Go操作Redis

  • 2022-08-11
  • 浏览 (445)

Go操作Redis

来源

https://www.liwenzhou.com/posts/Go/go_redis/

  • cache缓存
  • 简单的队列
  • 排行榜

介绍

Redis是一个开源的内存数据库,Redis提供了多种不同类型的数据结构,很多业务场景下的问题都可以很自然地映射到这些数据结构上。除此之外,通过复制、持久化和客户端分片等特性,我们可以很方便地将Redis扩展成一个能够包含数百GB数据、每秒处理上百万次请求的系统。

Redis支持的数据结构

Redis支持诸如字符串(strings)、哈希(hashes)、列表(lists)、集合(sets)、带范围查询的排序集合(sorted sets)、位图(bitmaps)、hyperloglogs、带半径查询和流的地理空间索引等数据结构(geospatial indexes)。

Redis应用场景

  • 缓存系统,减轻主数据库(MySQL)的压力。
  • 计数场景,比如微博、抖音中的关注数和粉丝数。
  • 热门排行榜,需要排序的场景特别适合使用ZSET。
  • 利用LIST可以实现队列的功能。

Redis与Memcached比较

Memcached的值只支持简单的字符串,Redis支持更丰富的数据结构,Redis的性能比Memcached好很多,Redis支持RDB持久化和AOF持久化,Redis支持master/slave模式。

准备Redis环境

这里直接使用Docker启动一个redis环境,方便学习使用。

docker启动一个名为redis507的5.0.7版本的redis server示例:

docker run --name redis507 -p 6379:6379 -d redis:5.0.7

注意:此处的版本、容器名和端口号请根据自己需要设置。

启动一个redis-cli连接上面的redis server:

docker run -it --network host --rm redis:5.0.7 redis-cli

go-redis库 安装

区别于另一个比较常用的Go语言redis client库:redigo,我们这里采用https://github.com/go-redis/redis连接Redis数据库并进行操作,因为`go-redis`支持连接哨兵及集群模式的Redis。

使用以下命令下载并安装:

go get -u github.com/go-redis/redis

连接

普通连接

// 声明一个全局的rdb变量
var rdb *redis.Client

// 初始化连接
func initClient() (err error) {
	rdb = redis.NewClient(&redis.Options{
		Addr:     "localhost:6379",
		Password: "", // no password set
		DB:       0,  // use default DB
	})

	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

连接Redis哨兵模式

func initClient()(err error){
	rdb := redis.NewFailoverClient(&redis.FailoverOptions{
		MasterName:    "master",
		SentinelAddrs: []string{"x.x.x.x:26379", "xx.xx.xx.xx:26379", "xxx.xxx.xxx.xxx:26379"},
	})
	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

连接Redis集群

func initClient()(err error){
	rdb := redis.NewClusterClient(&redis.ClusterOptions{
		Addrs: []string{":7000", ":7001", ":7002", ":7003", ":7004", ":7005"},
	})
	_, err = rdb.Ping().Result()
	if err != nil {
		return err
	}
	return nil
}

基本使用

set/get示例

func redisExample() {
	err := rdb.Set("score", 100, 0).Err()
	if err != nil {
		fmt.Printf("set score failed, err:%v\n", err)
		return
	}

	val, err := rdb.Get("score").Result()
	if err != nil {
		fmt.Printf("get score failed, err:%v\n", err)
		return
	}
	fmt.Println("score", val)

	val2, err := rdb.Get("name").Result()
	if err == redis.Nil {
		fmt.Println("name does not exist")
	} else if err != nil {
		fmt.Printf("get name failed, err:%v\n", err)
		return
	} else {
		fmt.Println("name", val2)
	}
}

zset示例

func redisExample2() {
	zsetKey := "language_rank"
	languages := []redis.Z{
		redis.Z{Score: 90.0, Member: "Golang"},
		redis.Z{Score: 98.0, Member: "Java"},
		redis.Z{Score: 95.0, Member: "Python"},
		redis.Z{Score: 97.0, Member: "JavaScript"},
		redis.Z{Score: 99.0, Member: "C/C++"},
	}
	// ZADD
	num, err := rdb.ZAdd(zsetKey, languages...).Result()
	if err != nil {
		fmt.Printf("zadd failed, err:%v\n", err)
		return
	}
	fmt.Printf("zadd %d succ.\n", num)

	// 把Golang的分数加10
	newScore, err := rdb.ZIncrBy(zsetKey, 10.0, "Golang").Result()
	if err != nil {
		fmt.Printf("zincrby failed, err:%v\n", err)
		return
	}
	fmt.Printf("Golang's score is %f now.\n", newScore)

	// 取分数最高的3个
	ret, err := rdb.ZRevRangeWithScores(zsetKey, 0, 2).Result()
	if err != nil {
		fmt.Printf("zrevrange failed, err:%v\n", err)
		return
	}
	for _, z := range ret {
		fmt.Println(z.Member, z.Score)
	}

	// 取95~100分的
	op := redis.ZRangeBy{
		Min: "95",
		Max: "100",
	}
	ret, err = rdb.ZRangeByScoreWithScores(zsetKey, op).Result()
	if err != nil {
		fmt.Printf("zrangebyscore failed, err:%v\n", err)
		return
	}
	for _, z := range ret {
		fmt.Println(z.Member, z.Score)
	}
}

输出结果如下:

$ ./06redis_demo 
zadd 0 succ.
Golang's score is 100.000000 now.
Golang 100
C/C++ 99
Java 98
JavaScript 97
Java 98
C/C++ 99
Golang 100

Pipeline

Pipeline 主要是一种网络优化。它本质上意味着客户端缓冲一堆命令并一次性将它们发送到服务器。这些命令不能保证在事务中执行。这样做的好处是节省了每个命令的网络往返时间(RTT)。

Pipeline 基本示例如下:

pipe := rdb.Pipeline()

incr := pipe.Incr("pipeline_counter")
pipe.Expire("pipeline_counter", time.Hour)

_, err := pipe.Exec()
fmt.Println(incr.Val(), err)

上面的代码相当于将以下两个命令一次发给redis server端执行,与不使用Pipeline相比能减少一次RTT。

INCR pipeline_counter
EXPIRE pipeline_counts 3600

也可以使用Pipelined

var incr *redis.IntCmd
_, err := rdb.Pipelined(func(pipe redis.Pipeliner) error {
	incr = pipe.Incr("pipelined_counter")
	pipe.Expire("pipelined_counter", time.Hour)
	return nil
})
fmt.Println(incr.Val(), err)

在某些场景下,当我们有多条命令要执行时,就可以考虑使用pipeline来优化。

事务

Redis是单线程的,因此单个命令始终是原子的,但是来自不同客户端的两个给定命令可以依次执行,例如在它们之间交替执行。但是,Multi/exec能够确保在multi/exec两个语句之间的命令之间没有其他客户端正在执行命令。

在这种场景我们需要使用TxPipelineTxPipeline总体上类似于上面的Pipeline,但是它内部会使用MULTI/EXEC包裹排队的命令。例如:

pipe := rdb.TxPipeline()

incr := pipe.Incr("tx_pipeline_counter")
pipe.Expire("tx_pipeline_counter", time.Hour)

_, err := pipe.Exec()
fmt.Println(incr.Val(), err)

上面代码相当于在一个RTT下执行了下面的redis命令:

MULTI
INCR pipeline_counter
EXPIRE pipeline_counts 3600
EXEC

还有一个与上文类似的TxPipelined方法,使用方法如下:

var incr *redis.IntCmd
_, err := rdb.TxPipelined(func(pipe redis.Pipeliner) error {
	incr = pipe.Incr("tx_pipelined_counter")
	pipe.Expire("tx_pipelined_counter", time.Hour)
	return nil
})
fmt.Println(incr.Val(), err)

Watch

在某些场景下,我们除了要使用MULTI/EXEC命令外,还需要配合使用WATCH命令。在用户使用WATCH命令监视某个键之后,直到该用户执行EXEC命令的这段时间里,如果有其他用户抢先对被监视的键进行了替换、更新、删除等操作,那么当用户尝试执行EXEC的时候,事务将失败并返回一个错误,用户可以根据这个错误选择重试事务或者放弃事务。

Watch(fn func(*Tx) error, keys ...string) error

Watch方法接收一个函数和一个或多个key作为参数。基本使用示例如下:

// 监视watch_count的值,并在值不变的前提下将其值+1
key := "watch_count"
err = client.Watch(func(tx *redis.Tx) error {
	n, err := tx.Get(key).Int()
	if err != nil && err != redis.Nil {
		return err
	}
	_, err = tx.Pipelined(func(pipe redis.Pipeliner) error {
		pipe.Set(key, n+1, 0)
		return nil
	})
	return err
}, key)

最后看一个官方文档中使用GET和SET命令以事务方式递增Key的值的示例:

const routineCount = 100

increment := func(key string) error {
	txf := func(tx *redis.Tx) error {
		// 获得当前值或零值
		n, err := tx.Get(key).Int()
		if err != nil && err != redis.Nil {
			return err
		}

		// 实际操作(乐观锁定中的本地操作)
		n++

		// 仅在监视的Key保持不变的情况下运行
		_, err = tx.Pipelined(func(pipe redis.Pipeliner) error {
			// pipe 处理错误情况
			pipe.Set(key, n, 0)
			return nil
		})
		return err
	}

	for retries := routineCount; retries > 0; retries-- {
		err := rdb.Watch(txf, key)
		if err != redis.TxFailedErr {
			return err
		}
		// 乐观锁丢失
	}
	return errors.New("increment reached maximum number of retries")
}

var wg sync.WaitGroup
wg.Add(routineCount)
for i := 0; i < routineCount; i++ {
	go func() {
		defer wg.Done()

		if err := increment("counter3"); err != nil {
			fmt.Println("increment error:", err)
		}
	}()
}
wg.Wait()

n, err := rdb.Get("counter3").Int()
fmt.Println("ended with", n, err)

更多详情请查阅文档

你可能感兴趣的文章

Vue如何使用G2绘制图片

Docker Compose入门学习

DockerDesktop入门简介

Docker图形化工具Portainer介绍与安装

1.Docker

Docker操作系统之Alpine

如何将镜像推送到阿里云容器镜像服务

对象存储MinIO入门介绍

ElasticSearch安装与介绍

Beats入门简介

0  赞