by AggCheckCallContext() to do that.
 *
 *	  Note: AggCheckCallContext() is available as of PostgreSQL 9.0.  The
 *	  AggState is available as context in earlier releases (back to 8.1),
 *	  but direct examination of the node is needed to use it before 9.0.
 *
 *	  As of 9.4, aggregate transition functions can also use AggGetAggref()
 *	  to get hold of the Aggref expression node for their aggregate call.
 *	  This is mainly intended for ordered-set aggregates, which are not
 *	  supported as window functions.  (A regular aggregate function would
 *	  need some fallback logic to use this, since there's no Aggref node
 *	  for a window function.)
 *
 *	  Grouping sets:
 *
 *	  A list of grouping sets which is structurally equivalent to a ROLLUP
 *	  clause (e.g. (a,b,c), (a,b), (a)) can be processed in a single pass over
 *	  ordered data.  We do this by keeping a separate set of transition values
 *	  for each grouping set being concurrently processed; for each input tuple
 *	  we update them all, and on group boundaries we reset those states
 *	  (starting at the front of the list) whose grouping values have changed
 *	  (the list of grouping sets is ordered from most specific to least
 *	  specific).
 *
 *	  Where more complex grouping sets are used, we break them down into
 *	  "phases", where each phase has a different sort order (except phase 0
 *	  which is reserved for hashing).  During each phase but the last, the
 *	  input tuples are additionally stored in a tuplesort which is keyed to the
 *	  next phase's sort order; during each phase but the first, the input
 *	  tuples are drawn from the previously sorted data.  (The sorting of the
 *	  data for the first phase is handled by the planner, as it might be
 *	  satisfied by underlying nodes.)
 *
 *	  Hashing can be mixed with sorted grouping.  To do this, we have an
 *	  AGG_MIXED strategy that populates the hashtables during the first sorted
 *	  phase, and switches to reading them out after completing all sort phases.
 *	  We can also support AGG_HASHED with multiple hash tables and no sorting
 *	  at all.
 *
 *	  From the perspective of aggregate transition and final functions, the
 *	  only issue regarding grouping sets is this: a single call site (flinfo)
 *	  of an aggregate function may be used for updating several different
 *	  transition values in turn. So the function must not cache in the flinfo
 *	  anything which logically belongs as part of the transition value (most
 *	  importantly, the memory context in which the transition value exists).
 *	  The support API functions (AggCheckCallContext, AggRegisterCallback) are
 *	  sensitive to the grouping set for which the aggregate function is
 *	  currently being called.
 *
 *	  Plan structure:
 *
 *	  What we get from the planner is actually one "real" Agg node which is
 *	  part of the plan tree proper, but which optionally has an additional list
 *	  of Agg nodes hung off the side via the "chain" field.  This is because an
 *	  Agg node happens to be a convenient representation of all the data we
 *	  need for grouping sets.
 *
 *	  For many purposes, we treat the "real" node as if it were just the first
 *	  node in the chain.  The chain must be ordered such that hashed entries
 *	  come before sorted/plain entries; the real node is marked AGG_MIXED if
 *	  there are both types present (in which case the real node describes one
 *	  of the hashed groupings, other AGG_HASHED nodes may optionally follow in
 *	  the chain, followed in turn by AGG_SORTED or (one) AGG_PLAIN node).  If
 *	  the real node is marked AGG_HASHED or AGG_SORTED, then all the chained
 *	  nodes must be of the same type; if it is AGG_PLAIN, there can be no
 *	  chained nodes.
 *
 *	  We collect all hashed nodes into a single "phase", numbered 0, and create
 *	  a sorted phase (numbered 1..n) for each AGG_SORTED or AGG_PLAIN node.
 *	  Phase 0 is allocated even if there are no hashes, but remains unused in
 *	  that case.
 *
 *	  AGG_HASHED nodes actually refer to only a single grouping set each,
 *	  because for each hashed grouping we need a separate grpColIdx and
 *	  numGroups estimate.  AGG_SORTED nodes represent a "rollup", a list of
 *	  grouping sets that share a sort order.  Each AGG_SORTED node other than
 *	  the first one has an associated Sort node which describes the sort order
 *	  to be used; the first sorted node takes its input from the outer subtree,
 *	  which the planner has already arranged to provide ordered data.
 *
 *	  Memory and ExprContext usage:
 *
 *	  Because we're accumulating aggregate values across input rows, we need to
 *	  use more memory contexts than just simple input/output tuple contexts.
 *	  In fact, for a rollup, we need a separate context for each grouping set
 *	  so that we can reset the inner (finer-grained) aggregates on their group
 *	  boundaries while continuing to accumulate values for outer
 *	  (coarser-grained) groupings.  On top of this, we might be simultaneously
 *	  populating hashtables; however, we only need one context for all the
 *	  hashtables.
 *
 *	  So we create an array, aggcontexts, with an ExprContext for each grouping
 *	  set in the largest rollup that we're going to process, and use the
 *	  per-tuple memory context of those ExprContexts to store the aggregate
 *	  transition values.  hashcontext is the single context created to support
 *	  all hash tables.
 *
 *	  Spilling To Disk
 *
 *	  When performing hash aggregation, if the hash table memory exceeds the
 *	  limit (see hash_agg_check_limits()), we enter "spill mode". In spill
 *	  mode, we advance the transition states only for groups already in the
 *	  hash table. For tuples that would need to create a new hash table
 *	  entries (and initialize new transition states), we instead spill them to
 *	  disk to be processed later. The tuples are spilled in a partitioned
 *	  manner, so that subsequent batches are smaller and less likely to exceed
 *	  work_mem (if a batch does exceed work_mem, it must be spilled
 *	  recursively).
 *
 *	  Spilled data is written to logical tapes. These provide better control
 *	  over memory usage, disk space, and the number of files than if we were
 *	  to use a BufFile for each spill.
 *
 *	  Note that it's possible for transition states to start small but then
 *	  grow very large; for instance in the case of ARRAY_AGG. In such cases,
 *	  it's still possible to significantly exceed work_mem. We try to avoid
 *	  this situation by estimating what will fit in the available memory, and
 *	  imposing a limit on the number of groups separately from the amount of
 *	  memory consumed.
 *
 *    Transition / Combine function invocation:
 *
 *    For performance reasons transition functions, including combine
 *    functions, aren't invoked one-by-one from nodeAgg.c after computing
 *    arguments using the expression evaluation engine. Instead
 *    ExecBuildAggTrans() builds one large expression that does both argument
 *    evaluation and transition function invocation. That avoids performance
 *    issues due to repeated uses of expression evaluation, complications due
 *    to filter expressions having to be evaluated early, and allows to JIT
 *    the entire expression into one native function.
 *
 *    GPDB: Note that statement_mem is used to decide the operator memory
 *    instead of the work_mem, but to keep minimal change with postgres we keep
 *    the word "work_mem" in comments.
 *
 * Portions Copyright (c) 2007-2008, Greenplum inc
 * Portions Copyright (c) 2012-Present VMware, Inc. or its affiliates.
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/executor/nodeAgg.c
 *
 *-------------------------------------------------------------------------
 */

/*
 * GPDB_12_MERGE_FIXME: we lost the "streaming bottom" feature in the merge.
 *
 * And the detailed cdb executor instruments to print by explain.
 *
 * They were in execHHashagg.c
 */

#include "postgres.h"

#include "access/htup_details.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/execExpr.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/dynahash.h"
#include "utils/expandeddatum.h"
#include "utils/faultinjector.h"
#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "utils/datum.h"

#include "cdb/cdbexplain.h"
#include "lib/stringinfo.h"             /* StringInfo */
#include "optimizer/walkers.h"

/*
 * Control how many partitions are created when spilling HashAgg to
 * disk.
 *
 * HASHAGG_PARTITION_FACTOR is multiplied by the estimated number of
 * partitions needed such that each partition will fit in memory. The factor
 * is set higher than one because there's not a high cost to having a few too
 * many partitions, and it makes it less likely that a partition will need to
 * be spilled recursively. Another benefit of having more, smaller partitions
 * is that small hash tables may perform better than large ones due to memory
 * caching effects.
 *
 * We also specify a min and max number of partitions per spill. Too few might
 * mean a lot of wasted I/O from repeated spilling of the same tuples. Too
 * many will result in lots of memory wasted buffering the spill files (which
 * could instead be spent on a larger hash table).
 */
#define HASHAGG_PARTITION_FACTOR 1.50
#define HASHAGG_MIN_PARTITIONS 4
#define HASHAGG_MAX_PARTITIONS 1024

/*
 * For reading from tapes, the buffer size must be a multiple of
 * BLCKSZ. Larger values help when reading from multiple tapes concurrently,
 * but that doesn't happen in HashAgg, so we simply use BLCKSZ. Writing to a
 * tape always uses a buffer of size BLCKSZ.
 */
#define HASHAGG_READ_BUFFER_SIZE BLCKSZ
#define HASHAGG_WRITE_BUFFER_SIZE BLCKSZ

/*
 * Estimate chunk overhead as a constant 16 bytes. XXX: should this be
 * improved?
 */
#define CHUNKHDRSZ 16

/*
 * Track all tapes needed for a HashAgg that spills. We don't know the maximum
 * number of tapes needed at the start of the algorithm (because it can
 * recurse), so one tape set is allocated and extended as needed for new
 * tapes. When a particular tape is already read, rewind it for write mode and
 * put it in the free list.
 *
 * Tapes' buffers can take up substantial memory when many tapes are open at
 * once. We only need one tape open at a time in read mode (using a buffer
 * that's a multiple of BLCKSZ); but we need one tape open in write mode (each
 * requiring a buffer of size BLCKSZ) for each partition.
 */
typedef struct HashTapeInfo
{
	LogicalTapeSet	*tapeset;
	int				 ntapes;
	int				*freetapes;
	int				 nfreetapes;
	int				 freetapes_alloc;
} HashTapeInfo;

/*
 * Represents partitioned spill data for a single hashtable. Contains the
 * necessary information to route tuples to the correct partition, and to
 * transform the spilled data into new batches.
 *
 * The high bits are used for partition selection (when recursing, we ignore
 * the bits that have already been used for partition selection at an earlier
 * level).
 */
typedef struct HashAggSpill
{
	LogicalTapeSet *tapeset;	/* borrowed reference to tape set */
	int		 npartitions;		/* number of partitions */
	int		*partitions;		/* spill partition tape numbers */
	int64   *ntuples;			/* number of tuples in each partition */
	uint32   mask;				/* mask to find partition from hash value */
	int      shift;				/* after masking, shift by this amount */
} HashAggSpill;

/*
 * Represents work to be done for one pass of hash aggregation (with only one
 * grouping set).
 *
 * Also tracks the bits of the hash already used for partition selection by
 * earlier iterations, so that this batch can use new bits. If all bits have
 * already been used, no partitioning will be done (any spilled data will go
 * to a single output tape).
 */
typedef struct HashAggBatch
{
	int				 setno;			/* grouping set */
	int				 used_bits;		/* number of bits of hash already used */
	LogicalTapeSet	*tapeset;		/* borrowed reference to tape set */
	int				 input_tapenum;	/* input partition tape */
	int64			 input_tuples;	/* number of tuples in this batch */
} HashAggBatch;

static void select_current_set(AggState *aggstate, int setno, bool is_hash);
static void initialize_phase(AggState *aggstate, int newphase);
static TupleTableSlot *fetch_input_tuple(AggState *aggstate);
static void initialize_aggregates(AggState *aggstate,
								  AggStatePerGroup *pergroups,
								  int numReset);
static void advance_transition_function(AggState *aggstate,
										AggStatePerTrans pertrans,
										AggStatePerGroup pergroupstate);
static void advance_aggregates(AggState *aggstate);
static void process_ordered_aggregate_single(AggState *aggstate,
											 AggStatePerTrans pertrans,
											 AggStatePerGroup pergroupstate);
static void process_ordered_aggregate_multi(AggState *aggstate,
											AggStatePerTrans pertrans,
											AggStatePerGroup pergroupstate);
static void finalize_aggregate(AggState *aggstate,
							   AggStatePerAgg peragg,
							   AggStatePerGroup pergroupstate,
							   Datum *resultVal, bool *resultIsNull);
static void finalize_partialaggregate(AggState *aggstate,
									  AggStatePerAgg peragg,
									  AggStatePerGroup pergroupstate,
									  Datum *resultVal, bool *resultIsNull);
static void prepare_hash_slot(AggState *aggstate);
static void prepare_projection_slot(AggState *aggstate,
									TupleTableSlot *slot,
									int currentSet);
static void finalize_aggregates(AggState *aggstate,
								AggStatePerAgg peragg,
								AggStatePerGroup pergroup);
static TupleTableSlot *project_aggregates(AggState *aggstate);
static Bitmapset *find_unaggregated_cols(AggState *aggstate);
static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos);
static void build_hash_tables(AggState *aggstate);
static void build_hash_table(AggState *aggstate, int setno, long nbuckets);
static void hashagg_recompile_expressions(AggState *aggstate, bool minslot,
										  bool nullcheck);
static long hash_choose_num_buckets(double hashentrysize,
									long estimated_nbuckets,
									Size memory);
static int hash_choose_num_partitions(AggState *aggstate,
									  uint64 input_groups,
									  double hashentrysize,
									  int used_bits,
									  int *log2_npartittions);
static AggStatePerGroup lookup_hash_entry(AggState *aggstate, uint32 hash,
										  bool *in_hash_table);
static void lookup_hash_entries(AggState *aggstate);
static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
static void agg_fill_hash_table(AggState *aggstate);
static bool agg_refill_hash_table(AggState *aggstate);
static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
static TupleTableSlot *agg_retrieve_hash_table_in_memory(AggState *aggstate);
static void hash_agg_check_limits(AggState *aggstate);
static void hash_agg_enter_spill_mode(AggState *aggstate);
static void hash_agg_update_metrics(AggState *aggstate, bool from_tape,
									int npartitions);
static void hashagg_finish_initial_spills(AggState *aggstate);
static void hashagg_reset_spill_state(AggState *aggstate);
static HashAggBatch *hashagg_batch_new(LogicalTapeSet *tapeset,
									   int input_tapenum, int setno,
									   int64 input_tuples, int used_bits);
static MinimalTuple hashagg_batch_read(HashAggBatch *batch, uint32 *hashp);
static void hashagg_spill_init(AggState *aggstate,
							   HashAggSpill *spill, HashTapeInfo *tapeinfo,
							   int used_bits, uint64 input_tuples,
							   double hashentrysize);
static Size hashagg_spill_tuple(HashAggSpill *spill, TupleTableSlot *slot,
								uint32 hash);
static void hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill,
								 int setno);
static void hashagg_tapeinfo_init(AggState *aggstate);
static void hashagg_tapeinfo_assign(HashTapeInfo *tapeinfo, int *dest,
									int ndest);
static void hashagg_tapeinfo_release(HashTapeInfo *tapeinfo, int tapenum);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
static void build_pertrans_for_aggref(AggStatePerTrans pertrans,
									  AggState *aggstate, EState *estate,
									  Aggref *aggref, Oid aggtransfn, Oid aggtranstype,
									  Oid aggserialfn, Oid aggdeserialfn,
									  Datum initValue, bool initValueIsNull,
									  Oid *inputTypes, int numArguments);
static int	find_compatible_peragg(Aggref *newagg, AggState *aggstate,
								   int lastaggno, List **same_input_transnos);
static int	find_compatible_pertrans(AggState *aggstate, Aggref *newagg,
									 bool shareable,
									 Oid aggtransfn, Oid aggtranstype,
									 Oid aggserialfn, Oid aggdeserialfn,
									 Datum initValue, bool initValueIsNull,
									 List *transnos);

static void ExecEagerFreeAgg(AggState *node);

/*
 * Select the current grouping set; affects current_set and
 * curaggcontext.
 */
static void
select_current_set(AggState *aggstate, int setno, bool is_hash)
{
	/* when changing this, also adapt ExecInterpExpr() and friends */
	if (is_hash)
		aggstate->curaggcontext = aggstate->hashcontext;
	else
		aggstate->curaggcontext = aggstate->aggcontexts[setno];

	aggstate->current_set = setno;
}

/*
 * Switch to phase "newphase", which must either be 0 or 1 (to reset) or
 * current_phase + 1. Juggle the tuplesorts accordingly.
 *
 * Phase 0 is for hashing, which we currently handle last in the AGG_MIXED
 * case, so when entering phase 0, all we need to do is drop open sorts.
 */
static void
initialize_phase(AggState *aggstate, int newphase)
{
	Assert(newphase <= 1 || newphase == aggstate->current_phase + 1);

	/*
	 * Whatever the previous state, we're now done with whatever input
	 * tuplesort was in use.
	 */
	if (aggstate->sort_in)
	{
		tuplesort_end(aggstate->sort_in);
		aggstate->sort_in = NULL;
	}

	if (newphase <= 1)
	{
		/*
		 * Discard any existing output tuplesort.
		 */
		if (aggstate->sort_out)
		{
			tuplesort_end(aggstate->sort_out);
			aggstate->sort_out = NULL;
		}
	}
	else
	{
		/*
		 * The old output tuplesort becomes the new input one, and this is the
		 * right time to actually sort it.
		 */
		aggstate->sort_in = aggstate->sort_out;
		aggstate->sort_out = NULL;
		Assert(aggstate->sort_in);
		tuplesort_performsort(aggstate->sort_in);
	}

	/*
	 * If this isn't the last phase, we need to sort appropriately for the
	 * next phase in sequence.
	 */
	if (newphase > 0 && newphase < aggstate->numphases - 1)
	{
		Sort	   *sortnode = aggstate->phases[newphase + 1].sortnode;
		PlanState  *outerNode = outerPlanState(aggstate);
		TupleDesc	tupDesc = ExecGetResultType(outerNode);

		aggstate->sort_out = tuplesort_begin_heap(tupDesc,
												  sortnode->numCols,
												  sortnode->sortColIdx,
												  sortnode->sortOperators,
												  sortnode->collations,
												  sortnode->nullsFirst,
												  PlanStateOperatorMemKB((PlanState *) aggstate),
												  NULL, false);
	}

	aggstate->current_phase = newphase;
	aggstate->phase = &aggstate->phases[newphase];
}

/*
 * Fetch a tuple from either the outer plan (for phase 1) or from the sorter
 * populated by the previous phase.  Copy it to the sorter for the next phase
 * if any.
 *
 * Callers cannot rely on memory for tuple in returned slot remaining valid
 * past any subsequently fetched tuple.
 */
static TupleTableSlot *
fetch_input_tuple(AggState *aggstate)
{
	TupleTableSlot *slot;

	if (aggstate->sort_in)
	{
		/* make sure we check for interrupts in either path through here */
		CHECK_FOR_INTERRUPTS();
		if (!tuplesort_gettupleslot(aggstate->sort_in, true, false,
									aggstate->sort_slot, NULL))
			return NULL;
		slot = aggstate->sort_slot;
	}
	else
		slot = ExecProcNode(outerPlanState(aggstate));

	if (!TupIsNull(slot) && aggstate->sort_out)
		tuplesort_puttupleslot(aggstate->sort_out, slot);

	return slot;
}

/*
 * (Re)Initialize an individual aggregate.
 *
 * This function handles only one grouping set, already set in
 * aggstate->current_set.
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
initialize_aggregate(AggState *aggstate, AggStatePerTrans pertrans,
					 AggStatePerGroup pergroupstate)
{
	/*
	 * Start a fresh sort operation for each DISTINCT/ORDER BY aggregate.
	 */
	if (pertrans->numSortCols > 0)
	{
		/*
		 * In case of rescan, maybe there could be an uncompleted sort
		 * operation?  Clean it up if so.
		 */
		if (pertrans->sortstates[aggstate->current_set])
			tuplesort_end(pertrans->sortstates[aggstate->current_set]);


		/*
		 * We use a plain Datum sorter when there's a single input column;
		 * otherwise sort the full tuple.  (See comments for
		 * process_ordered_aggregate_single.)
		 */
		if (pertrans->numInputs == 1)
		{
			Form_pg_attribute attr = TupleDescAttr(pertrans->sortdesc, 0);

			pertrans->sortstates[aggstate->current_set] =
				tuplesort_begin_datum(attr->atttypid,
									  pertrans->sortOperators[0],
									  pertrans->sortCollations[0],
									  pertrans->sortNullsFirst[0],
									  PlanStateOperatorMemKB((PlanState *) aggstate), NULL, false);
		}
		else
			pertrans->sortstates[aggstate->current_set] =
				tuplesort_begin_heap(pertrans->sortdesc,
									 pertrans->numSortCols,
									 pertrans->sortColIdx,
									 pertrans->sortOperators,
									 pertrans->sortCollations,
									 pertrans->sortNullsFirst,
									 PlanStateOperatorMemKB((PlanState *) aggstate), NULL, false);
	}

	/*
	 * (Re)set transValue to the initial value.
	 *
	 * Note that when the initial value is pass-by-ref, we must copy
	 * it (into the aggcontext) since we will pfree the transValue
	 * later.
	 */
	if (pertrans->initValueIsNull)
		pergroupstate->transValue = pertrans->initValue;
	else
	{
		MemoryContext oldContext;

		oldContext = MemoryContextSwitchTo(
										   aggstate->curaggcontext->ecxt_per_tuple_memory);
		pergroupstate->transValue = datumCopy(pertrans->initValue,
											  pertrans->transtypeByVal,
											  pertrans->transtypeLen);
		MemoryContextSwitchTo(oldContext);
	}
	pergroupstate->transValueIsNull = pertrans->initValueIsNull;

	/*
	 * If the initial value for the transition state doesn't exist in the
	 * pg_aggregate table then we will let the first non-NULL value returned
	 * from the outer procNode become the initial value. (This is useful for
	 * aggregates like max() and min().) The noTransValue flag signals that we
	 * still need to do this.
	 */
	pergroupstate->noTransValue = pertrans->initValueIsNull;
}

/*
 * Initialize all aggregate transition states for a new group of input values.
 *
 * If there are multiple grouping sets, we initialize only the first numReset
 * of them (the grouping sets are ordered so that the most specific one, which
 * is reset most often, is first). As a convenience, if numReset is 0, we
 * reinitialize all sets.
 *
 * NB: This cannot be used for hash aggregates, as for those the grouping set
 * number has to be specified from further up.
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
initialize_aggregates(AggState *aggstate,
					  AggStatePerGroup *pergroups,
					  int numReset)
{
	int			transno;
	int			numGroupingSets = Max(aggstate->phase->numsets, 1);
	int			setno = 0;
	int			numTrans = aggstate->numtrans;
	AggStatePerTrans transstates = aggstate->pertrans;

	if (numReset == 0)
		numReset = numGroupingSets;

	for (setno = 0; setno < numReset; setno++)
	{
		AggStatePerGroup pergroup = pergroups[setno];

		select_current_set(aggstate, setno, false);

		for (transno = 0; transno < numTrans; transno++)
		{
			AggStatePerTrans pertrans = &transstates[transno];
			AggStatePerGroup pergroupstate = &pergroup[transno];

			initialize_aggregate(aggstate, pertrans, pergroupstate);
		}
	}
}

/*
 * Given new input value(s), advance the transition function of one aggregate
 * state within one grouping set only (already set in aggstate->current_set)
 *
 * The new values (and null flags) have been preloaded into argument positions
 * 1 and up in pertrans->transfn_fcinfo, so that we needn't copy them again to
 * pass to the transition function.  We also expect that the static fields of
 * the fcinfo are already initialized; that was done by ExecInitAgg().
 *
 * It doesn't matter which memory context this is called in.
 */
static void
advance_transition_function(AggState *aggstate,
							AggStatePerTrans pertrans,
							AggStatePerGroup pergroupstate)
{
	FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
	MemoryContext oldContext;
	Datum		newVal;

	if (pertrans->transfn.fn_strict)
	{
		/*
		 * For a strict transfn, nothing happens when there's a NULL input; we
		 * just keep the prior transValue.
		 */
		int			numTransInputs = pertrans->numTransInputs;
		int			i;

		for (i = 1; i <= numTransInputs; i++)
		{
			if (fcinfo->args[i].isnull)
				return;
		}
		if (pergroupstate->noTransValue)
		{
			/*
			 * transValue has not been initialized. This is the first non-NULL
			 * input value. We use it as the initial value for transValue. (We
			 * already checked that the agg's input type is binary-compatible
			 * with its transtype, so straight copy here is OK.)
			 *
			 * We must copy the datum into aggcontext if it is pass-by-ref. We
			 * do not need to pfree the old transValue, since it's NULL.
			 */
			oldContext = MemoryContextSwitchTo(
											   aggstate->curaggcontext->ecxt_per_tuple_memory);
			pergroupstate->transValue = datumCopy(fcinfo->args[1].value,
												  pertrans->transtypeByVal,
												  pertrans->transtypeLen);
			pergroupstate->transValueIsNull = false;
			pergroupstate->noTransValue = false;
			MemoryContextSwitchTo(oldContext);
			return;
		}
		if (pergroupstate->transValueIsNull)
		{
			/*
			 * Don't call a strict function with NULL inputs.  Note it is
			 * possible to get here despite the above tests, if the transfn is
			 * strict *and* returned a NULL on a prior cycle. If that happens
			 * we will propagate the NULL all the way to the end.
			 */
			return;
		}
	}

	/* We run the transition functions in per-input-tuple memory context */
	oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);

	/* set up aggstate->curpertrans for AggGetAggref() */
	aggstate->curpertrans = pertrans;

	/*
	 * OK to call the transition function
	 */
	fcinfo->args[0].value = pergroupstate->transValue;
	fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
	fcinfo->isnull = false;		/* just in case transfn doesn't set it */

	newVal = FunctionCallInvoke(fcinfo);

	aggstate->curpertrans = NULL;

	/*
	 * If pass-by-ref datatype, must copy the new value into aggcontext and
	 * free the prior transValue.  But if transfn returned a pointer to its
	 * first input, we don't need to do anything.  Also, if transfn returned a
	 * pointer to a R/W expanded object that is already a child of the
	 * aggcontext, assume we can adopt that value without copying it.
	 *
	 * It's safe to compare newVal with pergroup->transValue without
	 * regard for either being NULL, because ExecAggTransReparent()
	 * takes care to set transValue to 0 when NULL. Otherwise we could
	 * end up accidentally not reparenting, when the transValue has
	 * the same numerical value as newValue, despite being NULL.  This
	 * is a somewhat hot path, making it undesirable to instead solve
	 * this with another branch for the common case of the transition
	 * function returning its (modified) input argument.
	 */
	if (!pertrans->transtypeByVal &&
		DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
		newVal = ExecAggTransReparent(aggstate, pertrans,
									  newVal, fcinfo->isnull,
									  pergroupstate->transValue,
									  pergroupstate->transValueIsNull);

	pergroupstate->transValue = newVal;
	pergroupstate->transValueIsNull = fcinfo->isnull;

	MemoryContextSwitchTo(oldContext);
}

/*
 * Advance each aggregate transition state for one input tuple.  The input
 * tuple has been stored in tmpcontext->ecxt_outertuple, so that it is
 * accessible to ExecEvalExpr.
 *
 * We have two sets of transition states to handle: one for sorted aggregation
 * and one for hashed; we do them both here, to avoid multiple evaluation of
 * the inputs.
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
advance_aggregates(AggState *aggstate)
{
	bool		dummynull;

	ExecEvalExprSwitchContext(aggstate->phase->evaltrans,
							  aggstate->tmpcontext,
							  &dummynull);
}

/*
 * Run the transition function for a DISTINCT or ORDER BY aggregate
 * with only one input.  This is called after we have completed
 * entering all the input values into the sort object.  We complete the
 * sort, read out the values in sorted order, and run the transition
 * function on each value (applying DISTINCT if appropriate).
 *
 * Note that the strictness of the transition function was checked when
 * entering the values into the sort, so we don't check it again here;
 * we just apply standard SQL DISTINCT logic.
 *
 * The one-input case is handled separately from the multi-input case
 * for performance reasons: for single by-value inputs, such as the
 * common case of count(distinct id), the tuplesort_getdatum code path
 * is around 300% faster.  (The speedup for by-reference types is less
 * but still noticeable.)
 *
 * This function handles only one grouping set (already set in
 * aggstate->current_set).
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
process_ordered_aggregate_single(AggState *aggstate,
								 AggStatePerTrans pertrans,
								 AggStatePerGroup pergroupstate)
{
	Datum		oldVal = (Datum) 0;
	bool		oldIsNull = true;
	bool		haveOldVal = false;
	MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory;
	MemoryContext oldContext;
	bool		isDistinct = (pertrans->numDistinctCols > 0);
	Datum		newAbbrevVal = (Datum) 0;
	Datum		oldAbbrevVal = (Datum) 0;
	FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
	Datum	   *newVal;
	bool	   *isNull;

	Assert(pertrans->numDistinctCols < 2);

	tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);

	/* Load the column into argument 1 (arg 0 will be transition value) */
	newVal = &fcinfo->args[1].value;
	isNull = &fcinfo->args[1].isnull;

	/*
	 * Note: if input type is pass-by-ref, the datums returned by the sort are
	 * freshly palloc'd in the per-query context, so we must be careful to
	 * pfree them when they are no longer needed.
	 */

	while (tuplesort_getdatum(pertrans->sortstates[aggstate->current_set],
							  true, newVal, isNull, &newAbbrevVal))
	{
		/*
		 * Clear and select the working context for evaluation of the equality
		 * function and transition function.
		 */
		MemoryContextReset(workcontext);
		oldContext = MemoryContextSwitchTo(workcontext);

		/*
		 * If DISTINCT mode, and not distinct from prior, skip it.
		 */
		if (isDistinct &&
			haveOldVal &&
			((oldIsNull && *isNull) ||
			 (!oldIsNull && !*isNull &&
			  oldAbbrevVal == newAbbrevVal &&
			  DatumGetBool(FunctionCall2Coll(&pertrans->equalfnOne,
											 pertrans->aggCollation,
											 oldVal, *newVal)))))
		{
			/* equal to prior, so forget this one */
			if (!pertrans->inputtypeByVal && !*isNull)
				pfree(DatumGetPointer(*newVal));
		}
		else
		{
			advance_transition_function(aggstate, pertrans, pergroupstate);
			/* forget the old value, if any */
			if (!oldIsNull && !pertrans->inputtypeByVal)
				pfree(DatumGetPointer(oldVal));
			/* and remember the new one for subsequent equality checks */
			oldVal = *newVal;
			oldAbbrevVal = newAbbrevVal;
			oldIsNull = *isNull;
			haveOldVal = true;
		}

		MemoryContextSwitchTo(oldContext);
	}

	if (!oldIsNull && !pertrans->inputtypeByVal)
		pfree(DatumGetPointer(oldVal));

	tuplesort_end(pertrans->sortstates[aggstate->current_set]);
	pertrans->sortstates[aggstate->current_set] = NULL;
}

/*
 * Run the transition function for a DISTINCT or ORDER BY aggregate
 * with more than one input.  This is called after we have completed
 * entering all the input values into the sort object.  We complete the
 * sort, read out the values in sorted order, and run the transition
 * function on each value (applying DISTINCT if appropriate).
 *
 * This function handles only one grouping set (already set in
 * aggstate->current_set).
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
process_ordered_aggregate_multi(AggState *aggstate,
								AggStatePerTrans pertrans,
								AggStatePerGroup pergroupstate)
{
	ExprContext *tmpcontext = aggstate->tmpcontext;
	FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
	TupleTableSlot *slot1 = pertrans->sortslot;
	TupleTableSlot *slot2 = pertrans->uniqslot;
	int			numTransInputs = pertrans->numTransInputs;
	int			numDistinctCols = pertrans->numDistinctCols;
	Datum		newAbbrevVal = (Datum) 0;
	Datum		oldAbbrevVal = (Datum) 0;
	bool		haveOldValue = false;
	TupleTableSlot *save = aggstate->tmpcontext->ecxt_outertuple;
	int			i;

	tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);

	ExecClearTuple(slot1);
	if (slot2)
		ExecClearTuple(slot2);

	while (tuplesort_gettupleslot(pertrans->sortstates[aggstate->current_set],
								  true, true, slot1, &newAbbrevVal))
	{
		CHECK_FOR_INTERRUPTS();

		tmpcontext->ecxt_outertuple = slot1;
		tmpcontext->ecxt_innertuple = slot2;

		if (numDistinctCols == 0 ||
			!haveOldValue ||
			newAbbrevVal != oldAbbrevVal ||
			!ExecQual(pertrans->equalfnMulti, tmpcontext))
		{
			/*
			 * Extract the first numTransInputs columns as datums to pass to
			 * the transfn.
			 */
			slot_getsomeattrs(slot1, numTransInputs);

			/* Load values into fcinfo */
			/* Start from 1, since the 0th arg will be the transition value */
			for (i = 0; i < numTransInputs; i++)
			{
				fcinfo->args[i + 1].value = slot1->tts_values[i];
				fcinfo->args[i + 1].isnull = slot1->tts_isnull[i];
			}

			advance_transition_function(aggstate, pertrans, pergroupstate);

			if (numDistinctCols > 0)
			{
				/* swap the slot pointers to retain the current tuple */
				TupleTableSlot *tmpslot = slot2;

				slot2 = slot1;
				slot1 = tmpslot;
				/* avoid ExecQual() calls by reusing abbreviated keys */
				oldAbbrevVal = newAbbrevVal;
				haveOldValue = true;
			}
		}

		/* Reset context each time */
		ResetExprContext(tmpcontext);

		ExecClearTuple(slot1);
	}

	if (slot2)
		ExecClearTuple(slot2);

	tuplesort_end(pertrans->sortstates[aggstate->current_set]);
	pertrans->sortstates[aggstate->current_set] = NULL;

	/* restore previous slot, potentially in use for grouping sets */
	tmpcontext->ecxt_outertuple = save;
}

/*
 * Compute the final value of one aggregate.
 *
 * This function handles only one grouping set (already set in
 * aggstate->current_set).
 *
 * The finalfunction will be run, and the result delivered, in the
 * output-tuple context; caller's CurrentMemoryContext does not matter.
 *
 * The finalfn uses the state as set in the transno. This also might be
 * being used by another aggregate function, so it's important that we do
 * nothing destructive here.
 */
static void
finalize_aggregate(AggState *aggstate,
				   AggStatePerAgg peragg,
				   AggStatePerGroup pergroupstate,
				   Datum *resultVal, bool *resultIsNull)
{
	LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
	bool		anynull = false;
	MemoryContext oldContext;
	int			i;
	ListCell   *lc;
	AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];

	oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);

	/*
	 * Evaluate any direct arguments.  We do this even if there's no finalfn
	 * (which is unlikely anyway), so that side-effects happen as expected.
	 * The direct arguments go into arg positions 1 and up, leaving position 0
	 * for the transition state value.
	 */
	i = 1;
	foreach(lc, peragg->aggdirectargs)
	{
		ExprState  *expr = (ExprState *) lfirst(lc);

		fcinfo->args[i].value = ExecEvalExpr(expr,
											 aggstate->ss.ps.ps_ExprContext,
											 &fcinfo->args[i].isnull);
		anynull |= fcinfo->args[i].isnull;
		i++;
	}

	/*
	 * Apply the agg's finalfn if one is provided, else return transValue.
	 */
	if (OidIsValid(peragg->finalfn_oid))
	{
		int			numFinalArgs = peragg->numFinalArgs;

		/* set up aggstate->curperagg for AggGetAggref() */
		aggstate->curperagg = peragg;

		InitFunctionCallInfoData(*fcinfo, &peragg->finalfn,
								 numFinalArgs,
								 pertrans->aggCollation,
								 (void *) aggstate, NULL);

		/* Fill in the transition state value */
		fcinfo->args[0].value =
			MakeExpandedObjectReadOnly(pergroupstate->transValue,
									   pergroupstate->transValueIsNull,
									   pertrans->transtypeLen);
		fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
		anynull |= pergroupstate->transValueIsNull;

		/* Fill any remaining argument positions with nulls */
		for (; i < numFinalArgs; i++)
		{
			fcinfo->args[i].value = (Datum) 0;
			fcinfo->args[i].isnull = true;
			anynull = true;
		}

		if (fcinfo->flinfo->fn_strict && anynull)
		{
			/* don't call a strict function with NULL inputs */
			*resultVal = (Datum) 0;
			*resultIsNull = true;
		}
		else
		{
			*resultVal = FunctionCallInvoke(fcinfo);
			*resultIsNull = fcinfo->isnull;
		}
		aggstate->curperagg = NULL;
	}
	/*
	 * serialfn_oid will be set if we must serialize the transvalue before
	 * returning it
	 */
	else if (OidIsValid(pertrans->serialfn_oid))
	{
		/* Don't call a strict serialization function with NULL input. */
		if (pertrans->serialfn.fn_strict && pergroupstate->transValueIsNull)
		{
			*resultVal = (Datum) 0;
			*resultIsNull = true;
		}
		else
		{
			InitFunctionCallInfoData(*fcinfo,
									 &pertrans->serialfn,
									 1,
									 InvalidOid,
									 (void *) aggstate, NULL);

			fcinfo->args[0].value = pergroupstate->transValue;
			fcinfo->args[0].isnull = pergroupstate->transValueIsNull;

			*resultVal = FunctionCallInvoke(fcinfo);
			*resultIsNull = fcinfo->args[0].isnull;
		}
	}
	else
	{
		/* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */
		*resultVal = pergroupstate->transValue;
		*resultIsNull = pergroupstate->transValueIsNull;
	}

	/*
	 * If result is pass-by-ref, make sure it is in the right context.
	 */
	if (!peragg->resulttypeByVal && !*resultIsNull &&
		!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
							   DatumGetPointer(*resultVal)))
		*resultVal = datumCopy(*resultVal,
							   peragg->resulttypeByVal,
							   peragg->resulttypeLen);

	MemoryContextSwitchTo(oldContext);
}

/*
 * Compute the output value of one partial aggregate.
 *
 * The serialization function will be run, and the result delivered, in the
 * output-tuple context; caller's CurrentMemoryContext does not matter.
 */
static void
finalize_partialaggregate(AggState *aggstate,
						  AggStatePerAgg peragg,
						  AggStatePerGroup pergroupstate,
						  Datum *resultVal, bool *resultIsNull)
{
	AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];
	MemoryContext oldContext;

	oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);

	/*
	 * serialfn_oid will be set if we must serialize the transvalue before
	 * returning it
	 */
	if (OidIsValid(pertrans->serialfn_oid))
	{
		/* Don't call a strict serialization function with NULL input. */
		if (pertrans->serialfn.fn_strict && pergroupstate->transValueIsNull)
		{
			*resultVal = (Datum) 0;
			*resultIsNull = true;
		}
		else
		{
			FunctionCallInfo fcinfo = pertrans->serialfn_fcinfo;

			fcinfo->args[0].value =
				MakeExpandedObjectReadOnly(pergroupstate->transValue,
										   pergroupstate->transValueIsNull,
										   pertrans->transtypeLen);
			fcinfo->args[0].isnull = pergroupstate->transValueIsNull;

			*resultVal = FunctionCallInvoke(fcinfo);
			*resultIsNull = fcinfo->isnull;
		}
	}
	else
	{
		/* Don't need MakeExpandedObjectReadOnly; datumCopy will copy it */
		*resultVal = pergroupstate->transValue;
		*resultIsNull = pergroupstate->transValueIsNull;
	}

	/* If result is pass-by-ref, make sure it is in the right context. */
	if (!peragg->resulttypeByVal && !*resultIsNull &&
		!MemoryContextContainsGenericAllocation(CurrentMemoryContext,
							   DatumGetPointer(*resultVal)))
		*resultVal = datumCopy(*resultVal,
							   peragg->resulttypeByVal,
							   peragg->resulttypeLen);

	MemoryContextSwitchTo(oldContext);
}

/*
 * Extract the attributes that make up the grouping key into the
 * hashslot. This is necessary to compute the hash or perform a lookup.
 */
static void
prepare_hash_slot(AggState *aggstate)
{
	TupleTableSlot *inputslot = aggstate->tmpcontext->ecxt_outertuple;
	AggStatePerHash perhash = &aggstate->perhash[aggstate->current_set];
	TupleTableSlot *hashslot = perhash->hashslot;
	int				i;

	/* transfer just the needed columns into hashslot */
	slot_getsomeattrs(inputslot, perhash->largestGrpColIdx);
	ExecClearTuple(hashslot);

	for (i = 0; i < perhash->numhashGrpCols; i++)
	{
		int			varNumber = perhash->hashGrpColIdxInput[i] - 1;

		hashslot->tts_values[i] = inputslot->tts_values[varNumber];
		hashslot->tts_isnull[i] = inputslot->tts_isnull[varNumber];
	}
	ExecStoreVirtualTuple(hashslot);
}

/*
 * Prepare to finalize and project based on the specified representative tuple
 * slot and grouping set.
 *
 * In the specified tuple slot, force to null all attributes that should be
 * read as null in the context of the current grouping set.  Also stash the
 * current group bitmap where GroupingExpr can get at it.
 *
 * This relies on three conditions:
 *
 * 1) Nothing is ever going to try and extract the whole tuple from this slot,
 * only reference it in evaluations, which will only access individual
 * attributes.
 *
 * 2) No system columns are going to need to be nulled. (If a system column is
 * referenced in a group clause, it is actually projected in the outer plan
 * tlist.)
 *
 * 3) Within a given phase, we never need to recover the value of an attribute
 * once it has been set to null.
 *
 * Poking into the slot this way is a bit ugly, but the consensus is that the
 * alternative was worse.
 */
static void
prepare_projection_slot(AggState *aggstate, TupleTableSlot *slot, int currentSet)
{
	if (aggstate->phase->grouped_cols)
	{
		Bitmapset  *grouped_cols = aggstate->phase->grouped_cols[currentSet];

		aggstate->grouped_cols = grouped_cols;
		aggstate->group_id = aggstate->phase->group_id[currentSet];
		aggstate->gset_id = aggstate->phase->gset_id[currentSet];

		if (TTS_EMPTY(slot))
		{
			/*
			 * Force all values to be NULL if working on an empty input tuple
			 * (i.e. an empty grouping set for which no input rows were
			 * supplied).
			 */
			ExecStoreAllNullTuple(slot);
		}
		else if (aggstate->all_grouped_cols)
		{
			ListCell   *lc;

			/* all_grouped_cols is arranged in desc order */
			slot_getsomeattrs(slot, linitial_int(aggstate->all_grouped_cols));

			foreach(lc, aggstate->all_grouped_cols)
			{
				int			attnum = lfirst_int(lc);

				if (!bms_is_member(attnum, grouped_cols))
					slot->tts_isnull[attnum - 1] = true;
			}
		}
	}
}

/*
 * Compute the final value of all aggregates for one group.
 *
 * This function handles only one grouping set at a time, which the caller must
 * have selected.  It's also the caller's responsibility to adjust the supplied
 * pergroup parameter to point to the current set's transvalues.
 *
 * Results are stored in the output econtext aggvalues/aggnulls.
 */
static void
finalize_aggregates(AggState *aggstate,
					AggStatePerAgg peraggs,
					AggStatePerGroup pergroup)
{
	ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;
	Datum	   *aggvalues = econtext->ecxt_aggvalues;
	bool	   *aggnulls = econtext->ecxt_aggnulls;
	int			aggno;
	int			transno;

	/*
	 * If there were any DISTINCT and/or ORDER BY aggregates, sort their
	 * inputs and run the transition functions.
	 */
	for (transno = 0; transno < aggstate->numtrans; transno++)
	{
		AggStatePerTrans pertrans = &aggstate->pertrans[transno];
		AggStatePerGroup pergroupstate;

		pergroupstate = &pergroup[transno];

		if (pertrans->numSortCols > 0)
		{
			Assert(aggstate->aggstrategy != AGG_HASHED &&
				   aggstate->aggstrategy != AGG_MIXED);

			if (pertrans->numInputs == 1)
				process_ordered_aggregate_single(aggstate,
												 pertrans,
												 pergroupstate);
			else
				process_ordered_aggregate_multi(aggstate,
												pertrans,
												pergroupstate);
		}
	}

	/*
	 * Run the final functions.
	 */
	for (aggno = 0; aggno < aggstate->numaggs; aggno++)
	{
		AggStatePerAgg peragg = &peraggs[aggno];
		int			transno = peragg->transno;
		AggStatePerGroup pergroupstate;

		pergroupstate = &pergroup[transno];

		if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
			finalize_partialaggregate(aggstate, peragg, pergroupstate,
									  &aggvalues[aggno], &aggnulls[aggno]);
		else
			finalize_aggregate(aggstate, peragg, pergroupstate,
							   &aggvalues[aggno], &aggnulls[aggno]);
	}
}

/*
 * Project the result of a group (whose aggs have already been calculated by
 * finalize_aggregates). Returns the result slot, or NULL if no row is
 * projected (suppressed by qual).
 */
static TupleTableSlot *
project_aggregates(AggState *aggstate)
{
	ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;

	/*
	 * Check the qual (HAVING clause); if the group does not match, ignore it.
	 */
	if (ExecQual(aggstate->ss.ps.qual, econtext))
	{
		/*
		 * Form and return projection tuple using the aggregate results and
		 * the representative input tuple.
		 */
		return ExecProject(aggstate->ss.ps.ps_ProjInfo);
	}
	else
		InstrCountFiltered1(aggstate, 1);

	return NULL;
}

/*
 * find_unaggregated_cols
 *	  Construct a bitmapset of the column numbers of un-aggregated Vars
 *	  appearing in our targetlist and qual (HAVING clause)
 */
static Bitmapset *
find_unaggregated_cols(AggState *aggstate)
{
	Agg		   *node = (Agg *) aggstate->ss.ps.plan;
	Bitmapset  *colnos;

	colnos = NULL;
	(void) find_unaggregated_cols_walker((Node *) node->plan.targetlist,
										 &colnos);
	(void) find_unaggregated_cols_walker((Node *) node->plan.qual,
										 &colnos);
	return colnos;
}

static bool
find_unaggregated_cols_walker(Node *node, Bitmapset **colnos)
{
	if (node == NULL)
		return false;
	if (IsA(node, Var))
	{
		Var		   *var = (Var *) node;

		/* setrefs.c should have set the varno to OUTER_VAR */
		Assert(var->varno == OUTER_VAR);
		Assert(var->varlevelsup == 0);
		*colnos = bms_add_member(*colnos, var->varattno);
		return false;
	}
	if (IsA(node, Aggref) || IsA(node, GroupingFunc))
	{
		/* do not descend into aggregate exprs */
		return false;
	}
	return expression_tree_walker(node, find_unaggregated_cols_walker,
								  (void *) colnos);
}

/*
 * (Re-)initialize the hash table(s) to empty.
 *
 * To implement hashed aggregation, we need a hashtable that stores a
 * representative tuple and an array of AggStatePerGroup structs for each
 * distinct set of GROUP BY column values.  We compute the hash key from the
 * GROUP BY columns.  The per-group data is allocated in lookup_hash_entry(),
 * for each entry.
 *
 * We have a separate hashtable and associated perhash data structure for each
 * grouping set for which we're doing hashing.
 *
 * The contents of the hash tables always live in the hashcontext's per-tuple
 * memory context (there is only one of these for all tables together, since
 * they are all reset at the same time).
 */
static void
build_hash_tables(AggState *aggstate)
{
	int				setno;

	for (setno = 0; setno < aggstate->num_hashes; ++setno)
	{
		AggStatePerHash perhash = &aggstate->perhash[setno];
		long			nbuckets;
		Size			memory;

		if (perhash->hashtable != NULL)
		{
			ResetTupleHashTable(perhash->hashtable);
			continue;
		}

		Assert(perhash->aggnode->numGroups > 0);

		memory = aggstate->hash_mem_limit / aggstate->num_hashes;

		/* choose reasonable number of buckets per hashtable */
		nbuckets = hash_choose_num_buckets(
			aggstate->hashentrysize, perhash->aggnode->numGroups, memory);

		build_hash_table(aggstate, setno, nbuckets);
	}

	aggstate->hash_ngroups_current = 0;
}

/*
 * Build a single hashtable for this grouping set.
 */
static void
build_hash_table(AggState *aggstate, int setno, long nbuckets)
{
	AggStatePerHash perhash = &aggstate->perhash[setno];
	MemoryContext	metacxt = aggstate->hash_metacxt;
	MemoryContext	hashcxt = aggstate->hashcontext->ecxt_per_tuple_memory;
	MemoryContext	tmpcxt	= aggstate->tmpcontext->ecxt_per_tuple_memory;
	Size            additionalsize;

	Assert(aggstate->aggstrategy == AGG_HASHED ||
		   aggstate->aggstrategy == AGG_MIXED);

	/*
	 * Used to make sure initial hash table allocation does not exceed
	 * work_mem. Note that the estimate does not include space for
	 * pass-by-reference transition data values, nor for the representative
	 * tuple of each group.
	 */
	additionalsize = aggstate->numtrans * sizeof(AggStatePerGroupData);

	perhash->hashtable = BuildTupleHashTableExt(
		&aggstate->ss.ps,
		perhash->hashslot->tts_tupleDescriptor,
		perhash->numCols,
		perhash->hashGrpColIdxHash,
		perhash->eqfuncoids,
		perhash->hashfunctions,
		perhash->aggnode->grpCollations,
		nbuckets,
		additionalsize,
		metacxt,
		hashcxt,
		tmpcxt,
		DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit));
}

/*
 * Compute columns that actually need to be stored in hashtable entries.  The
 * incoming tuples from the child plan node will contain grouping columns,
 * other columns referenced in our targetlist and qual, columns used to
 * compute the aggregate functions, and perhaps just junk columns we don't use
 * at all.  Only columns of the first two types need to be stored in the
 * hashtable, and getting rid of the others can make the table entries
 * significantly smaller.  The hashtable only contains the relevant columns,
 * and is packed/unpacked in lookup_hash_entry() / agg_retrieve_hash_table()
 * into the format of the normal input descriptor.
 *
 * Additional columns, in addition to the columns grouped by, come from two
 * sources: Firstly functionally dependent columns that we don't need to group
 * by themselves, and secondly ctids for row-marks.
 *
 * To eliminate duplicates, we build a bitmapset of the needed columns, and
 * then build an array of the columns included in the hashtable. We might
 * still have duplicates if the passed-in grpColIdx has them, which can happen
 * in edge cases from semijoins/distinct; these can't always be removed,
 * because it's not certain that the duplicate cols will be using the same
 * hash function.
 *
 * Note that the array is preserved over ExecReScanAgg, so we allocate it in
 * the per-query context (unlike the hash table itself).
 */
static void
find_hash_columns(AggState *aggstate)
{
	Bitmapset  *base_colnos;
	List	   *outerTlist = outerPlanState(aggstate)->plan->targetlist;
	int			numHashes = aggstate->num_hashes;
	EState	   *estate = aggstate->ss.ps.state;
	int			j;

	/* Find Vars that will be needed in tlist and qual */
	base_colnos = find_unaggregated_cols(aggstate);

	for (j = 0; j < numHashes; ++j)
	{
		AggStatePerHash perhash = &aggstate->perhash[j];
		Bitmapset  *colnos = bms_copy(base_colnos);
		AttrNumber *grpColIdx = perhash->aggnode->grpColIdx;
		List	   *hashTlist = NIL;
		TupleDesc	hashDesc;
		int			maxCols;
		int			i;

		perhash->largestGrpColIdx = 0;

		/*
		 * If we're doing grouping sets, then some Vars might be referenced in
		 * tlist/qual for the benefit of other grouping sets, but not needed
		 * when hashing; i.e. prepare_projection_slot will null them out, so
		 * there'd be no point storing them.  Use prepare_projection_slot's
		 * logic to determine which.
		 */
		if (aggstate->phases[0].grouped_cols)
		{
			Bitmapset  *grouped_cols = aggstate->phases[0].grouped_cols[j];
			ListCell   *lc;

			foreach(lc, aggstate->all_grouped_cols)
			{
				int			attnum = lfirst_int(lc);

				if (!bms_is_member(attnum, grouped_cols))
					colnos = bms_del_member(colnos, attnum);
			}
		}

		/*
		 * Compute maximum number of input columns accounting for possible
		 * duplications in the grpColIdx array, which can happen in some edge
		 * cases where HashAggregate was generated as part of a semijoin or a
		 * DISTINCT.
		 */
		maxCols = bms_num_members(colnos) + perhash->numCols;

		perhash->hashGrpColIdxInput =
			palloc(maxCols * sizeof(AttrNumber));
		perhash->hashGrpColIdxHash =
			palloc(perhash->numCols * sizeof(AttrNumber));

		/* Add all the grouping columns to colnos */
		for (i = 0; i < perhash->numCols; i++)
			colnos = bms_add_member(colnos, grpColIdx[i]);

		/*
		 * First build mapping for columns directly hashed. These are the
		 * first, because they'll be accessed when computing hash values and
		 * comparing tuples for exact matches. We also build simple mapping
		 * for execGrouping, so it knows where to find the to-be-hashed /
		 * compared columns in the input.
		 */
		for (i = 0; i < perhash->numCols; i++)
		{
			perhash->hashGrpColIdxInput[i] = grpColIdx[i];
			perhash->hashGrpColIdxHash[i] = i + 1;
			perhash->numhashGrpCols++;
			/* delete already mapped columns */
			bms_del_member(colnos, grpColIdx[i]);
		}

		/* and add the remaining columns */
		while ((i = bms_first_member(colnos)) >= 0)
		{
			perhash->hashGrpColIdxInput[perhash->numhashGrpCols] = i;
			perhash->numhashGrpCols++;
		}

		/* and build a tuple descriptor for the hashtable */
		for (i = 0; i < perhash->numhashGrpCols; i++)
		{
			int			varNumber = perhash->hashGrpColIdxInput[i] - 1;

			hashTlist = lappend(hashTlist, list_nth(outerTlist, varNumber));
			perhash->largestGrpColIdx =
				Max(varNumber + 1, perhash->largestGrpColIdx);
		}

		hashDesc = ExecTypeFromTL(hashTlist);

		execTuplesHashPrepare(perhash->numCols,
							  perhash->aggnode->grpOperators,
							  &perhash->eqfuncoids,
							  &perhash->hashfunctions);
		perhash->hashslot =
			ExecAllocTableSlot(&estate->es_tupleTable, hashDesc,
							   &TTSOpsMinimalTuple);

		list_free(hashTlist);
		bms_free(colnos);
	}

	bms_free(base_colnos);
}

/*
 * Estimate per-hash-table-entry overhead.
 */
Size
hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
{
	Size    tupleChunkSize;
	Size    pergroupChunkSize;
	Size    transitionChunkSize;
	Size    tupleSize	 = (MAXALIGN(SizeofMinimalTupleHeader) +
							tupleWidth);
	Size    pergroupSize = numTrans * sizeof(AggStatePerGroupData);

	tupleChunkSize = CHUNKHDRSZ + tupleSize;

	if (pergroupSize > 0)
		pergroupChunkSize = CHUNKHDRSZ + pergroupSize;
	else
		pergroupChunkSize = 0;

	if (transitionSpace > 0)
		transitionChunkSize = CHUNKHDRSZ + transitionSpace;
	else
		transitionChunkSize = 0;

	return
		sizeof(TupleHashEntryData) +
		tupleChunkSize +
		pergroupChunkSize +
		transitionChunkSize;
}

/*
 * hashagg_recompile_expressions()
 *
 * Identifies the right phase, compiles the right expression given the
 * arguments, and then sets phase->evalfunc to that expression.
 *
 * Different versions of the compiled expression are needed depending on
 * whether hash aggregation has spilled or not, and whether it's reading from
 * the outer plan or a tape. Before spilling to disk, the expression reads
 * from the outer plan and does not need to perform a NULL check. After
 * HashAgg begins to spill, new groups will not be created in the hash table,
 * and the AggStatePerGroup array may be NULL; therefore we need to add a null
 * pointer check to the expression. Then, when reading spilled data from a
 * tape, we change the outer slot type to be a fixed minimal tuple slot.
 *
 * It would be wasteful to recompile every time, so cache the compiled
 * expressions in the AggStatePerPhase, and reuse when appropriate.
 */
static void
hashagg_recompile_expressions(AggState *aggstate, bool minslot, bool nullcheck)
{
	AggStatePerPhase		 phase;
	int						 i = minslot ? 1 : 0;
	int						 j = nullcheck ? 1 : 0;

	Assert(aggstate->aggstrategy == AGG_HASHED ||
		   aggstate->aggstrategy == AGG_MIXED);

	if (aggstate->aggstrategy == AGG_HASHED)
		phase = &aggstate->phases[0];
	else /* AGG_MIXED */
		phase = &aggstate->phases[1];

	if (phase->evaltrans_cache[i][j] == NULL)
	{
		const TupleTableSlotOps *outerops	= aggstate->ss.ps.outerops;
		bool					 outerfixed = aggstate->ss.ps.outeropsfixed;
		bool					 dohash		= true;
		bool					 dosort;

		dosort = aggstate->aggstrategy == AGG_MIXED ? true : false;

		/* temporarily change the outerops while compiling the expression */
		if (minslot)
		{
			aggstate->ss.ps.outerops = &TTSOpsMinimalTuple;
			aggstate->ss.ps.outeropsfixed = true;
		}

		phase->evaltrans_cache[i][j] = ExecBuildAggTrans(aggstate, phase,
														 dosort, dohash,
														 nullcheck);

		/* change back */
		aggstate->ss.ps.outerops = outerops;
		aggstate->ss.ps.outeropsfixed = outerfixed;
	}

	phase->evaltrans = phase->evaltrans_cache[i][j];
}

/*
 * Set limits that trigger spilling to avoid exceeding work_mem. Consider the
 * number of partitions we expect to create (if we do spill).
 *
 * There are two limits: a memory limit, and also an ngroups limit. The
 * ngroups limit becomes important when we expect transition values to grow
 * substantially larger than the initial value.
 */
void
hash_agg_set_limits(AggState *aggstate, double hashentrysize, uint64 input_groups, int used_bits,
					Size *mem_limit, uint64 *ngroups_limit,
					int *num_partitions)
{
	int npartitions;
	Size partition_mem;
	uint64 strict_memlimit = work_mem;

	if (aggstate)
	{
		uint64 operator_mem = PlanStateOperatorMemKB((PlanState *) aggstate);
		if (operator_mem < strict_memlimit)
			strict_memlimit = operator_mem;
	}

	/* if not expected to spill, use all of work_mem */
	if (input_groups * hashentrysize < strict_memlimit * 1024L)
	{
		if (num_partitions != NULL)
			*num_partitions = 0;
		*mem_limit = strict_memlimit * 1024L;
		*ngroups_limit = *mem_limit / hashentrysize;
		return;
	}

	/*
	 * Calculate expected memory requirements for spilling, which is the size
	 * of the buffers needed for all the tapes that need to be open at
	 * once. Then, subtract that from the memory available for holding hash
	 * tables.
	 */
	npartitions = hash_choose_num_partitions(aggstate,
											 input_groups,
											 hashentrysize,
											 used_bits,
											 NULL);
	if (num_partitions != NULL)
		*num_partitions = npartitions;

	partition_mem =
		HASHAGG_READ_BUFFER_SIZE +
		HASHAGG_WRITE_BUFFER_SIZE * npartitions;

	/*
	 * Don't set the limit below 3/4 of work_mem. In that case, we are at the
	 * minimum number of partitions, so we aren't going to dramatically exceed
	 * work mem anyway.
	 */
	if (strict_memlimit * 1024L > 4 * partition_mem)
		*mem_limit = strict_memlimit * 1024L - partition_mem;
	else
		*mem_limit = strict_memlimit * 1024L * 0.75;

	if (*mem_limit > hashentrysize)
		*ngroups_limit = *mem_limit / hashentrysize;
	else
		*ngroups_limit = 1;
}

/*
 * hash_agg_check_limits
 *
 * After adding a new group to the hash table, check whether we need to enter
 * spill mode. Allocations may happen without adding new groups (for instance,
 * if the transition state size grows), so this check is imperfect.
 */
static void
hash_agg_check_limits(AggState *aggstate)
{
	uint64 ngroups = aggstate->hash_ngroups_current;
	Size meta_mem = MemoryContextMemAllocated(
		aggstate->hash_metacxt, true);
	Size hash_mem = MemoryContextMemAllocated(
		aggstate->hashcontext->ecxt_per_tuple_memory, true);

	/*
	 * Don't spill unless there's at least one group in the hash table so we
	 * can be sure to make progress even in edge cases.
	 */
	if (aggstate->hash_ngroups_current > 0 &&
		(meta_mem + hash_mem > aggstate->hash_mem_limit ||
		 ngroups > aggstate->hash_ngroups_limit))
	{
		hash_agg_enter_spill_mode(aggstate);
	}
}

/*
 * Enter "spill mode", meaning that no new groups are added to any of the hash
 * tables. Tuples that would create a new group are instead spilled, and
 * processed later.
 */
static void
hash_agg_enter_spill_mode(AggState *aggstate)
{
	aggstate->hash_spill_mode = true;
	hashagg_recompile_expressions(aggstate, aggstate->table_filled, true);

	if (!aggstate->hash_ever_spilled)
	{
		Assert(aggstate->hash_tapeinfo == NULL);
		Assert(aggstate->hash_spills == NULL);

		aggstate->hash_ever_spilled = true;

		hashagg_tapeinfo_init(aggstate);

		aggstate->hash_spills = palloc(
			sizeof(HashAggSpill) * aggstate->num_hashes);

		for (int setno = 0; setno < aggstate->num_hashes; setno++)
		{
			AggStatePerHash	 perhash = &aggstate->perhash[setno];
			HashAggSpill	*spill	 = &aggstate->hash_spills[setno];

			hashagg_spill_init(aggstate, spill, aggstate->hash_tapeinfo, 0,
							   perhash->aggnode->numGroups,
							   aggstate->hashentrysize);
		}

		if (aggstate->ss.ps.instrument)
		{
			aggstate->ss.ps.instrument->workfileCreated = true;
		}
	}
}

/*
 * Update metrics after filling the hash table.
 *
 * If reading from the outer plan, from_tape should be false; if reading from
 * another tape, from_tape should be true.
 */
static void
hash_agg_update_metrics(AggState *aggstate, bool from_tape, int npartitions)
{
	Size	meta_mem;
	Size	hash_mem;
	Size	buffer_mem;
	Size	total_mem;

	if (aggstate->aggstrategy != AGG_MIXED &&
		aggstate->aggstrategy != AGG_HASHED)
		return;

	/* memory for the hash table itself */
	meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt, true);

	/* memory for the group keys and transition states */
	hash_mem = MemoryContextMemAllocated(
		aggstate->hashcontext->ecxt_per_tuple_memory, true);

	/* memory for read/write tape buffers, if spilled */
	buffer_mem = npartitions * HASHAGG_WRITE_BUFFER_SIZE;
	if (from_tape)
		buffer_mem += HASHAGG_READ_BUFFER_SIZE;

	/* update peak mem */
	total_mem = meta_mem + hash_mem + buffer_mem;
	if (total_mem > aggstate->hash_mem_peak)
		aggstate->hash_mem_peak = total_mem;

	/* update disk usage */
	if (aggstate->hash_tapeinfo != NULL)
	{
		uint64	disk_used = LogicalTapeSetBlocks(
			aggstate->hash_tapeinfo->tapeset) * (BLCKSZ / 1024);

		if (aggstate->hash_disk_used < disk_used)
			aggstate->hash_disk_used = disk_used;
	}

	/* update hashentrysize estimate based on contents */
	if (aggstate->hash_ngroups_current > 0)
	{
		aggstate->hashentrysize =
			sizeof(TupleHashEntryData) +
			(hash_mem / (double)aggstate->hash_ngroups_current);
	}

	if (aggstate->ss.ps.instrument && aggstate->ss.ps.instrument->need_cdb)
	{
		Instrumentation    *instrument = aggstate->ss.ps.instrument;

		instrument->workmemused = aggstate->hash_mem_peak;
	}
}

/*
 * Choose a reasonable number of buckets for the initial hash table size.
 */
static long
hash_choose_num_buckets(double hashentrysize, long ngroups, Size memory)
{
	long	max_nbuckets;
	long	nbuckets = ngroups;

	max_nbuckets = memory / hashentrysize;

	/*
	 * Underestimating is better than overestimating. Too many buckets crowd
	 * out space for group keys and transition state values.
	 */
	max_nbuckets >>= 1;

	if (nbuckets > max_nbuckets)
		nbuckets = max_nbuckets;

	return Max(nbuckets, 1);
}

/*
 * Determine the number of partitions to create when spilling, which will
 * always be a power of two. If log2_npartitions is non-NULL, set
 * *log2_npartitions to the log2() of the number of partitions.
 */
static int
hash_choose_num_partitions(AggState *aggstate, uint64 input_groups, double hashentrysize,
						   int used_bits, int *log2_npartitions)
{
	Size	mem_wanted;
	int		partition_limit;
	int		npartitions;
	int		partition_bits;
	uint64	strict_memlimit = work_mem;

	if (aggstate)
	{
		uint64 operator_mem = PlanStateOperatorMemKB((PlanState *) aggstate);
		if (operator_mem < strict_memlimit)
			strict_memlimit = operator_mem;
	}

	/*
	 * Avoid creating so many partitions that the memory requirements of the
	 * open partition files are greater than 1/4 of work_mem.
	 */
	partition_limit =
		(strict_memlimit * 1024L * 0.25 - HASHAGG_READ_BUFFER_SIZE) /
		HASHAGG_WRITE_BUFFER_SIZE;

	mem_wanted = HASHAGG_PARTITION_FACTOR * input_groups * hashentrysize;

	/* make enough partitions so that each one is likely to fit in memory */
	npartitions = 1 + (mem_wanted / (strict_memlimit * 1024L));

	if (npartitions > partition_limit)
		npartitions = partition_limit;

	if (npartitions < HASHAGG_MIN_PARTITIONS)
		npartitions = HASHAGG_MIN_PARTITIONS;
	if (npartitions > HASHAGG_MAX_PARTITIONS)
		npartitions = HASHAGG_MAX_PARTITIONS;

	/* ceil(log2(npartitions)) */
	partition_bits = my_log2(npartitions);

	/* make sure that we don't exhaust the hash bits */
	if (partition_bits + used_bits >= 32)
		partition_bits = 32 - used_bits;

	if (log2_npartitions != NULL)
		*log2_npartitions = partition_bits;

	/* number of partitions will be a power of two */
	npartitions = 1L << partition_bits;

	return npartitions;
}

/*
 * Find or create a hashtable entry for the tuple group containing the current
 * tuple (already set in tmpcontext's outertuple slot), in the current grouping
 * set (which the caller must have selected - note that initialize_aggregate
 * depends on this).
 *
 * When called, CurrentMemoryContext should be the per-query context. The
 * already-calculated hash value for the tuple must be specified.
 *
 * If in "spill mode", then only find existing hashtable entries; don't create
 * new ones. If a tuple's group is not already present in the hash table for
 * the current grouping set, assign *in_hash_table=false and the caller will
 * spill it to disk.
 */
static AggStatePerGroup
lookup_hash_entry(AggState *aggstate, uint32 hash, bool *in_hash_table)
{
	AggStatePerHash perhash = &aggstate->perhash[aggstate->current_set];
	TupleTableSlot *hashslot = perhash->hashslot;
	TupleHashEntryData *entry;
	bool			isnew = false;
	bool		   *p_isnew;

	/* if hash table already spilled, don't create new entries */
	p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;

	/* find or create the hashtable entry using the filtered tuple */
	entry = LookupTupleHashEntryHash(perhash->hashtable, hashslot, p_isnew,
									 hash);

	if (entry == NULL)
	{
		*in_hash_table = false;
		return NULL;
	}
	else
		*in_hash_table = true;

	if (isnew)
	{
		AggStatePerGroup	pergroup;
		int					transno;

		aggstate->hash_ngroups_current++;
		hash_agg_check_limits(aggstate);

		/* no need to allocate or initialize per-group state */
		if (aggstate->numtrans == 0)
			return NULL;

		pergroup = (AggStatePerGroup)
			MemoryContextAlloc(perhash->hashtable->tablecxt,
							   sizeof(AggStatePerGroupData) * aggstate->numtrans);

		entry->additional = pergroup;

		/*
		 * Initialize aggregates for new tuple group, lookup_hash_entries()
		 * already has selected the relevant grouping set.
		 */
		for (transno = 0; transno < aggstate->numtrans; transno++)
		{
			AggStatePerTrans pertrans = &aggstate->pertrans[transno];
			AggStatePerGroup pergroupstate = &pergroup[transno];

			initialize_aggregate(aggstate, pertrans, pergroupstate);
		}
	}

	return entry->additional;
}

/*
 * Look up hash entries for the current tuple in all hashed grouping sets,
 * returning an array of pergroup pointers suitable for advance_aggregates.
 *
 * Be aware that lookup_hash_entry can reset the tmpcontext.
 *
 * Some entries may be left NULL if we are in "spill mode". The same tuple
 * will belong to different groups for each grouping set, so may match a group
 * already in memory for one set and match a group not in memory for another
 * set. When in "spill mode", the tuple will be spilled for each grouping set
 * where it doesn't match a group in memory.
 *
 * NB: It's possible to spill the same tuple for several different grouping
 * sets. This may seem wasteful, but it's actually a trade-off: if we spill
 * the tuple multiple times for multiple grouping sets, it can be partitioned
 * for each grouping set, making the refilling of the hash table very
 * efficient.
 */
static void
lookup_hash_entries(AggState *aggstate)
{
	AggStatePerGroup *pergroup = aggstate->hash_pergroup;
	int			setno;

	for (setno = 0; setno < aggstate->num_hashes; setno++)
	{
		AggStatePerHash	perhash = &aggstate->perhash[setno];
		uint32			hash;
		bool			in_hash_table;

		select_current_set(aggstate, setno, true);
		prepare_hash_slot(aggstate);
		hash = TupleHashTableHash(perhash->hashtable, perhash->hashslot);
		pergroup[setno] = lookup_hash_entry(aggstate, hash, &in_hash_table);

		/* check to see if we need to spill the tuple for this grouping set */
		if (!in_hash_table)
		{
			HashAggSpill	*spill	 = &aggstate->hash_spills[setno];
			TupleTableSlot	*slot	 = aggstate->tmpcontext->ecxt_outertuple;

			if (spill->partitions == NULL)
				hashagg_spill_init(aggstate, spill, aggstate->hash_tapeinfo, 0,
								   perhash->aggnode->numGroups,
								   aggstate->hashentrysize);

			hashagg_spill_tuple(spill, slot, hash);
		}
	}
}

/*
 * ExecAgg -
 *
 *	  ExecAgg receives tuples from its outer subplan and aggregates over
 *	  the appropriate attribute for each aggregate function use (Aggref
 *	  node) appearing in the targetlist or qual of the node.  The number
 *	  of tuples to aggregate over depends on whether grouped or plain
 *	  aggregation is selected.  In grouped aggregation, we produce a result
 *	  row for each group; in plain aggregation there's a single result row
 *	  for the whole query.  In either case, the value of each aggregate is
 *	  stored in the expression context to be used when ExecProject evaluates
 *	  the result tuple.
 *
 * Streaming bottom: forces end of passes when no tuple for underlying node.
 *
 * MPP-2614: Btree scan will return null tuple at end of scan.  However,
 * if one calls ExecProNode again on a btree scan, it will restart from
 * beginning even though we did not call rescan.  This is a bug on
 * btree scan, but mask it off here for v3.1.  Really should fix Btree
 * code.
 */
static TupleTableSlot *
ExecAgg(PlanState *pstate)
{
	AggState   *node = castNode(AggState, pstate);
	TupleTableSlot *result = NULL;

	CHECK_FOR_INTERRUPTS();

	if (!node->agg_done)
	{
		/* Dispatch based on strategy */
		switch (node->phase->aggstrategy)
		{
			case AGG_HASHED:
				if (!node->table_filled)
					agg_fill_hash_table(node);
				/* FALLTHROUGH */
			case AGG_MIXED:
				result = agg_retrieve_hash_table(node);
				break;
			case AGG_PLAIN:
			case AGG_SORTED:
				result = agg_retrieve_direct(node);
				break;
		}

		if (!TupIsNull(result))
			return result;
	}

	return NULL;
}

/*
 * ExecAgg for non-hashed case
 */
static TupleTableSlot *
agg_retrieve_direct(AggState *aggstate)
{
	Agg		   *node = aggstate->phase->aggnode;
	ExprContext *econtext;
	ExprContext *tmpcontext;
	AggStatePerAgg peragg;
	AggStatePerGroup *pergroups;
	TupleTableSlot *outerslot;
	TupleTableSlot *firstSlot;
	TupleTableSlot *result;
	bool		hasGroupingSets = aggstate->phase->numsets > 0;
	int			numGroupingSets = Max(aggstate->phase->numsets, 1);
	int			currentSet;
	int			nextSetSize;
	int			numReset;
	int			i;

	/*
	 * get state info from node
	 *
	 * econtext is the per-output-tuple expression context
	 *
	 * tmpcontext is the per-input-tuple expression context
	 */
	econtext = aggstate->ss.ps.ps_ExprContext;
	tmpcontext = aggstate->tmpcontext;

	peragg = aggstate->peragg;
	pergroups = aggstate->pergroups;
	firstSlot = aggstate->ss.ss_ScanTupleSlot;

	/*
	 * We loop retrieving groups until we find one matching
	 * aggstate->ss.ps.qual
	 *
	 * For grouping sets, we have the invariant that aggstate->projected_set
	 * is either -1 (initial call) or the index (starting from 0) in
	 * gset_lengths for the group we just completed (either by projecting a
	 * row or by discarding it in the qual).
	 */
	while (!aggstate->agg_done)
	{
		/*
		 * Clear the per-output-tuple context for each group, as well as
		 * aggcontext (which contains any pass-by-ref transvalues of the old
		 * group).  Some aggregate functions store working state in child
		 * contexts; those now get reset automatically without us needing to
		 * do anything special.
		 *
		 * We use ReScanExprContext not just ResetExprContext because we want
		 * any registered shutdown callbacks to be called.  That allows
		 * aggregate functions to ensure they've cleaned up any non-memory
		 * resources.
		 */
		ReScanExprContext(econtext);

		/*
		 * Determine how many grouping sets need to be reset at this boundary.
		 */
		if (aggstate->projected_set >= 0 &&
			aggstate->projected_set < numGroupingSets)
			numReset = aggstate->projected_set + 1;
		else
			numReset = numGroupingSets;

		/*
		 * numReset can change on a phase boundary, but that's OK; we want to
		 * reset the contexts used in _this_ phase, and later, after possibly
		 * changing phase, initialize the right number of aggregates for the
		 * _new_ phase.
		 */

		for (i = 0; i < numReset; i++)
		{
			ReScanExprContext(aggstate->aggcontexts[i]);
		}

		/*
		 * Check if input is complete and there are no more groups to project
		 * in this phase; move to next phase or mark as done.
		 */
		if (aggstate->input_done == true &&
			aggstate->projected_set >= (numGroupingSets - 1))
		{
			if (aggstate->current_phase < aggstate->numphases - 1)
			{
				initialize_phase(aggstate, aggstate->current_phase + 1);
				aggstate->input_done = false;
				aggstate->projected_set = -1;
				numGroupingSets = Max(aggstate->phase->numsets, 1);
				node = aggstate->phase->aggnode;
				numReset = numGroupingSets;
			}
			else if (aggstate->aggstrategy == AGG_MIXED)
			{
				/*
				 * Mixed mode; we've output all the grouped stuff and have
				 * full hashtables, so switch to outputting those.
				 */
				initialize_phase(aggstate, 0);
				aggstate->table_filled = true;
				ResetTupleHashIterator(aggstate->perhash[0].hashtable,
									   &aggstate->perhash[0].hashiter);
				select_current_set(aggstate, 0, true);
				return agg_retrieve_hash_table(aggstate);
			}
			else
			{
				aggstate->agg_done = true;
				break;
			}
		}

		/*
		 * Get the number of columns in the next grouping set after the last
		 * projected one (if any). This is the number of columns to compare to
		 * see if we reached the boundary of that set too.
		 */
		if (aggstate->projected_set >= 0 &&
			aggstate->projected_set < (numGroupingSets - 1))
			nextSetSize = aggstate->phase->gset_lengths[aggstate->projected_set + 1];
		else
			nextSetSize = 0;

		/*----------
		 * If a subgroup for the current grouping set is present, project it.
		 *
		 * We have a new group if:
		 *	- we're out of input but haven't projected all grouping sets
		 *	  (checked above)
		 * OR
		 *	  - we already projected a row that wasn't from the last grouping
		 *		set
		 *	  AND
		 *	  - the next grouping set has at least one grouping column (since
		 *		empty grouping sets project only once input is exhausted)
		 *	  AND
		 *	  - the previous and pending rows differ on the grouping columns
		 *		of the next grouping set
		 *----------
		 */
		tmpcontext->ecxt_innertuple = econtext->ecxt_outertuple;
		if (aggstate->input_done ||
			(node->aggstrategy != AGG_PLAIN &&
			 aggstate->projected_set != -1 &&
			 aggstate->projected_set < (numGroupingSets - 1) &&
			 nextSetSize > 0 &&
			 !ExecQualAndReset(aggstate->phase->eqfunctions[nextSetSize - 1],
							   tmpcontext)))
		{
			aggstate->projected_set += 1;

			Assert(aggstate->projected_set < numGroupingSets);
			Assert(nextSetSize > 0 || aggstate->input_done);
		}
		else
		{
			/*
			 * We no longer care what group we just projected, the next
			 * projection will always be the first (or only) grouping set
			 * (unless the input proves to be empty).
			 */
			aggstate->projected_set = 0;

			/*
			 * If we don't already have the first tuple of the new group,
			 * fetch it from the outer plan.
			 */
			if (aggstate->grp_firstTuple == NULL)
			{
				outerslot = fetch_input_tuple(aggstate);
				if (!TupIsNull(outerslot))
				{
					/*
					 * Make a copy of the first input tuple; we will use this
					 * for comparisons (in group mode) and for projection.
					 */
					aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
				}
				else
				{
					/* outer plan produced no tuples at all */
					if (hasGroupingSets)
					{
						/*
						 * If there was no input at all, we need to project
						 * rows only if there are grouping sets of size 0.
						 * Note that this implies that there can't be any
						 * references to ungrouped Vars, which would otherwise
						 * cause issues with the empty output slot.
						 *
						 * XXX: This is no longer true, we currently deal with
						 * this in finalize_aggregates().
						 */
						aggstate->input_done = true;

						while (aggstate->phase->gset_lengths[aggstate->projected_set] > 0)
						{
							aggstate->projected_set += 1;
							if (aggstate->projected_set >= numGroupingSets)
							{
								/*
								 * We can't set agg_done here because we might
								 * have more phases to do, even though the
								 * input is empty. So we need to restart the
								 * whole outer loop.
								 */
								break;
							}
						}

						if (aggstate->projected_set >= numGroupingSets)
							continue;
					}
					else
					{
						aggstate->agg_done = true;
						/* If we are grouping, we should produce no tuples too */
						if (node->aggstrategy != AGG_PLAIN)
							return NULL;
					}
				}
			}

			/*
			 * Initialize working state for a new input tuple group.
			 */
			initialize_aggregates(aggstate, pergroups, numReset);

			if (aggstate->grp_firstTuple != NULL)
			{
				/*
				 * Store the copied first input tuple in the tuple table slot
				 * reserved for it.  The tuple will be deleted when it is
				 * cleared from the slot.
				 */
				ExecForceStoreHeapTuple(aggstate->grp_firstTuple,
										firstSlot, true);
				aggstate->grp_firstTuple = NULL;	/* don't keep two pointers */

				/* set up for first advance_aggregates call */
				tmpcontext->ecxt_outertuple = firstSlot;

				/*
				 * Process each outer-plan tuple, and then fetch the next one,
				 * until we exhaust the outer plan or cross a group boundary.
				 */
				for (;;)
				{
					/*
					 * During phase 1 only of a mixed agg, we need to update
					 * hashtables as well in advance_aggregates.
					 */
					if (aggstate->aggstrategy == AGG_MIXED &&
						aggstate->current_phase == 1)
					{
						lookup_hash_entries(aggstate);
					}

					/* Advance the aggregates (or combine functions) */
					advance_aggregates(aggstate);

					/* Reset per-input-tuple context after each tuple */
					ResetExprContext(tmpcontext);

					outerslot = fetch_input_tuple(aggstate);
					if (TupIsNull(outerslot))
					{
						/* no more outer-plan tuples available */

						/* if we built hash tables, finalize any spills */
						if (aggstate->aggstrategy == AGG_MIXED &&
							aggstate->current_phase == 1)
							hashagg_finish_initial_spills(aggstate);

						if (hasGroupingSets)
						{
							aggstate->input_done = true;
							break;
						}
						else
						{
							aggstate->agg_done = true;
							break;
						}
					}
					/* set up for next advance_aggregates call */
					tmpcontext->ecxt_outertuple = outerslot;

					/*
					 * If we are grouping, check whether we've crossed a group
					 * boundary.
					 */
					if (node->aggstrategy != AGG_PLAIN)
					{
						tmpcontext->ecxt_innertuple = firstSlot;
						if (!ExecQual(aggstate->phase->eqfunctions[node->numCols - 1],
									  tmpcontext))
						{
							aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
							break;
						}
					}
				}
			}

			/*
			 * Use the representative input tuple for any references to
			 * non-aggregated input columns in aggregate direct args, the node
			 * qual, and the tlist.  (If we are not grouping, and there are no
			 * input rows at all, we will come here with an empty firstSlot
			 * ... but if not grouping, there can't be any references to
			 * non-aggregated input columns, so no problem.)
			 */
			econtext->ecxt_outertuple = firstSlot;
		}

		Assert(aggstate->projected_set >= 0);

		currentSet = aggstate->projected_set;

		prepare_projection_slot(aggstate, econtext->ecxt_outertuple, currentSet);

		select_current_set(aggstate, currentSet, false);

		finalize_aggregates(aggstate,
							peragg,
							pergroups[currentSet]);

		/*
		 * If there's no row to project right now, we must continue rather
		 * than returning a null since there might be more groups.
		 */
		result = project_aggregates(aggstate);
		if (result)
			return result;
	}

	/* No more groups */
	return NULL;
}

/*
 * ExecAgg for hashed case: read input and build hash table
 */
static void
agg_fill_hash_table(AggState *aggstate)
{
	TupleTableSlot *outerslot;
	ExprContext *tmpcontext = aggstate->tmpcontext;

	/*
	 * Process each outer-plan tuple, and then fetch the next one, until we
	 * exhaust the outer plan.
	 */
	for (;;)
	{
		outerslot = fetch_input_tuple(aggstate);
		if (TupIsNull(outerslot))
			break;

		/* set up for lookup_hash_entries and advance_aggregates */
		tmpcontext->ecxt_outertuple = outerslot;

		/* Find or build hashtable entries */
		lookup_hash_entries(aggstate);

		/* Advance the aggregates (or combine functions) */
		advance_aggregates(aggstate);

		/*
		 * Reset per-input-tuple context after each tuple, but note that the
		 * hash lookups do this too
		 */
		ResetExprContext(aggstate->tmpcontext);
	}

	/* finalize spills, if any */
	hashagg_finish_initial_spills(aggstate);

	aggstate->table_filled = true;
	/* Initialize to walk the first hash table */
	select_current_set(aggstate, 0, true);
	ResetTupleHashIterator(aggstate->perhash[0].hashtable,
						   &aggstate->perhash[0].hashiter);
}

/*
 * If any data was spilled during hash aggregation, reset the hash table and
 * reprocess one batch of spilled data. After reprocessing a batch, the hash
 * table will again contain data, ready to be consumed by
 * agg_retrieve_hash_table_in_memory().
 *
 * Should only be called after all in memory hash table entries have been
 * finalized and emitted.
 *
 * Return false when input is exhausted and there's no more work to be done;
 * otherwise return true.
 */
static bool
agg_refill_hash_table(AggState *aggstate)
{
	HashAggBatch	*batch;
	HashAggSpill	 spill;
	HashTapeInfo	*tapeinfo = aggstate->hash_tapeinfo;
	uint64			 ngroups_estimate;
	bool			 spill_initialized = false;

	if (aggstate->hash_batches == NIL)
		return false;

	batch = linitial(aggstate->hash_batches);
	aggstate->hash_batches = list_delete_first(aggstate->hash_batches);

	/*
	 * Estimate the number of groups for this batch as the total number of
	 * tuples in its input file. Although that's a worst case, it's not bad
	 * here for two reasons: (1) overestimating is better than
	 * underestimating; and (2) we've already scanned the relation once, so
	 * it's likely that we've already finalized many of the common values.
	 */
	ngroups_estimate = batch->input_tuples;

	hash_agg_set_limits(aggstate, aggstate->hashentrysize, ngroups_estimate,
						batch->used_bits, &aggstate->hash_mem_limit,
						&aggstate->hash_ngroups_limit, NULL);

	/* there could be residual pergroup pointers; clear them */
	for (int setoff = 0;
		 setoff < aggstate->maxsets + aggstate->num_hashes;
		 setoff++)
		aggstate->all_pergroups[setoff] = NULL;

	/* free memory and reset hash tables */
	ReScanExprContext(aggstate->hashcontext);
	for (int setno = 0; setno < aggstate->num_hashes; setno++)
		ResetTupleHashTable(aggstate->perhash[setno].hashtable);

	aggstate->hash_ngroups_current = 0;

	/*
	 * In AGG_MIXED mode, hash aggregation happens in phase 1 and the output
	 * happens in phase 0. So, we switch to phase 1 when processing a batch,
	 * and back to phase 0 after the batch is done.
	 */
	Assert(aggstate->current_phase == 0);
	if (aggstate->phase->aggstrategy == AGG_MIXED)
	{
		aggstate->current_phase = 1;
		aggstate->phase = &aggstate->phases[aggstate->current_phase];
	}

	select_current_set(aggstate, batch->setno, true);

	/*
	 * Spilled tuples are always read back as MinimalTuples, which may be
	 * different from the outer plan, so recompile the aggregate expressions.
	 *
	 * We still need the NULL check, because we are only processing one
	 * grouping set at a time and the rest will be NULL.
	 */
	hashagg_recompile_expressions(aggstate, true, true);

	LogicalTapeRewindForRead(tapeinfo->tapeset, batch->input_tapenum,
							 HASHAGG_READ_BUFFER_SIZE);
	for (;;) {
		TupleTableSlot	*slot = aggstate->hash_spill_slot;
		MinimalTuple	 tuple;
		uint32			 hash;
		bool			 in_hash_table;

		CHECK_FOR_INTERRUPTS();

		tuple = hashagg_batch_read(batch, &hash);
		if (tuple == NULL)
			break;

		ExecStoreMinimalTuple(tuple, slot, true);
		aggstate->tmpcontext->ecxt_outertuple = slot;

		prepare_hash_slot(aggstate);
		aggstate->hash_pergroup[batch->setno] = lookup_hash_entry(
			aggstate, hash, &in_hash_table);

		if (in_hash_table)
		{
			/* Advance the aggregates (or combine functions) */
			advance_aggregates(aggstate);
		}
		else
		{
			if (!spill_initialized)
			{
				/*
				 * Avoid initializing the spill until we actually need it so
				 * that we don't assign tapes that will never be used.
				 */
				spill_initialized = true;
				hashagg_spill_init(aggstate, &spill, tapeinfo, batch->used_bits,
					   ngroups_estimate, aggstate->hashentrysize);
			}
			/* no memory for a new group, spill */
			hashagg_spill_tuple(&spill, slot, hash);
		}

		/*
		 * Reset per-input-tuple context after each tuple, but note that the
		 * hash lookups do this too
		 */
		ResetExprContext(aggstate->tmpcontext);
	}

	hashagg_tapeinfo_release(tapeinfo, batch->input_tapenum);

	/* change back to phase 0 */
	aggstate->current_phase = 0;
	aggstate->phase = &aggstate->phases[aggstate->current_phase];

	if (spill_initialized)
	{
		hash_agg_update_metrics(aggstate, true, spill.npartitions);
		hashagg_spill_finish(aggstate, &spill, batch->setno);
	}
	else
		hash_agg_update_metrics(aggstate, true, 0);

	aggstate->hash_spill_mode = false;

	/* prepare to walk the first hash table */
	select_current_set(aggstate, batch->setno, true);
	ResetTupleHashIterator(aggstate->perhash[batch->setno].hashtable,
						   &aggstate->perhash[batch->setno].hashiter);

	pfree(batch);

	return true;
}

/*
 * ExecAgg for hashed case: retrieving groups from hash table
 *
 * After exhausting in-memory tuples, also try refilling the hash table using
 * previously-spilled tuples. Only returns NULL after all in-memory and
 * spilled tuples are exhausted.
 */
static TupleTableSlot *
agg_retrieve_hash_table(AggState *aggstate)
{
	TupleTableSlot *result = NULL;

	while (result == NULL)
	{
		result = agg_retrieve_hash_table_in_memory(aggstate);
		if (result == NULL)
		{
			if (!agg_refill_hash_table(aggstate))
			{
				aggstate->agg_done = true;
				break;
			}
		}
	}

	return result;
}

/*
 * Retrieve the groups from the in-memory hash tables without considering any
 * spilled tuples.
 */
static TupleTableSlot *
agg_retrieve_hash_table_in_memory(AggState *aggstate)
{
	ExprContext *econtext;
	AggStatePerAgg peragg;
	AggStatePerGroup pergroup;
	TupleHashEntryData *entry;
	TupleTableSlot *firstSlot;
	TupleTableSlot *result;
	AggStatePerHash perhash;

	/*
	 * get state info from node.
	 *
	 * econtext is the per-output-tuple expression context.
	 */
	econtext = aggstate->ss.ps.ps_ExprContext;
	peragg = aggstate->peragg;
	firstSlot = aggstate->ss.ss_ScanTupleSlot;

	/*
	 * Note that perhash (and therefore anything accessed through it) can
	 * change inside the loop, as we change between grouping sets.
	 */
	perhash = &aggstate->perhash[aggstate->current_set];

	/*
	 * We loop retrieving groups until we find one satisfying
	 * aggstate->ss.ps.qual
	 */
	for (;;)
	{
		TupleTableSlot *hashslot = perhash->hashslot;
		int			i;

		CHECK_FOR_INTERRUPTS();

		/*
		 * Find the next entry in the hash table
		 */
		entry = ScanTupleHashTable(perhash->hashtable, &perhash->hashiter);
		if (entry == NULL)
		{
			int			nextset = aggstate->current_set + 1;

			if (nextset < aggstate->num_hashes)
			{
				/*
				 * Switch to next grouping set, reinitialize, and restart the
				 * loop.
				 */
				select_current_set(aggstate, nextset, true);

				perhash = &aggstate->perhash[aggstate->current_set];

				ResetTupleHashIterator(perhash->hashtable, &perhash->hashiter);

				continue;
			}
			else
			{
				return NULL;
			}
		}

		/*
		 * Clear the per-output-tuple context for each group
		 *
		 * We intentionally don't use ReScanExprContext here; if any aggs have
		 * registered shutdown callbacks, they mustn't be called yet, since we
		 * might not be done with that agg.
		 */
		ResetExprContext(econtext);

		/*
		 * Transform representative tuple back into one with the right
		 * columns.
		 */
		ExecStoreMinimalTuple(entry->firstTuple, hashslot, false);
		slot_getallattrs(hashslot);

		ExecClearTuple(firstSlot);
		memset(firstSlot->tts_isnull, true,
			   firstSlot->tts_tupleDescriptor->natts * sizeof(bool));

		for (i = 0; i < perhash->numhashGrpCols; i++)
		{
			int			varNumber = perhash->hashGrpColIdxInput[i] - 1;

			firstSlot->tts_values[varNumber] = hashslot->tts_values[i];
			firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i];
		}
		ExecStoreVirtualTuple(firstSlot);

		pergroup = (AggStatePerGroup) entry->additional;

		/*
		 * Use the representative input tuple for any references to
		 * non-aggregated input columns in the qual and tlist.
		 */
		econtext->ecxt_outertuple = firstSlot;

		prepare_projection_slot(aggstate,
								econtext->ecxt_outertuple,
								aggstate->current_set);

		finalize_aggregates(aggstate, peragg, pergroup);

		result = project_aggregates(aggstate);
		if (result)
			return result;
	}

	/* No more groups */
	return NULL;
}

/*
 * Initialize HashTapeInfo
 */
static void
hashagg_tapeinfo_init(AggState *aggstate)
{
	HashTapeInfo	*tapeinfo	= palloc(sizeof(HashTapeInfo));
	int				 init_tapes = 16;	/* expanded dynamically */

	tapeinfo->tapeset = LogicalTapeSetCreate(init_tapes, NULL, NULL, -1);
	tapeinfo->ntapes = init_tapes;
	tapeinfo->nfreetapes = init_tapes;
	tapeinfo->freetapes_alloc = init_tapes;
	tapeinfo->freetapes = palloc(init_tapes * sizeof(int));
	for (int i = 0; i < init_tapes; i++)
		tapeinfo->freetapes[i] = i;

	aggstate->hash_tapeinfo = tapeinfo;

#ifdef FAULT_INJECTOR
	if (SIMPLE_FAULT_INJECTOR("hashagg_spill_temp_files") == FaultInjectorTypeSkip) {
		const char *filename = LogicalTapeGetBufFilename(tapeinfo->tapeset);
		if (!filename)
			ereport(NOTICE, (errmsg("hashagg: buffilename is null")));
		else if (strstr(filename, "base/" PG_TEMP_FILES_DIR) == filename)
			ereport(NOTICE, (errmsg("hashagg: Use default tablespace")));
		else if (strstr(filename, "pg_tblspc/") == filename)
			ereport(NOTICE, (errmsg("hashagg: Use temp tablespace")));
		else
			ereport(NOTICE, (errmsg("hashagg: Unexpected prefix of the tablespace path")));

	}
#endif
}

/*
 * Assign unused tapes to spill partitions, extending the tape set if
 * necessary.
 */
static void
hashagg_tapeinfo_assign(HashTapeInfo *tapeinfo, int *partitions,
						int npartitions)
{
	int partidx = 0;

	/* use free tapes if available */
	while (partidx < npartitions && tapeinfo->nfreetapes > 0)
		partitions[partidx++] = tapeinfo->freetapes[--tapeinfo->nfreetapes];

	if (partidx < npartitions)
	{
		LogicalTapeSetExtend(tapeinfo->tapeset, npartitions - partidx);

		while (partidx < npartitions)
			partitions[partidx++] = tapeinfo->ntapes++;
	}
}

/*
 * After a tape has already been written to and then read, this function
 * rewinds it for writing and adds it to the free list.
 */
static void
hashagg_tapeinfo_release(HashTapeInfo *tapeinfo, int tapenum)
{
	LogicalTapeRewindForWrite(tapeinfo->tapeset, tapenum);
	if (tapeinfo->freetapes_alloc == tapeinfo->nfreetapes)
	{
		tapeinfo->freetapes_alloc <<= 1;
		tapeinfo->freetapes = repalloc(
			tapeinfo->freetapes, tapeinfo->freetapes_alloc * sizeof(int));
	}
	tapeinfo->freetapes[tapeinfo->nfreetapes++] = tapenum;
}

/*
 * hashagg_spill_init
 *
 * Called after we determined that spilling is necessary. Chooses the number
 * of partitions to create, and initializes them.
 */
static void
hashagg_spill_init(AggState *aggstate, HashAggSpill *spill, HashTapeInfo *tapeinfo, int used_bits,
				   uint64 input_groups, double hashentrysize)
{
	int		npartitions;
	int     partition_bits;

	npartitions = hash_choose_num_partitions(aggstate,
		input_groups, hashentrysize, used_bits, &partition_bits);

	spill->partitions = palloc0(sizeof(int) * npartitions);
	spill->ntuples = palloc0(sizeof(int64) * npartitions);

	hashagg_tapeinfo_assign(tapeinfo, spill->partitions, npartitions);

	spill->tapeset = tapeinfo->tapeset;
	spill->shift = 32 - used_bits - partition_bits;
	spill->mask = (npartitions - 1) << spill->shift;
	spill->npartitions = npartitions;
}

/*
 * hashagg_spill_tuple
 *
 * No room for new groups in the hash table. Save for later in the appropriate
 * partition.
 */
static Size
hashagg_spill_tuple(HashAggSpill *spill, TupleTableSlot *slot, uint32 hash)
{
	LogicalTapeSet		*tapeset = spill->tapeset;
	int					 partition;
	MinimalTuple		 tuple;
	int					 tapenum;
	int					 total_written = 0;
	bool				 shouldFree;

	Assert(spill->partitions != NULL);

	/* XXX: may contain unnecessary attributes, should project */
	tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);

	partition = (hash & spill->mask) >> spill->shift;
	spill->ntuples[partition]++;

	tapenum = spill->partitions[partition];

	LogicalTapeWrite(tapeset, tapenum, (void *) &hash, sizeof(uint32));
	total_written += sizeof(uint32);

	LogicalTapeWrite(tapeset, tapenum, (void *) tuple, tuple->t_len);
	total_written += tuple->t_len;

	if (shouldFree)
		pfree(tuple);

	return total_written;
}

/*
 * hashagg_batch_new
 *
 * Construct a HashAggBatch item, which represents one iteration of HashAgg to
 * be done.
 */
static HashAggBatch *
hashagg_batch_new(LogicalTapeSet *tapeset, int tapenum, int setno,
				  int64 input_tuples, int used_bits)
{
	HashAggBatch *batch = palloc0(sizeof(HashAggBatch));

	batch->setno = setno;
	batch->used_bits = used_bits;
	batch->tapeset = tapeset;
	batch->input_tapenum = tapenum;
	batch->input_tuples = input_tuples;

	return batch;
}

/*
 * read_spilled_tuple
 * 		read the next tuple from a batch's tape.  Return NULL if no more.
 */
static MinimalTuple
hashagg_batch_read(HashAggBatch *batch, uint32 *hashp)
{
	LogicalTapeSet *tapeset = batch->tapeset;
	int				tapenum = batch->input_tapenum;
	MinimalTuple	tuple;
	uint32			t_len;
	size_t			nread;
	uint32			hash;

	nread = LogicalTapeRead(tapeset, tapenum, &hash, sizeof(uint32));
	if (nread == 0)
		return NULL;
	if (nread != sizeof(uint32))
		ereport(ERROR,
				(errcode_for_file_access(),
				 errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
						tapenum, sizeof(uint32), nread)));
	if (hashp != NULL)
		*hashp = hash;

	nread = LogicalTapeRead(tapeset, tapenum, &t_len, sizeof(t_len));
	if (nread != sizeof(uint32))
		ereport(ERROR,
				(errcode_for_file_access(),
				 errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
						tapenum, sizeof(uint32), nread)));

	tuple = (MinimalTuple) palloc(t_len);
	tuple->t_len = t_len;

	nread = LogicalTapeRead(tapeset, tapenum,
							(void *)((char *)tuple + sizeof(uint32)),
							t_len - sizeof(uint32));
	if (nread != t_len - sizeof(uint32))
		ereport(ERROR,
				(errcode_for_file_access(),
				 errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
						tapenum, t_len - sizeof(uint32), nread)));

	return tuple;
}

/*
 * hashagg_finish_initial_spills
 *
 * After a HashAggBatch has been processed, it may have spilled tuples to
 * disk. If so, turn the spilled partitions into new batches that must later
 * be executed.
 */
static void
hashagg_finish_initial_spills(AggState *aggstate)
{
	int setno;
	int total_npartitions = 0;

	if (aggstate->hash_spills != NULL)
	{
		for (setno = 0; setno < aggstate->num_hashes; setno++)
		{
			HashAggSpill *spill = &aggstate->hash_spills[setno];
			total_npartitions += spill->npartitions;
			hashagg_spill_finish(aggstate, spill, setno);
		}

		/*
		 * We're not processing tuples from outer plan any more; only
		 * processing batches of spilled tuples. The initial spill structures
		 * are no longer needed.
		 */
		pfree(aggstate->hash_spills);
		aggstate->hash_spills = NULL;
	}

	hash_agg_update_metrics(aggstate, false, total_npartitions);
	aggstate->hash_spill_mode = false;
}

/*
 * hashagg_spill_finish
 *
 * Transform spill partitions into new batches.
 */
static void
hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill, int setno)
{
	int i;
	int used_bits = 32 - spill->shift;

	if (spill->npartitions == 0)
		return;	/* didn't spill */

	for (i = 0; i < spill->npartitions; i++)
	{
		int				 tapenum = spill->partitions[i];
		HashAggBatch    *new_batch;

		/* if the partition is empty, don't create a new batch of work */
		if (spill->ntuples[i] == 0)
			continue;

		new_batch = hashagg_batch_new(aggstate->hash_tapeinfo->tapeset,
									  tapenum, setno, spill->ntuples[i],
									  used_bits);
		aggstate->hash_batches = lcons(new_batch, aggstate->hash_batches);
		aggstate->hash_batches_used++;
	}

	pfree(spill->ntuples);
	pfree(spill->partitions);
}

/*
 * Free resources related to a spilled HashAgg.
 */
static void
hashagg_reset_spill_state(AggState *aggstate)
{
	ListCell *lc;

	/* free spills from initial pass */
	if (aggstate->hash_spills != NULL)
	{
		int setno;

		for (setno = 0; setno < aggstate->num_hashes; setno++)
		{
			HashAggSpill *spill = &aggstate->hash_spills[setno];
			pfree(spill->ntuples);
			pfree(spill->partitions);
		}
		pfree(aggstate->hash_spills);
		aggstate->hash_spills = NULL;
	}

	/* free batches */
	foreach(lc, aggstate->hash_batches)
	{
		HashAggBatch *batch = (HashAggBatch*) lfirst(lc);
		pfree(batch);
	}
	list_free(aggstate->hash_batches);
	aggstate->hash_batches = NIL;

	/* close tape set */
	if (aggstate->hash_tapeinfo != NULL)
	{
		HashTapeInfo	*tapeinfo = aggstate->hash_tapeinfo;

		LogicalTapeSetClose(tapeinfo->tapeset);
		pfree(tapeinfo->freetapes);
		pfree(tapeinfo);
		aggstate->hash_tapeinfo = NULL;
	}
}


/* -----------------
 * ExecInitAgg
 *
 *	Creates the run-time information for the agg node produced by the
 *	planner and initializes its outer subtree.
 *
 * -----------------
 */
AggState *
ExecInitAgg(Agg *node, EState *estate, int eflags)
{
	AggState   *aggstate;
	AggStatePerAgg peraggs;
	AggStatePerTrans pertransstates;
	AggStatePerGroup *pergroups;
	Plan	   *outerPlan;
	ExprContext *econtext;
	TupleDesc	scanDesc;
	int			numaggs,
				transno,
				aggno;
	int			phase;
	int			phaseidx;
	ListCell   *l;
	Bitmapset  *all_grouped_cols = NULL;
	int			numGroupingSets = 1;
	int			numPhases;
	int			numHashes;
	int			i = 0;
	int			j = 0;
	bool		use_hashing = (node->aggstrategy == AGG_HASHED ||
							   node->aggstrategy == AGG_MIXED);
	int			numgsets = 0;

	/* check for unsupported flags */
	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));

	/*
	 * create state structure
	 */
	aggstate = makeNode(AggState);
	aggstate->ss.ps.plan = (Plan *) node;
	aggstate->ss.ps.state = estate;
	aggstate->ss.ps.ExecProcNode = ExecAgg;

	aggstate->aggs = NIL;
	aggstate->numaggs = 0;
	aggstate->numtrans = 0;
	aggstate->aggstrategy = node->aggstrategy;
	aggstate->aggsplit = node->aggsplit;
	aggstate->maxsets = 0;
	aggstate->projected_set = -1;
	aggstate->current_set = 0;
	aggstate->peragg = NULL;
	aggstate->pertrans = NULL;
	aggstate->curperagg = NULL;
	aggstate->curpertrans = NULL;
	aggstate->input_done = false;
	aggstate->agg_done = false;
	aggstate->pergroups = NULL;
	aggstate->grp_firstTuple = NULL;
	aggstate->sort_in = NULL;
	aggstate->sort_out = NULL;

	/*
	 * phases[0] always exists, but is dummy in sorted/plain mode
	 */
	numPhases = (use_hashing ? 1 : 2);
	numHashes = (use_hashing ? 1 : 0);

	/*
	 * Calculate the maximum number of grouping sets in any phase; this
	 * determines the size of some allocations.  Also calculate the number of
	 * phases, since all hashed/mixed nodes contribute to only a single phase.
	 */
	if (node->groupingSets)
	{
		numGroupingSets = list_length(node->groupingSets);

		foreach(l, node->chain)
		{
			Agg		   *agg = lfirst(l);

			numGroupingSets = Max(numGroupingSets,
								  list_length(agg->groupingSets));

			/*
			 * additional AGG_HASHED aggs become part of phase 0, but all
			 * others add an extra phase.
			 */
			if (agg->aggstrategy != AGG_HASHED)
				++numPhases;
			else
				++numHashes;
		}
	}

	aggstate->maxsets = numGroupingSets;
	aggstate->numphases = numPhases;

	aggstate->aggcontexts = (ExprContext **)
		palloc0(sizeof(ExprContext *) * numGroupingSets);

	/*
	 * Create expression contexts.  We need three or more, one for
	 * per-input-tuple processing, one for per-output-tuple processing, one
	 * for all the hashtables, and one for each grouping set.  The per-tuple
	 * memory context of the per-grouping-set ExprContexts (aggcontexts)
	 * replaces the standalone memory context formerly used to hold transition
	 * values.  We cheat a little by using ExecAssignExprContext() to build
	 * all of them.
	 *
	 * NOTE: the details of what is stored in aggcontexts and what is stored
	 * in the regular per-query memory context are driven by a simple
	 * decision: we want to reset the aggcontext at group boundaries (if not
	 * hashing) and in ExecReScanAgg to recover no-longer-wanted space.
	 */
	ExecAssignExprContext(estate, &aggstate->ss.ps);
	aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext;

	for (i = 0; i < numGroupingSets; ++i)
	{
		ExecAssignExprContext(estate, &aggstate->ss.ps);
		aggstate->aggcontexts[i] = aggstate->ss.ps.ps_ExprContext;
	}

	if (use_hashing)
		aggstate->hashcontext = CreateWorkExprContext(estate);

	ExecAssignExprContext(estate, &aggstate->ss.ps);

	/*
	 * Initialize child nodes.
	 *
	 * If we are doing a hashed aggregation then the child plan does not need
	 * to handle REWIND efficiently; see ExecReScanAgg.
	 */
	if (node->aggstrategy == AGG_HASHED)
		eflags &= ~EXEC_FLAG_REWIND;
	outerPlan = outerPlan(node);
	outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags);

	/*
	 * initialize source tuple type.
	 */
	aggstate->ss.ps.outerops =
		ExecGetResultSlotOps(outerPlanState(&aggstate->ss),
							 &aggstate->ss.ps.outeropsfixed);
	aggstate->ss.ps.outeropsset = true;

	ExecCreateScanSlotFromOuterPlan(estate, &aggstate->ss,
									aggstate->ss.ps.outerops);
	scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;

	/*
	 * If there are more than two phases (including a potential dummy phase
	 * 0), input will be resorted using tuplesort. Need a slot for that.
	 */
	if (numPhases > 2)
	{
		aggstate->sort_slot = ExecInitExtraTupleSlot(estate, scanDesc,
													 &TTSOpsMinimalTuple);

		/*
		 * The output of the tuplesort, and the output from the outer child
		 * might not use the same type of slot. In most cases the child will
		 * be a Sort, and thus return a TTSOpsMinimalTuple type slot - but the
		 * input can also be be presorted due an index, in which case it could
		 * be a different type of slot.
		 *
		 * XXX: For efficiency it would be good to instead/additionally
		 * generate expressions with corresponding settings of outerops* for
		 * the individual phases - deforming is often a bottleneck for
		 * aggregations with lots of rows per group. If there's multiple
		 * sorts, we know that all but the first use TTSOpsMinimalTuple (via
		 * the nodeAgg.c internal tuplesort).
		 */
		if (aggstate->ss.ps.outeropsfixed &&
			aggstate->ss.ps.outerops != &TTSOpsMinimalTuple)
			aggstate->ss.ps.outeropsfixed = false;
	}

	/*
	 * Initialize result type, slot and projection.
	 */
	ExecInitResultTupleSlotTL(&aggstate->ss.ps, &TTSOpsVirtual);
	ExecAssignProjectionInfo(&aggstate->ss.ps, NULL);

    /*
     * CDB: Offer extra info for EXPLAIN ANALYZE.
     */
    if (estate->es_instrument && (estate->es_instrument & INSTRUMENT_CDB))
    {
        /* Allocate string buffer. */
        aggstate->ss.ps.cdbexplainbuf = makeStringInfo();
    }

	/*
	 * initialize child expressions
	 *
	 * We expect the parser to have checked that no aggs contain other agg
	 * calls in their arguments (and just to be sure, we verify it again while
	 * initializing the plan node).  This would make no sense under SQL
	 * semantics, and it's forbidden by the spec.  Because it is true, we
	 * don't need to worry about evaluating the aggs in any particular order.
	 *
	 * Note: execExpr.c finds Aggrefs for us, and adds their AggrefExprState
	 * nodes to aggstate->aggs.  Aggrefs in the qual are found here; Aggrefs
	 * in the targetlist are found during ExecAssignProjectionInfo, below.
	 */
	aggstate->ss.ps.qual =
		ExecInitQual(node->plan.qual, (PlanState *) aggstate);

	/*
	 * We should now have found all Aggrefs in the targetlist and quals.
	 */
	numaggs = aggstate->numaggs;
	Assert(numaggs == list_length(aggstate->aggs));

	/*
	 * For each phase, prepare grouping set data and fmgr lookup data for
	 * compare functions.  Accumulate all_grouped_cols in passing.
	 */
	aggstate->phases = palloc0(numPhases * sizeof(AggStatePerPhaseData));

	aggstate->num_hashes = numHashes;
	if (numHashes)
	{
		aggstate->perhash = palloc0(sizeof(AggStatePerHashData) * numHashes);
		aggstate->phases[0].numsets = 0;
		aggstate->phases[0].gset_lengths = palloc(numHashes * sizeof(int));
		aggstate->phases[0].grouped_cols = palloc(numHashes * sizeof(Bitmapset *));
		aggstate->phases[0].gset_id      = palloc(numHashes * sizeof(int));
		aggstate->phases[0].group_id     = palloc0(numHashes * sizeof(int));
	}

	phase = 0;
	for (phaseidx = 0; phaseidx <= list_length(node->chain); ++phaseidx)
	{
		Agg		   *aggnode;
		Sort	   *sortnode;

		if (phaseidx > 0)
		{
			aggnode = list_nth_node(Agg, node->chain, phaseidx - 1);
			sortnode = castNode(Sort, aggnode->plan.lefttree);
		}
		else
		{
			aggnode = node;
			sortnode = NULL;
		}

		Assert(phase <= 1 || sortnode);

		if (aggnode->aggstrategy == AGG_HASHED
			|| aggnode->aggstrategy == AGG_MIXED)
		{
			AggStatePerPhase phasedata = &aggstate->phases[0];
			AggStatePerHash perhash;
			Bitmapset  *cols = NULL;

			Assert(phase == 0);
			i = phasedata->numsets++;
			perhash = &aggstate->perhash[i];

			/* phase 0 always points to the "real" Agg in the hash case */
			phasedata->aggnode = node;
			phasedata->aggstrategy = node->aggstrategy;

			/* but the actual Agg node representing this hash is saved here */
			perhash->aggnode = aggnode;

			phasedata->gset_lengths[i] = perhash->numCols = aggnode->numCols;

			for (j = 0; j < aggnode->numCols; ++j)
				cols = bms_add_member(cols, aggnode->grpColIdx[j]);

			phasedata->grouped_cols[i] = cols;
			phasedata->gset_id[i] = numgsets++;

			if (i >= 1)
			{
				if (bms_equal(phasedata->grouped_cols[i], phasedata->grouped_cols[i - 1]))
					phasedata->group_id[i] = phasedata->group_id[i - 1] + 1;
			}

			all_grouped_cols = bms_add_members(all_grouped_cols, cols);
			continue;
		}
		else
		{
			AggStatePerPhase phasedata = &aggstate->phases[++phase];
			int			num_sets;

			phasedata->numsets = num_sets = list_length(aggnode->groupingSets);

			if (num_sets)
			{
				phasedata->gset_lengths = palloc(num_sets * sizeof(int));
				phasedata->grouped_cols = palloc(num_sets * sizeof(Bitmapset *));
				phasedata->gset_id = palloc(num_sets * sizeof(int));
				phasedata->group_id = palloc0(num_sets * sizeof(int));

				i = 0;
				foreach(l, aggnode->groupingSets)
				{
					int			current_length = list_length(lfirst(l));
					Bitmapset  *cols = NULL;

					/* planner forces this to be correct */
					for (j = 0; j < current_length; ++j)
						cols = bms_add_member(cols, aggnode->grpColIdx[j]);

					phasedata->grouped_cols[i] = cols;
					phasedata->gset_id[i] = numgsets++;
					phasedata->gset_lengths[i] = current_length;
					if (i > 0)
					{
						if (bms_equal(phasedata->grouped_cols[i], phasedata->grouped_cols[i - 1]))
							phasedata->group_id[i] = phasedata->group_id[i - 1] + 1;
					}

					++i;
				}

				all_grouped_cols = bms_add_members(all_grouped_cols,
												   phasedata->grouped_cols[0]);
			}
			else
			{
				Assert(phaseidx == 0);

				phasedata->gset_lengths = NULL;
				phasedata->grouped_cols = NULL;
				phasedata->group_id = NULL;
				phasedata->gset_id = NULL;
			}

			/*
			 * If we are grouping, precompute fmgr lookup data for inner loop.
			 */
			if (aggnode->aggstrategy == AGG_SORTED)
			{
				int			i = 0;

				Assert(aggnode->numCols > 0);

				/*
				 * Build a separate function for each subset of columns that
				 * need to be compared.
				 */
				phasedata->eqfunctions =
					(ExprState **) palloc0(aggnode->numCols * sizeof(ExprState *));

				/* for each grouping set */
				for (i = 0; i < phasedata->numsets; i++)
				{
					int			length = phasedata->gset_lengths[i];

					if (phasedata->eqfunctions[length - 1] != NULL)
						continue;

					phasedata->eqfunctions[length - 1] =
						execTuplesMatchPrepare(scanDesc,
											   length,
											   aggnode->grpColIdx,
											   aggnode->grpOperators,
											   aggnode->grpCollations,
											   (PlanState *) aggstate);
				}

				/* and for all grouped columns, unless already computed */
				if (phasedata->eqfunctions[aggnode->numCols - 1] == NULL)
				{
					phasedata->eqfunctions[aggnode->numCols - 1] =
						execTuplesMatchPrepare(scanDesc,
											   aggnode->numCols,
											   aggnode->grpColIdx,
											   aggnode->grpOperators,
											   aggnode->grpCollations,
											   (PlanState *) aggstate);
				}
			}

			phasedata->aggnode = aggnode;
			phasedata->aggstrategy = aggnode->aggstrategy;
			phasedata->sortnode = sortnode;
		}
	}

	/*
	 * Convert all_grouped_cols to a descending-order list.
	 */
	i = -1;
	while ((i = bms_next_member(all_grouped_cols, i)) >= 0)
		aggstate->all_grouped_cols = lcons_int(i, aggstate->all_grouped_cols);

	/*
	 * Set up aggregate-result storage in the output expr context, and also
	 * allocate my private per-agg working storage
	 */
	econtext = aggstate->ss.ps.ps_ExprContext;
	econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs);
	econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs);

	peraggs = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs);
	pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numaggs);

	aggstate->peragg = peraggs;
	aggstate->pertrans = pertransstates;


	aggstate->all_pergroups =
		(AggStatePerGroup *) palloc0(sizeof(AggStatePerGroup)
									 * (numGroupingSets + numHashes));
	pergroups = aggstate->all_pergroups;

	if (node->aggstrategy != AGG_HASHED)
	{
		for (i = 0; i < numGroupingSets; i++)
		{
			pergroups[i] = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData)
													  * numaggs);
		}

		aggstate->pergroups = pergroups;
		pergroups += numGroupingSets;
	}

	/*
	 * Hashing can only appear in the initial phase.
	 */
	if (use_hashing)
	{
		Plan   *outerplan = outerPlan(node);
		uint64	totalGroups = 0;
		int 	i;

		aggstate->hash_metacxt = AllocSetContextCreate(
			aggstate->ss.ps.state->es_query_cxt,
			"HashAgg meta context",
			ALLOCSET_DEFAULT_SIZES);
		aggstate->hash_spill_slot = ExecInitExtraTupleSlot(
			estate, scanDesc, &TTSOpsMinimalTuple);

		/* this is an array of pointers, not structures */
		aggstate->hash_pergroup = pergroups;

		aggstate->hashentrysize = hash_agg_entry_size(
			aggstate->numtrans, outerplan->plan_width, 0);

		/*
		 * Consider all of the grouping sets together when setting the limits
		 * and estimating the number of partitions. This can be inaccurate
		 * when there is more than one grouping set, but should still be
		 * reasonable.
		 */
		for (i = 0; i < aggstate->num_hashes; i++)
			totalGroups += aggstate->perhash[i].aggnode->numGroups;

		hash_agg_set_limits(aggstate, aggstate->hashentrysize, totalGroups, 0,
							&aggstate->hash_mem_limit,
							&aggstate->hash_ngroups_limit,
							&aggstate->hash_planned_partitions);
		find_hash_columns(aggstate);
		build_hash_tables(aggstate);
		aggstate->table_filled = false;
	}

	/*
	 * Initialize current phase-dependent values to initial phase. The initial
	 * phase is 1 (first sort pass) for all strategies that use sorting (if
	 * hashing is being done too, then phase 0 is processed last); but if only
	 * hashing is being done, then phase 0 is all there is.
	 */
	if (node->aggstrategy == AGG_HASHED)
	{
		aggstate->current_phase = 0;
		initialize_phase(aggstate, 0);
		select_current_set(aggstate, 0, true);
	}
	else
	{
		aggstate->current_phase = 1;
		initialize_phase(aggstate, 1);
		select_current_set(aggstate, 0, false);
	}

	/* -----------------
	 * Perform lookups of aggregate function info, and initialize the
	 * unchanging fields of the per-agg and per-trans data.
	 *
	 * We try to optimize by detecting duplicate aggregate functions so that
	 * their state and final values are re-used, rather than needlessly being
	 * re-calculated independently. We also detect aggregates that are not
	 * the same, but which can share the same transition state.
	 *
	 * Scenarios:
	 *
	 * 1. Identical aggregate function calls appear in the query:
	 *
	 *	  SELECT SUM(x) FROM ... HAVING SUM(x) > 0
	 *
	 *	  Since these aggregates are identical, we only need to calculate
	 *	  the value once. Both aggregates will share the same 'aggno' value.
	 *
	 * 2. Two different aggregate functions appear in the query, but the
	 *	  aggregates have the same arguments, transition functions and
	 *	  initial values (and, presumably, different final functions):
	 *
	 *	  SELECT AVG(x), STDDEV(x) FROM ...
	 *
	 *	  In this case we must create a new peragg for the varying aggregate,
	 *	  and we need to call the final functions separately, but we need
	 *	  only run the transition function once.  (This requires that the
	 *	  final functions be nondestructive of the transition state, but
	 *	  that's required anyway for other reasons.)
	 *
	 * For either of these optimizations to be valid, all aggregate properties
	 * used in the transition phase must be the same, including any modifiers
	 * such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
	 * contain any volatile functions.
	 * -----------------
	 */
	aggno = -1;
	transno = -1;
	foreach(l, aggstate->aggs)
	{
		AggrefExprState *aggrefstate = (AggrefExprState *) lfirst(l);
		Aggref	   *aggref = aggrefstate->aggref;
		AggStatePerAgg peragg;
		AggStatePerTrans pertrans;
		int			existing_aggno;
		int			existing_transno;
		List	   *same_input_transnos;
		Oid			inputTypes[FUNC_MAX_ARGS];
		int			numArguments;
		int			numDirectArgs;
		HeapTuple	aggTuple;
		Form_pg_aggregate aggform;
		AclResult	aclresult;
		Oid			transfn_oid,
					finalfn_oid;
		bool		shareable;
		Oid			serialfn_oid,
					deserialfn_oid;
		Expr	   *finalfnexpr;
		Oid			aggtranstype;
		Datum		textInitVal;
		Datum		initValue;
		bool		initValueIsNull;

		/* Planner should have assigned aggregate to correct level */
		Assert(aggref->agglevelsup == 0);

		/* 1. Check for already processed aggs which can be re-used */
		existing_aggno = find_compatible_peragg(aggref, aggstate, aggno,
												&same_input_transnos);
		if (existing_aggno != -1)
		{
			/*
			 * Existing compatible agg found. so just point the Aggref to the
			 * same per-agg struct.
			 */
			aggrefstate->aggno = existing_aggno;
			continue;
		}

		/* Mark Aggref state node with assigned index in the result array */
		peragg = &peraggs[++aggno];
		peragg->aggref = aggref;
		aggrefstate->aggno = aggno;

		/* Fetch the pg_aggregate row */
		aggTuple = SearchSysCache1(AGGFNOID,
								   ObjectIdGetDatum(aggref->aggfnoid));
		if (!HeapTupleIsValid(aggTuple))
			elog(ERROR, "cache lookup failed for aggregate %u",
				 aggref->aggfnoid);
		aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);

		/* Check permission to call aggregate function */
		aclresult = pg_proc_aclcheck(aggref->aggfnoid, GetUserId(),
									 ACL_EXECUTE);
		if (aclresult != ACLCHECK_OK)
			aclcheck_error(aclresult, OBJECT_AGGREGATE,
						   get_func_name(aggref->aggfnoid));
		InvokeFunctionExecuteHook(aggref->aggfnoid);

		/* planner recorded transition state type in the Aggref itself */
		aggtranstype = aggref->aggtranstype;
		Assert(OidIsValid(aggtranstype));

		/*
		 * If this aggregation is performing state combines, then instead of
		 * using the transition function, we'll use the combine function
		 */
		if (DO_AGGSPLIT_COMBINE(aggref->aggsplit))
		{
			transfn_oid = aggform->aggcombinefn;

			/* If not set then the planner messed up */
			if (!OidIsValid(transfn_oid))
				elog(ERROR, "combinefn not set for aggregate function");
		}
		else
			transfn_oid = aggform->aggtransfn;

		/* Final function only required if we're finalizing the aggregates */
		if (DO_AGGSPLIT_SKIPFINAL(aggref->aggsplit))
			peragg->finalfn_oid = finalfn_oid = InvalidOid;
		else
			peragg->finalfn_oid = finalfn_oid = aggform->aggfinalfn;

		/*
		 * If finalfn is marked read-write, we can't share transition states;
		 * but it is okay to share states for AGGMODIFY_SHAREABLE aggs.  Also,
		 * if we're not executing the finalfn here, we can share regardless.
		 */
		shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE) ||
			(finalfn_oid == InvalidOid);
		peragg->shareable = shareable;

		serialfn_oid = InvalidOid;
		deserialfn_oid = InvalidOid;

		/*
		 * Check if serialization/deserialization is required.  We only do it
		 * for aggregates that have transtype INTERNAL.
		 */
		if (aggtranstype == INTERNALOID)
		{
			/*
			 * The planner should only have generated a serialize agg node if
			 * every aggregate with an INTERNAL state has a serialization
			 * function.  Verify that.
			 */
			if (DO_AGGSPLIT_SERIALIZE(aggref->aggsplit))
			{
				/* serialization only valid when not running finalfn */
				Assert(DO_AGGSPLIT_SKIPFINAL(aggref->aggsplit));

				if (!OidIsValid(aggform->aggserialfn))
					elog(ERROR, "serialfunc not provided for serialization aggregation");
				serialfn_oid = aggform->aggserialfn;
			}

			/* Likewise for deserialization functions */
			if (DO_AGGSPLIT_DESERIALIZE(aggref->aggsplit))
			{
				/* deserialization only valid when combining states */
				Assert(DO_AGGSPLIT_COMBINE(aggref->aggsplit));

				if (!OidIsValid(aggform->aggdeserialfn))
					elog(ERROR, "deserialfunc not provided for deserialization aggregation");
				deserialfn_oid = aggform->aggdeserialfn;
			}
		}

		/* Check that aggregate owner has permission to call component fns */
		{
			HeapTuple	procTuple;
			Oid			aggOwner;

			procTuple = SearchSysCache1(PROCOID,
										ObjectIdGetDatum(aggref->aggfnoid));
			if (!HeapTupleIsValid(procTuple))
				elog(ERROR, "cache lookup failed for function %u",
					 aggref->aggfnoid);
			aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
			ReleaseSysCache(procTuple);

			aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
										 ACL_EXECUTE);
			if (aclresult != ACLCHECK_OK)
				aclcheck_error(aclresult, OBJECT_FUNCTION,
							   get_func_name(transfn_oid));
			InvokeFunctionExecuteHook(transfn_oid);
			if (OidIsValid(finalfn_oid))
			{
				aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner,
											 ACL_EXECUTE);
				if (aclresult != ACLCHECK_OK)
					aclcheck_error(aclresult, OBJECT_FUNCTION,
								   get_func_name(finalfn_oid));
				InvokeFunctionExecuteHook(finalfn_oid);
			}
			if (OidIsValid(serialfn_oid))
			{
				aclresult = pg_proc_aclcheck(serialfn_oid, aggOwner,
											 ACL_EXECUTE);
				if (aclresult != ACLCHECK_OK)
					aclcheck_error(aclresult, OBJECT_FUNCTION,
								   get_func_name(serialfn_oid));
				InvokeFunctionExecuteHook(serialfn_oid);
			}
			if (OidIsValid(deserialfn_oid))
			{
				aclresult = pg_proc_aclcheck(deserialfn_oid, aggOwner,
											 ACL_EXECUTE);
				if (aclresult != ACLCHECK_OK)
					aclcheck_error(aclresult, OBJECT_FUNCTION,
								   get_func_name(deserialfn_oid));
				InvokeFunctionExecuteHook(deserialfn_oid);
			}
		}

		/*
		 * Get actual datatypes of the (nominal) aggregate inputs.  These
		 * could be different from the agg's declared input types, when the
		 * agg accepts ANY or a polymorphic type.
		 */
		numArguments = get_aggregate_argtypes(aggref, inputTypes);

		/* Count the "direct" arguments, if any */
		numDirectArgs = list_length(aggref->aggdirectargs);

		/* Detect how many arguments to pass to the finalfn */
		if (aggform->aggfinalextra)
			peragg->numFinalArgs = numArguments + 1;
		else
			peragg->numFinalArgs = numDirectArgs + 1;

		/* Initialize any direct-argument expressions */
		peragg->aggdirectargs = ExecInitExprList(aggref->aggdirectargs,
												 (PlanState *) aggstate);

		/*
		 * build expression trees using actual argument & result types for the
		 * finalfn, if it exists and is required.
		 */
		if (OidIsValid(finalfn_oid))
		{
			build_aggregate_finalfn_expr(inputTypes,
										 peragg->numFinalArgs,
										 aggtranstype,
										 aggref->aggtype,
										 aggref->inputcollid,
										 finalfn_oid,
										 &finalfnexpr);
			fmgr_info(finalfn_oid, &peragg->finalfn);
			fmgr_info_set_expr((Node *) finalfnexpr, &peragg->finalfn);
		}

		/* get info about the output value's datatype */
		get_typlenbyval(aggref->aggtype,
						&peragg->resulttypeLen,
						&peragg->resulttypeByVal);

		/*
		 * initval is potentially null, so don't try to access it as a struct
		 * field. Must do it the hard way with SysCacheGetAttr.
		 */
		textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
									  Anum_pg_aggregate_agginitval,
									  &initValueIsNull);
		if (initValueIsNull)
			initValue = (Datum) 0;
		else
			initValue = GetAggInitVal(textInitVal, aggtranstype);

		/*
		 * 2. Build working state for invoking the transition function, or
		 * look up previously initialized working state, if we can share it.
		 *
		 * find_compatible_peragg() already collected a list of shareable
		 * per-Trans's with the same inputs. Check if any of them have the
		 * same transition function and initial value.
		 */
		existing_transno = find_compatible_pertrans(aggstate, aggref,
													shareable,
													transfn_oid, aggtranstype,
													serialfn_oid, deserialfn_oid,
													initValue, initValueIsNull,
													same_input_transnos);
		if (existing_transno != -1)
		{
			/*
			 * Existing compatible trans found, so just point the 'peragg' to
			 * the same per-trans struct, and mark the trans state as shared.
			 */
			pertrans = &pertransstates[existing_transno];
			pertrans->aggshared = true;
			peragg->transno = existing_transno;
		}
		else
		{
			pertrans = &pertransstates[++transno];
			build_pertrans_for_aggref(pertrans, aggstate, estate,
									  aggref, transfn_oid, aggtranstype,
									  serialfn_oid, deserialfn_oid,
									  initValue, initValueIsNull,
									  inputTypes, numArguments);
			peragg->transno = transno;
		}
		ReleaseSysCache(aggTuple);
	}

	/*
	 * Update aggstate->numaggs to be the number of unique aggregates found.
	 * Also set numstates to the number of unique transition states found.
	 */
	aggstate->numaggs = aggno + 1;
	aggstate->numtrans = transno + 1;

	/*
	 * Last, check whether any more aggregates got added onto the node while
	 * we processed the expressions for the aggregate arguments (including not
	 * only the regular arguments and FILTER expressions handled immediately
	 * above, but any direct arguments we might've handled earlier).  If so,
	 * we have nested aggregate functions, which is semantically nonsensical,
	 * so complain.  (This should have been caught by the parser, so we don't
	 * need to work hard on a helpful error message; but we defend against it
	 * here anyway, just to be sure.)
	 */
	if (numaggs != list_length(aggstate->aggs))
		ereport(ERROR,
				(errcode(ERRCODE_GROUPING_ERROR),
				 errmsg("aggregate function calls cannot be nested")));

	/* MPP */
	aggstate->AggExprId_AttrNum = node->agg_expr_id;

	/*
	 * Build expressions doing all the transition work at once. We build a
	 * different one for each phase, as the number of transition function
	 * invocation can differ between phases. Note this'll work both for
	 * transition and combination functions (although there'll only be one
	 * phase in the latter case).
	 */
	for (phaseidx = 0; phaseidx < aggstate->numphases; phaseidx++)
	{
		AggStatePerPhase phase = &aggstate->phases[phaseidx];
		bool		dohash = false;
		bool		dosort = false;

		/* phase 0 doesn't necessarily exist */
		if (!phase->aggnode)
			continue;

		if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 1)
		{
			/*
			 * Phase one, and only phase one, in a mixed agg performs both
			 * sorting and aggregation.
			 */
			dohash = true;
			dosort = true;
		}
		else if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 0)
		{
			/*
			 * No need to compute a transition function for an AGG_MIXED phase
			 * 0 - the contents of the hashtables will have been computed
			 * during phase 1.
			 */
			continue;
		}
		else if (phase->aggstrategy == AGG_PLAIN ||
				 phase->aggstrategy == AGG_SORTED)
		{
			dohash = false;
			dosort = true;
		}
		else if (phase->aggstrategy == AGG_HASHED)
		{
			dohash = true;
			dosort = false;
		}
		else
			Assert(false);

		phase->evaltrans = ExecBuildAggTrans(aggstate, phase, dosort, dohash,
											 false);

		/* cache compiled expression for outer slot without NULL check */
		phase->evaltrans_cache[0][0] = phase->evaltrans;
	}

	return aggstate;
}

/*
 * Build the state needed to calculate a state value for an aggregate.
 *
 * This initializes all the fields in 'pertrans'. 'aggref' is the aggregate
 * to initialize the state for. 'aggtransfn', 'aggtranstype', and the rest
 * of the arguments could be calculated from 'aggref', but the caller has
 * calculated them already, so might as well pass them.
 */
static void
build_pertrans_for_aggref(AggStatePerTrans pertrans,
						  AggState *aggstate, EState *estate,
						  Aggref *aggref,
						  Oid aggtransfn, Oid aggtranstype,
						  Oid aggserialfn, Oid aggdeserialfn,
						  Datum initValue, bool initValueIsNull,
						  Oid *inputTypes, int numArguments)
{
	int			numGroupingSets = Max(aggstate->maxsets, 1);
	Expr	   *serialfnexpr = NULL;
	Expr	   *deserialfnexpr = NULL;
	ListCell   *lc;
	int			numInputs;
	int			numDirectArgs;
	List	   *sortlist;
	int			numSortCols;
	int			numDistinctCols;
	int			i;

	/* Begin filling in the pertrans data */
	pertrans->aggref = aggref;
	pertrans->aggshared = false;
	pertrans->aggCollation = aggref->inputcollid;
	pertrans->transfn_oid = aggtransfn;
	pertrans->serialfn_oid = aggserialfn;
	pertrans->deserialfn_oid = aggdeserialfn;
	pertrans->initValue = initValue;
	pertrans->initValueIsNull = initValueIsNull;

	/* Count the "direct" arguments, if any */
	numDirectArgs = list_length(aggref->aggdirectargs);

	/* Count the number of aggregated input columns */
	pertrans->numInputs = numInputs = list_length(aggref->args);

	pertrans->aggtranstype = aggtranstype;

	/*
	 * When combining states, we have no use at all for the aggregate
	 * function's transfn. Instead we use the combinefn.  In this case, the
	 * transfn and transfn_oid fields of pertrans refer to the combine
	 * function rather than the transition function.
	 */
	if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
	{
		Expr	   *combinefnexpr;
		size_t		numTransArgs;

		/*
		 * When combining there's only one input, the to-be-combined added
		 * transition value from below (this node's transition value is
		 * counted separately).
		 */
		pertrans->numTransInputs = 1;

		/* account for the current transition state */
		numTransArgs = pertrans->numTransInputs + 1;

		build_aggregate_combinefn_expr(aggtranstype,
									   aggref->inputcollid,
									   aggtransfn,
									   &combinefnexpr);
		fmgr_info(aggtransfn, &pertrans->transfn);
		fmgr_info_set_expr((Node *) combinefnexpr, &pertrans->transfn);

		pertrans->transfn_fcinfo =
			(FunctionCallInfo) palloc(SizeForFunctionCallInfo(2));
		InitFunctionCallInfoData(*pertrans->transfn_fcinfo,
								 &pertrans->transfn,
								 numTransArgs,
								 pertrans->aggCollation,
								 (void *) aggstate, NULL);

		/*
		 * Ensure that a combine function to combine INTERNAL states is not
		 * strict. This should have been checked during CREATE AGGREGATE, but
		 * the strict property could have been changed since then.
		 */
		if (pertrans->transfn.fn_strict && aggtranstype == INTERNALOID)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
					 errmsg("combine function with transition type %s must not be declared STRICT",
							format_type_be(aggtranstype))));
	}
	else
	{
		Expr	   *transfnexpr;
		size_t		numTransArgs;

		/* Detect how many arguments to pass to the transfn */
		if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
			pertrans->numTransInputs = numInputs;
		else
			pertrans->numTransInputs = numArguments;

		/* account for the current transition state */
		numTransArgs = pertrans->numTransInputs + 1;

		/*
		 * Set up infrastructure for calling the transfn.  Note that invtrans
		 * is not needed here.
		 */
		build_aggregate_transfn_expr(inputTypes,
									 numArguments,
									 numDirectArgs,
									 aggref->aggvariadic,
									 aggtranstype,
									 aggref->inputcollid,
									 aggtransfn,
									 InvalidOid,
									 &transfnexpr,
									 NULL);
		fmgr_info(aggtransfn, &pertrans->transfn);
		fmgr_info_set_expr((Node *) transfnexpr, &pertrans->transfn);

		pertrans->transfn_fcinfo =
			(FunctionCallInfo) palloc(SizeForFunctionCallInfo(numTransArgs));
		InitFunctionCallInfoData(*pertrans->transfn_fcinfo,
								 &pertrans->transfn,
								 numTransArgs,
								 pertrans->aggCollation,
								 (void *) aggstate, NULL);

		/*
		 * If the transfn is strict and the initval is NULL, make sure input
		 * type and transtype are the same (or at least binary-compatible), so
		 * that it's OK to use the first aggregated input value as the initial
		 * transValue.  This should have been checked at agg definition time,
		 * but we must check again in case the transfn's strictness property
		 * has been changed.
		 */
		if (pertrans->transfn.fn_strict && pertrans->initValueIsNull)
		{
			if (numArguments <= numDirectArgs ||
				!IsBinaryCoercible(inputTypes[numDirectArgs],
								   aggtranstype))
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
						 errmsg("aggregate %u needs to have compatible input type and transition type",
								aggref->aggfnoid)));
		}
	}

	/* get info about the state value's datatype */
	get_typlenbyval(aggtranstype,
					&pertrans->transtypeLen,
					&pertrans->transtypeByVal);

	if (OidIsValid(aggserialfn))
	{
		build_aggregate_serialfn_expr(aggserialfn,
									  &serialfnexpr);
		fmgr_info(aggserialfn, &pertrans->serialfn);
		fmgr_info_set_expr((Node *) serialfnexpr, &pertrans->serialfn);

		pertrans->serialfn_fcinfo =
			(FunctionCallInfo) palloc(SizeForFunctionCallInfo(1));
		InitFunctionCallInfoData(*pertrans->serialfn_fcinfo,
								 &pertrans->serialfn,
								 1,
								 InvalidOid,
								 (void *) aggstate, NULL);
	}

	if (OidIsValid(aggdeserialfn))
	{
		build_aggregate_deserialfn_expr(aggdeserialfn,
										&deserialfnexpr);
		fmgr_info(aggdeserialfn, &pertrans->deserialfn);
		fmgr_info_set_expr((Node *) deserialfnexpr, &pertrans->deserialfn);

		pertrans->deserialfn_fcinfo =
			(FunctionCallInfo) palloc(SizeForFunctionCallInfo(2));
		InitFunctionCallInfoData(*pertrans->deserialfn_fcinfo,
								 &pertrans->deserialfn,
								 2,
								 InvalidOid,
								 (void *) aggstate, NULL);

	}

	/*
	 * If we're doing either DISTINCT or ORDER BY for a plain agg, then we
	 * have a list of SortGroupClause nodes; fish out the data in them and
	 * stick them into arrays.  We ignore ORDER BY for an ordered-set agg,
	 * however; the agg's transfn and finalfn are responsible for that.
	 *
	 * Note that by construction, if there is a DISTINCT clause then the ORDER
	 * BY clause is a prefix of it (see transformDistinctClause).
	 */
	if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
	{
		sortlist = NIL;
		numSortCols = numDistinctCols = 0;
	}
	else if (aggref->aggdistinct)
	{
		sortlist = aggref->aggdistinct;
		numSortCols = numDistinctCols = list_length(sortlist);
		Assert(numSortCols >= list_length(aggref->aggorder));
	}
	else
	{
		sortlist = aggref->aggorder;
		numSortCols = list_length(sortlist);
		numDistinctCols = 0;
	}

	pertrans->numSortCols = numSortCols;
	pertrans->numDistinctCols = numDistinctCols;

	/*
	 * If we have either sorting or filtering to do, create a tupledesc and
	 * slot corresponding to the aggregated inputs (including sort
	 * expressions) of the agg.
	 */
	if (numSortCols > 0 || aggref->aggfilter)
	{
		pertrans->sortdesc = ExecTypeFromTL(aggref->args);
		pertrans->sortslot =
			ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
								   &TTSOpsMinimalTuple);
	}

	if (numSortCols > 0)
	{
		/*
		 * We don't implement DISTINCT or ORDER BY aggs in the HASHED case
		 * (yet)
		 */
		Assert(aggstate->aggstrategy != AGG_HASHED && aggstate->aggstrategy != AGG_MIXED);

		/* If we have only one input, we need its len/byval info. */
		if (numInputs == 1)
		{
			get_typlenbyval(inputTypes[numDirectArgs],
							&pertrans->inputtypeLen,
							&pertrans->inputtypeByVal);
		}
		else if (numDistinctCols > 0)
		{
			/* we will need an extra slot to store prior values */
			pertrans->uniqslot =
				ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
									   &TTSOpsMinimalTuple);
		}

		/* Extract the sort information for use later */
		pertrans->sortColIdx =
			(AttrNumber *) palloc(numSortCols * sizeof(AttrNumber));
		pertrans->sortOperators =
			(Oid *) palloc(numSortCols * sizeof(Oid));
		pertrans->sortCollations =
			(Oid *) palloc(numSortCols * sizeof(Oid));
		pertrans->sortNullsFirst =
			(bool *) palloc(numSortCols * sizeof(bool));

		i = 0;
		foreach(lc, sortlist)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
			TargetEntry *tle = get_sortgroupclause_tle(sortcl, aggref->args);

			/* the parser should have made sure of this */
			Assert(OidIsValid(sortcl->sortop));

			pertrans->sortColIdx[i] = tle->resno;
			pertrans->sortOperators[i] = sortcl->sortop;
			pertrans->sortCollations[i] = exprCollation((Node *) tle->expr);
			pertrans->sortNullsFirst[i] = sortcl->nulls_first;
			i++;
		}
		Assert(i == numSortCols);
	}

	if (aggref->aggdistinct)
	{
		Oid		   *ops;

		Assert(numArguments > 0);
		Assert(list_length(aggref->aggdistinct) == numDistinctCols);

		ops = palloc(numDistinctCols * sizeof(Oid));

		i = 0;
		foreach(lc, aggref->aggdistinct)
			ops[i++] = ((SortGroupClause *) lfirst(lc))->eqop;

		/* lookup / build the necessary comparators */
		if (numDistinctCols == 1)
			fmgr_info(get_opcode(ops[0]), &pertrans->equalfnOne);
		else
			pertrans->equalfnMulti =
				execTuplesMatchPrepare(pertrans->sortdesc,
									   numDistinctCols,
									   pertrans->sortColIdx,
									   ops,
									   pertrans->sortCollations,
									   &aggstate->ss.ps);
		pfree(ops);
	}

	pertrans->sortstates = (Tuplesortstate **)
		palloc0(sizeof(Tuplesortstate *) * numGroupingSets);
}


static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
	Oid			typinput,
				typioparam;
	char	   *strInitVal;
	Datum		initVal;

	getTypeInputInfo(transtype, &typinput, &typioparam);
	strInitVal = TextDatumGetCString(textInitVal);
	initVal = OidInputFunctionCall(typinput, strInitVal,
								   typioparam, -1);
	pfree(strInitVal);
	return initVal;
}

/*
 * find_compatible_peragg - search for a previously initialized per-Agg struct
 *
 * Searches the previously looked at aggregates to find one which is compatible
 * with this one, with the same input parameters. If no compatible aggregate
 * can be found, returns -1.
 *
 * As a side-effect, this also collects a list of existing, shareable per-Trans
 * structs with matching inputs. If no identical Aggref is found, the list is
 * passed later to find_compatible_pertrans, to see if we can at least reuse
 * the state value of another aggregate.
 */
static int
find_compatible_peragg(Aggref *newagg, AggState *aggstate,
					   int lastaggno, List **same_input_transnos)
{
	int			aggno;
	AggStatePerAgg peraggs;

	*same_input_transnos = NIL;

	/* we mustn't reuse the aggref if it contains volatile function calls */
	if (contain_volatile_functions((Node *) newagg))
		return -1;

	peraggs = aggstate->peragg;

	/*
	 * Search through the list of already seen aggregates. If we find an
	 * existing identical aggregate call, then we can re-use that one. While
	 * searching, we'll also collect a list of Aggrefs with the same input
	 * parameters. If no matching Aggref is found, the caller can potentially
	 * still re-use the transition state of one of them.  (At this stage we
	 * just compare the parsetrees; whether different aggregates share the
	 * same transition function will be checked later.)
	 */
	for (aggno = 0; aggno <= lastaggno; aggno++)
	{
		AggStatePerAgg peragg;
		Aggref	   *existingRef;

		peragg = &peraggs[aggno];
		existingRef = peragg->aggref;

		/* all of the following must be the same or it's no match */
		if (newagg->inputcollid != existingRef->inputcollid ||
			newagg->aggtranstype != existingRef->aggtranstype ||
			newagg->aggstar != existingRef->aggstar ||
			newagg->aggvariadic != existingRef->aggvariadic ||
			newagg->aggkind != existingRef->aggkind ||
			!equal(newagg->args, existingRef->args) ||
			!equal(newagg->aggorder, existingRef->aggorder) ||
			!equal(newagg->aggdistinct, existingRef->aggdistinct) ||
			!equal(newagg->aggfilter, existingRef->aggfilter))
			continue;

		/* if it's the same aggregate function then report exact match */
		if (newagg->aggfnoid == existingRef->aggfnoid &&
			newagg->aggtype == existingRef->aggtype &&
			newagg->aggcollid == existingRef->aggcollid &&
			equal(newagg->aggdirectargs, existingRef->aggdirectargs))
		{
			list_free(*same_input_transnos);
			*same_input_transnos = NIL;
			return aggno;
		}

		/*
		 * Not identical, but it had the same inputs.  If the final function
		 * permits sharing, return its transno to the caller, in case we can
		 * re-use its per-trans state.  (If there's already sharing going on,
		 * we might report a transno more than once.  find_compatible_pertrans
		 * is cheap enough that it's not worth spending cycles to avoid that.)
		 */
		if (peragg->shareable)
			*same_input_transnos = lappend_int(*same_input_transnos,
											   peragg->transno);
	}

	return -1;
}

/*
 * find_compatible_pertrans - search for a previously initialized per-Trans
 * struct
 *
 * Searches the list of transnos for a per-Trans struct with the same
 * transition function and initial condition. (The inputs have already been
 * verified to match.)
 */
static int
find_compatible_pertrans(AggState *aggstate, Aggref *newagg, bool shareable,
						 Oid aggtransfn, Oid aggtranstype,
						 Oid aggserialfn, Oid aggdeserialfn,
						 Datum initValue, bool initValueIsNull,
						 List *transnos)
{
	ListCell   *lc;

	/* If this aggregate can't share transition states, give up */
	if (!shareable)
		return -1;

	foreach(lc, transnos)
	{
		int			transno = lfirst_int(lc);
		AggStatePerTrans pertrans = &aggstate->pertrans[transno];

		/*
		 * if the transfns or transition state types are not the same then the
		 * state can't be shared.
		 */
		if (aggtransfn != pertrans->transfn_oid ||
			aggtranstype != pertrans->aggtranstype)
			continue;

		/*
		 * The serialization and deserialization functions must match, if
		 * present, as we're unable to share the trans state for aggregates
		 * which will serialize or deserialize into different formats.
		 * Remember that these will be InvalidOid if they're not required for
		 * this agg node.
		 */
		if (aggserialfn != pertrans->serialfn_oid ||
			aggdeserialfn != pertrans->deserialfn_oid)
			continue;

		/*
		 * Check that the initial condition matches, too.
		 */
		if (initValueIsNull && pertrans->initValueIsNull)
			return transno;

		if (!initValueIsNull && !pertrans->initValueIsNull &&
			datumIsEqual(initValue, pertrans->initValue,
						 pertrans->transtypeByVal, pertrans->transtypeLen))
			return transno;
	}
	return -1;
}

void
ExecEndAgg(AggState *node)
{
	PlanState  *outerPlan;

	ExecEagerFreeAgg(node);

	/*
	 * We don't actually free any ExprContexts here (see comment in
	 * ExecFreeExprContext), just unlinking the output one from the plan node
	 * suffices.
	 */
	ExecFreeExprContext(&node->ss.ps);

	/* clean up tuple table */
	ExecClearTuple(node->ss.ss_ScanTupleSlot);

	outerPlan = outerPlanState(node);
	ExecEndNode(outerPlan);
}

/*
 * It's quite different from upstream, because Greenplum share some same works
 * with ExecEagerFreeAgg() here.
 */
void
ExecReScanAgg(AggState *node)
{
	ExprContext *econtext = node->ss.ps.ps_ExprContext;
	PlanState  *outerPlan = outerPlanState(node);
	int			transno;
	int			numGroupingSets = Max(node->maxsets, 1);
	int			setno;

	node->agg_done = false;

	if (node->aggstrategy == AGG_HASHED)
	{
		/*
		 * In the hashed case, if we haven't yet built the hash table then we
		 * can just return; nothing done yet, so nothing to undo. If subnode's
		 * chgParam is not NULL then it will be re-scanned by ExecProcNode,
		 * else no reason to re-scan it at all.
		 */
		if (!node->table_filled)
			return;

		/*
		 * If we do have the hash table, and it never spilled, and the subplan
		 * does not have any parameter changes, and none of our own parameter
		 * changes affect input expressions of the aggregated functions, then
		 * we can just rescan the existing hash table; no need to build it
		 * again.
		 */
		if (ReuseHashTable(node))
		{
			ResetTupleHashIterator(node->perhash[0].hashtable,
								   &node->perhash[0].hashiter);
			select_current_set(node, 0, true);
			return;
		}
	}

	/* Make sure we have closed any open tuplesorts */
	for (transno = 0; transno < node->numtrans; transno++)
	{
		for (setno = 0; setno < numGroupingSets; setno++)
		{
			AggStatePerTrans pertrans = &node->pertrans[transno];

			if (pertrans->sortstates[setno])
			{
				tuplesort_end(pertrans->sortstates[setno]);
				pertrans->sortstates[setno] = NULL;
			}
		}
	}

	/*
	 * We don't need to ReScanExprContext the output tuple context here;
	 * ExecReScan already did it. But we do need to reset our per-grouping-set
	 * contexts, which may have transvalues stored in them. (We use rescan
	 * rather than just reset because transfns may have registered callbacks
	 * that need to be run now.) For the AGG_HASHED case, see below.
	 */

	for (setno = 0; setno < numGroupingSets; setno++)
	{
		ReScanExprContext(node->aggcontexts[setno]);
	}

	/* Release first tuple of group, if we have made a copy */
	if (node->grp_firstTuple != NULL)
	{
		heap_freetuple(node->grp_firstTuple);
		node->grp_firstTuple = NULL;
	}
	ExecClearTuple(node->ss.ss_ScanTupleSlot);

	/* Forget current agg values */
	MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs);
	MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs);

	/*
	 * With AGG_HASHED/MIXED, the hash table is allocated in a sub-context of
	 * the hashcontext. This used to be an issue, but now, resetting a context
	 * automatically deletes sub-contexts too.
	 */
	if (node->aggstrategy == AGG_HASHED || node->aggstrategy == AGG_MIXED)
	{
		hashagg_reset_spill_state(node);

		node->hash_ever_spilled = false;
		node->hash_spill_mode = false;
		node->hash_ngroups_current = 0;

		ReScanExprContext(node->hashcontext);
		/* Rebuild an empty hash table */
		build_hash_tables(node);
		node->table_filled = false;
		/* iterator will be reset when the table is filled */

		hashagg_recompile_expressions(node, false, false);
	}

	if (node->aggstrategy != AGG_HASHED)
	{
		/*
		 * Reset the per-group state (in particular, mark transvalues null)
		 */
		for (setno = 0; setno < numGroupingSets; setno++)
		{
			MemSet(node->pergroups[setno], 0,
				   sizeof(AggStatePerGroupData) * node->numaggs);
		}

		/* reset to phase 1 */
		initialize_phase(node, 1);

		node->input_done = false;
		node->projected_set = -1;
	}

	if (outerPlan->chgParam == NULL)
		ExecReScan(outerPlan);
}


/***********************************************************************
 * API exposed to aggregate functions
 ***********************************************************************/


/*
 * AggCheckCallContext - test if a SQL function is being called as an aggregate
 *
 * The transition and/or final functions of an aggregate may want to verify
 * that they are being called as aggregates, rather than as plain SQL
 * functions.  They should use this function to do so.  The return value
 * is nonzero if being called as an aggregate, or zero if not.  (Specific
 * nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more
 * values could conceivably appear in future.)
 *
 * If aggcontext isn't NULL, the function also stores at *aggcontext the
 * identity of the memory context that aggregate transition values are being
 * stored in.  Note that the same aggregate call site (flinfo) may be called
 * interleaved on different transition values in different contexts, so it's
 * not kosher to cache aggcontext under fn_extra.  It is, however, kosher to
 * cache it in the transvalue itself (for internal-type transvalues).
 */
int
AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
{
	if (fcinfo->context && IsA(fcinfo->context, AggState))
	{
		if (aggcontext)
		{
			AggState   *aggstate = ((AggState *) fcinfo->context);
			ExprContext *cxt = aggstate->curaggcontext;

			*aggcontext = cxt->ecxt_per_tuple_memory;
		}
		return AGG_CONTEXT_AGGREGATE;
	}
	if (fcinfo->context && IsA(fcinfo->context, WindowAggState))
	{
		if (aggcontext)
			*aggcontext = ((WindowAggState *) fcinfo->context)->curaggcontext;
		return AGG_CONTEXT_WINDOW;
	}

	/* this is just to prevent "uninitialized variable" warnings */
	if (aggcontext)
		*aggcontext = NULL;
	return 0;
}

/*
 * AggGetAggref - allow an aggregate support function to get its Aggref
 *
 * If the function is being called as an aggregate support function,
 * return the Aggref node for the aggregate call.  Otherwise, return NULL.
 *
 * Aggregates sharing the same inputs and transition functions can get
 * merged into a single transition calculation.  If the transition function
 * calls AggGetAggref, it will get some one of the Aggrefs for which it is
 * executing.  It must therefore not pay attention to the Aggref fields that
 * relate to the final function, as those are indeterminate.  But if a final
 * function calls AggGetAggref, it will get a precise result.
 *
 * Note that if an aggregate is being used as a window function, this will
 * return NULL.  We could provide a similar function to return the relevant
 * WindowFunc node in such cases, but it's not needed yet.
 */
Aggref *
AggGetAggref(FunctionCallInfo fcinfo)
{
	if (fcinfo->context && IsA(fcinfo->context, AggState))
	{
		AggState   *aggstate = (AggState *) fcinfo->context;
		AggStatePerAgg curperagg;
		AggStatePerTrans curpertrans;

		/* check curperagg (valid when in a final function) */
		curperagg = aggstate->curperagg;

		if (curperagg)
			return curperagg->aggref;

		/* check curpertrans (valid when in a transition function) */
		curpertrans = aggstate->curpertrans;

		if (curpertrans)
			return curpertrans->aggref;
	}
	return NULL;
}

/*
 * AggGetTempMemoryContext - fetch short-term memory context for aggregates
 *
 * This is useful in agg final functions; the context returned is one that
 * the final function can safely reset as desired.  This isn't useful for
 * transition functions, since the context returned MAY (we don't promise)
 * be the same as the context those are called in.
 *
 * As above, this is currently not useful for aggs called as window functions.
 */
MemoryContext
AggGetTempMemoryContext(FunctionCallInfo fcinfo)
{
	if (fcinfo->context && IsA(fcinfo->context, AggState))
	{
		AggState   *aggstate = (AggState *) fcinfo->context;

		return aggstate->tmpcontext->ecxt_per_tuple_memory;
	}
	return NULL;
}

/*
 * AggStateIsShared - find out whether transition state is shared
 *
 * If the function is being called as an aggregate support function,
 * return true if the aggregate's transition state is shared across
 * multiple aggregates, false if it is not.
 *
 * Returns true if not called as an aggregate support function.
 * This is intended as a conservative answer, ie "no you'd better not
 * scribble on your input".  In particular, will return true if the
 * aggregate is being used as a window function, which is a scenario
 * in which changing the transition state is a bad idea.  We might
 * want to refine the behavior for the window case in future.
 */
bool
AggStateIsShared(FunctionCallInfo fcinfo)
{
	if (fcinfo->context && IsA(fcinfo->context, AggState))
	{
		AggState   *aggstate = (AggState *) fcinfo->context;
		AggStatePerAgg curperagg;
		AggStatePerTrans curpertrans;

		/* check curperagg (valid when in a final function) */
		curperagg = aggstate->curperagg;

		if (curperagg)
			return aggstate->pertrans[curperagg->transno].aggshared;

		/* check curpertrans (valid when in a transition function) */
		curpertrans = aggstate->curpertrans;

		if (curpertrans)
			return curpertrans->aggshared;
	}
	return true;
}

/*
 * AggRegisterCallback - register a cleanup callback for an aggregate
 *
 * This is useful for aggs to register shutdown callbacks, which will ensure
 * that non-memory resources are freed.  The callback will occur just before
 * the associated aggcontext (as returned by AggCheckCallContext) is reset,
 * either between groups or as a result of rescanning the query.  The callback
 * will NOT be called on error paths.  The typical use-case is for freeing of
 * tuplestores or tuplesorts maintained in aggcontext, or pins held by slots
 * created by the agg functions.  (The callback will not be called until after
 * the result of the finalfn is no longer needed, so it's safe for the finalfn
 * to return data that will be freed by the callback.)
 *
 * As above, this is currently not useful for aggs called as window functions.
 */
void
AggRegisterCallback(FunctionCallInfo fcinfo,
					ExprContextCallbackFunction func,
					Datum arg)
{
	if (fcinfo->context && IsA(fcinfo->context, AggState))
	{
		AggState   *aggstate = (AggState *) fcinfo->context;
		ExprContext *cxt = aggstate->curaggcontext;

		RegisterExprContextCallback(cxt, func, arg);

		return;
	}
	elog(ERROR, "aggregate function cannot register a callback in this context");
}


/*
 * aggregate_dummy - dummy execution routine for aggregate functions
 *
 * This function is listed as the implementation (prosrc field) of pg_proc
 * entries for aggregate functions.  Its only purpose is to throw an error
 * if someone mistakenly executes such a function in the normal way.
 *
 * Perhaps someday we could assign real meaning to the prosrc field of
 * an aggregate?
 */
Datum
aggregate_dummy(PG_FUNCTION_ARGS)
{
	elog(ERROR, "aggregate function %u called as normal function",
		 fcinfo->flinfo->fn_oid);
	return (Datum) 0;			/* keep compiler quiet */
}

static void
ExecEagerFreeAgg(AggState *node)
{
	int			transno;
	int         numGroupingSets = Max(node->maxsets, 1);
	int			setno;

	/* Make sure we have closed any open tuplesorts */
	if (node->sort_in)
	{
		tuplesort_end(node->sort_in);
		node->sort_in = NULL;
	}
	if (node->sort_out)
	{
		tuplesort_end(node->sort_out);
		node->sort_out = NULL;
	}


	hashagg_reset_spill_state(node);

	if (node->hash_metacxt != NULL)
	{
		MemoryContextDelete(node->hash_metacxt);
		node->hash_metacxt = NULL;
	}

	for (transno = 0; transno < node->numtrans; transno++)
	{
		for (setno = 0; setno < numGroupingSets; setno++)
		{
			AggStatePerTrans pertrans = &node->pertrans[transno];

			if (pertrans->sortstates[setno])
			{
				tuplesort_end(pertrans->sortstates[setno]);
				pertrans->sortstates[setno] = NULL;
			}
		}
	}

	/* And ensure any agg shutdown callbacks have been called */
	for (setno = 0; setno < numGroupingSets; setno++)
		ReScanExprContext(node->aggcontexts[setno]);
	if (node->hashcontext)
		ReScanExprContext(node->hashcontext);
}

void
ExecSquelchAgg(AggState *node)
{
	/*
	 * Sometimes, ExecSquelchAgg() is called, but the node is rescanned anyway.
	 * If we destroy the hash table here, then we need to rebuild it later.
	 * ExecReScanAgg() will try to reuse the hash table if params is not changing
	 * or affect input expressions, it will rescan the existing hash table.
	 * Therefore, don't destroy the hash table if reusing hashtable during rescan.
	 */

	if (!ReuseHashTable(node))
	{
		ExecEagerFreeAgg(node);
	}

	ExecSquelchNode(outerPlanState(node));
}

bool
ReuseHashTable(AggState *node)
{
	PlanState  *outerPlan = outerPlanState(node);
	Agg     *aggnode = (Agg *) node->ss.ps.plan;
	return (outerPlan->chgParam == NULL && !node->hash_ever_spilled &&
			!bms_overlap(node->ss.ps.chgParam, aggnode->aggParams));
}

相关信息

greenplumn 源码目录

相关文章

greenplumn execAmi 源码

greenplumn execCurrent 源码

greenplumn execExpr 源码

greenplumn execExprInterp 源码

greenplumn execGrouping 源码

greenplumn execIndexing 源码

greenplumn execJunk 源码

greenplumn execMain 源码

greenplumn execParallel 源码

greenplumn execPartition 源码

0  赞