greenplumn execIndexing 源码

  • 2022-08-18
  • 浏览 (384)

greenplumn execIndexing 代码

文件路径:/src/backend/executor/execIndexing.c

/*-------------------------------------------------------------------------
 *
 * execIndexing.c
 *	  routines for inserting index tuples and enforcing unique and
 *	  exclusion constraints.
 *
 * ExecInsertIndexTuples() is the main entry point.  It's called after
 * inserting a tuple to the heap, and it inserts corresponding index tuples
 * into all indexes.  At the same time, it enforces any unique and
 * exclusion constraints:
 *
 * Unique Indexes
 * --------------
 *
 * Enforcing a unique constraint is straightforward.  When the index AM
 * inserts the tuple to the index, it also checks that there are no
 * conflicting tuples in the index already.  It does so atomically, so that
 * even if two backends try to insert the same key concurrently, only one
 * of them will succeed.  All the logic to ensure atomicity, and to wait
 * for in-progress transactions to finish, is handled by the index AM.
 *
 * If a unique constraint is deferred, we request the index AM to not
 * throw an error if a conflict is found.  Instead, we make note that there
 * was a conflict and return the list of indexes with conflicts to the
 * caller.  The caller must re-check them later, by calling index_insert()
 * with the UNIQUE_CHECK_EXISTING option.
 *
 * Exclusion Constraints
 * ---------------------
 *
 * Exclusion constraints are different from unique indexes in that when the
 * tuple is inserted to the index, the index AM does not check for
 * duplicate keys at the same time.  After the insertion, we perform a
 * separate scan on the index to check for conflicting tuples, and if one
 * is found, we throw an error and the transaction is aborted.  If the
 * conflicting tuple's inserter or deleter is in-progress, we wait for it
 * to finish first.
 *
 * There is a chance of deadlock, if two backends insert a tuple at the
 * same time, and then perform the scan to check for conflicts.  They will
 * find each other's tuple, and both try to wait for each other.  The
 * deadlock detector will detect that, and abort one of the transactions.
 * That's fairly harmless, as one of them was bound to abort with a
 * "duplicate key error" anyway, although you get a different error
 * message.
 *
 * If an exclusion constraint is deferred, we still perform the conflict
 * checking scan immediately after inserting the index tuple.  But instead
 * of throwing an error if a conflict is found, we return that information
 * to the caller.  The caller must re-check them later by calling
 * check_exclusion_constraint().
 *
 * Speculative insertion
 * ---------------------
 *
 * Speculative insertion is a two-phase mechanism used to implement
 * INSERT ... ON CONFLICT DO UPDATE/NOTHING.  The tuple is first inserted
 * to the heap and update the indexes as usual, but if a constraint is
 * violated, we can still back out the insertion without aborting the whole
 * transaction.  In an INSERT ... ON CONFLICT statement, if a conflict is
 * detected, the inserted tuple is backed out and the ON CONFLICT action is
 * executed instead.
 *
 * Insertion to a unique index works as usual: the index AM checks for
 * duplicate keys atomically with the insertion.  But instead of throwing
 * an error on a conflict, the speculatively inserted heap tuple is backed
 * out.
 *
 * Exclusion constraints are slightly more complicated.  As mentioned
 * earlier, there is a risk of deadlock when two backends insert the same
 * key concurrently.  That was not a problem for regular insertions, when
 * one of the transactions has to be aborted anyway, but with a speculative
 * insertion we cannot let a deadlock happen, because we only want to back
 * out the speculatively inserted tuple on conflict, not abort the whole
 * transaction.
 *
 * When a backend detects that the speculative insertion conflicts with
 * another in-progress tuple, it has two options:
 *
 * 1. back out the speculatively inserted tuple, then wait for the other
 *	  transaction, and retry. Or,
 * 2. wait for the other transaction, with the speculatively inserted tuple
 *	  still in place.
 *
 * If two backends insert at the same time, and both try to wait for each
 * other, they will deadlock.  So option 2 is not acceptable.  Option 1
 * avoids the deadlock, but it is prone to a livelock instead.  Both
 * transactions will wake up immediately as the other transaction backs
 * out.  Then they both retry, and conflict with each other again, lather,
 * rinse, repeat.
 *
 * To avoid the livelock, one of the backends must back out first, and then
 * wait, while the other one waits without backing out.  It doesn't matter
 * which one backs out, so we employ an arbitrary rule that the transaction
 * with the higher XID backs out.
 *
 *
 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/execIndexing.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/relscan.h"
#include "access/tableam.h"
#include "access/xact.h"
#include "catalog/index.h"
#include "executor/executor.h"
#include "nodes/nodeFuncs.h"
#include "storage/lmgr.h"
#include "utils/snapmgr.h"

/* waitMode argument to check_exclusion_or_unique_constraint() */
typedef enum
{
	CEOUC_WAIT,
	CEOUC_NOWAIT,
	CEOUC_LIVELOCK_PREVENTING_WAIT
} CEOUC_WAIT_MODE;

static bool check_exclusion_or_unique_constraint(Relation heap, Relation index,
												 IndexInfo *indexInfo,
												 ItemPointer tupleid,
												 Datum *values, bool *isnull,
												 EState *estate, bool newIndex,
												 CEOUC_WAIT_MODE waitMode,
												 bool errorOK,
												 ItemPointer conflictTid);

static bool index_recheck_constraint(Relation index, Oid *constr_procs,
									 Datum *existing_values, bool *existing_isnull,
									 Datum *new_values);

/* ----------------------------------------------------------------
 *		ExecOpenIndices
 *
 *		Find the indices associated with a result relation, open them,
 *		and save information about them in the result ResultRelInfo.
 *
 *		At entry, caller has already opened and locked
 *		resultRelInfo->ri_RelationDesc.
 * ----------------------------------------------------------------
 */
void
ExecOpenIndices(ResultRelInfo *resultRelInfo, bool speculative)
{
	Relation	resultRelation = resultRelInfo->ri_RelationDesc;
	List	   *indexoidlist;
	ListCell   *l;
	int			len,
				i;
	RelationPtr relationDescs;
	IndexInfo **indexInfoArray;

	resultRelInfo->ri_NumIndices = 0;

	/* fast path if no indexes */
	if (!RelationGetForm(resultRelation)->relhasindex)
		return;

	/*
	 * Get cached list of index OIDs
	 */
	indexoidlist = RelationGetIndexList(resultRelation);
	len = list_length(indexoidlist);
	if (len == 0)
		return;

	/*
	 * allocate space for result arrays
	 */
	relationDescs = (RelationPtr) palloc(len * sizeof(Relation));
	indexInfoArray = (IndexInfo **) palloc(len * sizeof(IndexInfo *));

	resultRelInfo->ri_NumIndices = len;
	resultRelInfo->ri_IndexRelationDescs = relationDescs;
	resultRelInfo->ri_IndexRelationInfo = indexInfoArray;

	/*
	 * For each index, open the index relation and save pg_index info. We
	 * acquire RowExclusiveLock, signifying we will update the index.
	 *
	 * Note: we do this even if the index is not indisready; it's not worth
	 * the trouble to optimize for the case where it isn't.
	 */
	i = 0;
	foreach(l, indexoidlist)
	{
		Oid			indexOid = lfirst_oid(l);
		Relation	indexDesc;
		IndexInfo  *ii;

		indexDesc = index_open(indexOid, RowExclusiveLock);

		/* extract index key information from the index's pg_index info */
		ii = BuildIndexInfo(indexDesc);

		/*
		 * If the indexes are to be used for speculative insertion, add extra
		 * information required by unique index entries.
		 */
		if (speculative && ii->ii_Unique)
			BuildSpeculativeIndexInfo(indexDesc, ii);

		relationDescs[i] = indexDesc;
		indexInfoArray[i] = ii;
		i++;
	}

	list_free(indexoidlist);
}

/* ----------------------------------------------------------------
 *		ExecCloseIndices
 *
 *		Close the index relations stored in resultRelInfo
 * ----------------------------------------------------------------
 */
void
ExecCloseIndices(ResultRelInfo *resultRelInfo)
{
	int			i;
	int			numIndices;
	RelationPtr indexDescs;

	numIndices = resultRelInfo->ri_NumIndices;
	indexDescs = resultRelInfo->ri_IndexRelationDescs;

	for (i = 0; i < numIndices; i++)
	{
		if (indexDescs[i] == NULL)
			continue;			/* shouldn't happen? */

		/* Drop lock acquired by ExecOpenIndices */
		index_close(indexDescs[i], RowExclusiveLock);
	}

	/*
	 * XXX should free indexInfo array here too?  Currently we assume that
	 * such stuff will be cleaned up automatically in FreeExecutorState.
	 */
}

/* ----------------------------------------------------------------
 *		ExecInsertIndexTuples
 *
 *		This routine takes care of inserting index tuples
 *		into all the relations indexing the result relation
 *		when a heap tuple is inserted into the result relation.
 *
 *		Unique and exclusion constraints are enforced at the same
 *		time.  This returns a list of index OIDs for any unique or
 *		exclusion constraints that are deferred and that had
 *		potential (unconfirmed) conflicts.  (if noDupErr == true,
 *		the same is done for non-deferred constraints, but report
 *		if conflict was speculative or deferred conflict to caller)
 *
 *		If 'arbiterIndexes' is nonempty, noDupErr applies only to
 *		those indexes.  NIL means noDupErr applies to all indexes.
 *
 *		CAUTION: this must not be called for a HOT update.
 *		We can't defend against that here for lack of info.
 *		Should we change the API to make it safer?
 * ----------------------------------------------------------------
 */
List *
ExecInsertIndexTuples(TupleTableSlot *slot,
					  EState *estate,
					  bool noDupErr,
					  bool *specConflict,
					  List *arbiterIndexes)
{
	ItemPointer tupleid = &slot->tts_tid;
	List	   *result = NIL;
	ResultRelInfo *resultRelInfo;
	int			i;
	int			numIndices;
	RelationPtr relationDescs;
	Relation	heapRelation;
	IndexInfo **indexInfoArray;
	ExprContext *econtext;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];

	Assert(ItemPointerIsValid(tupleid));

	/*
	 * Get information from the result relation info structure.
	 */
	resultRelInfo = estate->es_result_relation_info;
	numIndices = resultRelInfo->ri_NumIndices;
	relationDescs = resultRelInfo->ri_IndexRelationDescs;
	indexInfoArray = resultRelInfo->ri_IndexRelationInfo;
	heapRelation = resultRelInfo->ri_RelationDesc;

	/* Sanity check: slot must belong to the same rel as the resultRelInfo. */
	Assert(slot->tts_tableOid == RelationGetRelid(heapRelation));

	/*
	 * We will use the EState's per-tuple context for evaluating predicates
	 * and index expressions (creating it if it's not already there).
	 */
	econtext = GetPerTupleExprContext(estate);

	/* Arrange for econtext's scan tuple to be the tuple under test */
	econtext->ecxt_scantuple = slot;

	/*
	 * for each index, form and insert the index tuple
	 */
	for (i = 0; i < numIndices; i++)
	{
		Relation	indexRelation = relationDescs[i];
		IndexInfo  *indexInfo;
		bool		applyNoDupErr;
		IndexUniqueCheck checkUnique;
		bool		satisfiesConstraint;

		if (indexRelation == NULL)
			continue;

		indexInfo = indexInfoArray[i];

		/* If the index is marked as read-only, ignore it */
		if (!indexInfo->ii_ReadyForInserts)
			continue;

		/* Check for partial index */
		if (indexInfo->ii_Predicate != NIL)
		{
			ExprState  *predicate;

			/*
			 * If predicate state not set up yet, create it (in the estate's
			 * per-query context)
			 */
			predicate = indexInfo->ii_PredicateState;
			if (predicate == NULL)
			{
				predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
				indexInfo->ii_PredicateState = predicate;
			}

			/* Skip this index-update if the predicate isn't satisfied */
			if (!ExecQual(predicate, econtext))
				continue;
		}

		/*
		 * FormIndexDatum fills in its values and isnull parameters with the
		 * appropriate values for the column(s) of the index.
		 */
		FormIndexDatum(indexInfo,
					   slot,
					   estate,
					   values,
					   isnull);

		/* Check whether to apply noDupErr to this index */
		applyNoDupErr = noDupErr &&
			(arbiterIndexes == NIL ||
			 list_member_oid(arbiterIndexes,
							 indexRelation->rd_index->indexrelid));

		/*
		 * The index AM does the actual insertion, plus uniqueness checking.
		 *
		 * For an immediate-mode unique index, we just tell the index AM to
		 * throw error if not unique.
		 *
		 * For a deferrable unique index, we tell the index AM to just detect
		 * possible non-uniqueness, and we add the index OID to the result
		 * list if further checking is needed.
		 *
		 * For a speculative insertion (used by INSERT ... ON CONFLICT), do
		 * the same as for a deferrable unique index.
		 */
		if (!indexRelation->rd_index->indisunique)
			checkUnique = UNIQUE_CHECK_NO;
		else if (applyNoDupErr)
			checkUnique = UNIQUE_CHECK_PARTIAL;
		else if (indexRelation->rd_index->indimmediate)
			checkUnique = UNIQUE_CHECK_YES;
		else
			checkUnique = UNIQUE_CHECK_PARTIAL;

		satisfiesConstraint =
			index_insert(indexRelation, /* index relation */
						 values,	/* array of index Datums */
						 isnull,	/* null flags */
						 tupleid,	/* tid of heap tuple */
						 heapRelation,	/* heap relation */
						 checkUnique,	/* type of uniqueness check to do */
						 indexInfo);	/* index AM may need this */

		/*
		 * If the index has an associated exclusion constraint, check that.
		 * This is simpler than the process for uniqueness checks since we
		 * always insert first and then check.  If the constraint is deferred,
		 * we check now anyway, but don't throw error on violation or wait for
		 * a conclusive outcome from a concurrent insertion; instead we'll
		 * queue a recheck event.  Similarly, noDupErr callers (speculative
		 * inserters) will recheck later, and wait for a conclusive outcome
		 * then.
		 *
		 * An index for an exclusion constraint can't also be UNIQUE (not an
		 * essential property, we just don't allow it in the grammar), so no
		 * need to preserve the prior state of satisfiesConstraint.
		 */
		if (indexInfo->ii_ExclusionOps != NULL)
		{
			bool		violationOK;
			CEOUC_WAIT_MODE waitMode;

			if (applyNoDupErr)
			{
				violationOK = true;
				waitMode = CEOUC_LIVELOCK_PREVENTING_WAIT;
			}
			else if (!indexRelation->rd_index->indimmediate)
			{
				violationOK = true;
				waitMode = CEOUC_NOWAIT;
			}
			else
			{
				violationOK = false;
				waitMode = CEOUC_WAIT;
			}

			satisfiesConstraint =
				check_exclusion_or_unique_constraint(heapRelation,
													 indexRelation, indexInfo,
													 tupleid, values, isnull,
													 estate, false,
													 waitMode, violationOK, NULL);
		}

		if ((checkUnique == UNIQUE_CHECK_PARTIAL ||
			 indexInfo->ii_ExclusionOps != NULL) &&
			!satisfiesConstraint)
		{
			/*
			 * The tuple potentially violates the uniqueness or exclusion
			 * constraint, so make a note of the index so that we can re-check
			 * it later.  Speculative inserters are told if there was a
			 * speculative conflict, since that always requires a restart.
			 */
			result = lappend_oid(result, RelationGetRelid(indexRelation));
			if (indexRelation->rd_index->indimmediate && specConflict)
				*specConflict = true;
		}
	}

	return result;
}

/* ----------------------------------------------------------------
 *		ExecCheckIndexConstraints
 *
 *		This routine checks if a tuple violates any unique or
 *		exclusion constraints.  Returns true if there is no conflict.
 *		Otherwise returns false, and the TID of the conflicting
 *		tuple is returned in *conflictTid.
 *
 *		If 'arbiterIndexes' is given, only those indexes are checked.
 *		NIL means all indexes.
 *
 *		Note that this doesn't lock the values in any way, so it's
 *		possible that a conflicting tuple is inserted immediately
 *		after this returns.  But this can be used for a pre-check
 *		before insertion.
 * ----------------------------------------------------------------
 */
bool
ExecCheckIndexConstraints(TupleTableSlot *slot,
						  EState *estate, ItemPointer conflictTid,
						  List *arbiterIndexes)
{
	ResultRelInfo *resultRelInfo;
	int			i;
	int			numIndices;
	RelationPtr relationDescs;
	Relation	heapRelation;
	IndexInfo **indexInfoArray;
	ExprContext *econtext;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];
	ItemPointerData invalidItemPtr;
	bool		checkedIndex = false;

	ItemPointerSetInvalid(conflictTid);
	ItemPointerSetInvalid(&invalidItemPtr);

	/*
	 * Get information from the result relation info structure.
	 */
	resultRelInfo = estate->es_result_relation_info;
	numIndices = resultRelInfo->ri_NumIndices;
	relationDescs = resultRelInfo->ri_IndexRelationDescs;
	indexInfoArray = resultRelInfo->ri_IndexRelationInfo;
	heapRelation = resultRelInfo->ri_RelationDesc;

	/*
	 * We will use the EState's per-tuple context for evaluating predicates
	 * and index expressions (creating it if it's not already there).
	 */
	econtext = GetPerTupleExprContext(estate);

	/* Arrange for econtext's scan tuple to be the tuple under test */
	econtext->ecxt_scantuple = slot;

	/*
	 * For each index, form index tuple and check if it satisfies the
	 * constraint.
	 */
	for (i = 0; i < numIndices; i++)
	{
		Relation	indexRelation = relationDescs[i];
		IndexInfo  *indexInfo;
		bool		satisfiesConstraint;

		if (indexRelation == NULL)
			continue;

		indexInfo = indexInfoArray[i];

		if (!indexInfo->ii_Unique && !indexInfo->ii_ExclusionOps)
			continue;

		/* If the index is marked as read-only, ignore it */
		if (!indexInfo->ii_ReadyForInserts)
			continue;

		/* When specific arbiter indexes requested, only examine them */
		if (arbiterIndexes != NIL &&
			!list_member_oid(arbiterIndexes,
							 indexRelation->rd_index->indexrelid))
			continue;

		if (!indexRelation->rd_index->indimmediate)
			ereport(ERROR,
					(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
					 errmsg("ON CONFLICT does not support deferrable unique constraints/exclusion constraints as arbiters"),
					 errtableconstraint(heapRelation,
										RelationGetRelationName(indexRelation))));

		checkedIndex = true;

		/* Check for partial index */
		if (indexInfo->ii_Predicate != NIL)
		{
			ExprState  *predicate;

			/*
			 * If predicate state not set up yet, create it (in the estate's
			 * per-query context)
			 */
			predicate = indexInfo->ii_PredicateState;
			if (predicate == NULL)
			{
				predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
				indexInfo->ii_PredicateState = predicate;
			}

			/* Skip this index-update if the predicate isn't satisfied */
			if (!ExecQual(predicate, econtext))
				continue;
		}

		/*
		 * FormIndexDatum fills in its values and isnull parameters with the
		 * appropriate values for the column(s) of the index.
		 */
		FormIndexDatum(indexInfo,
					   slot,
					   estate,
					   values,
					   isnull);

		satisfiesConstraint =
			check_exclusion_or_unique_constraint(heapRelation, indexRelation,
												 indexInfo, &invalidItemPtr,
												 values, isnull, estate, false,
												 CEOUC_WAIT, true,
												 conflictTid);
		if (!satisfiesConstraint)
			return false;
	}

	if (arbiterIndexes != NIL && !checkedIndex)
		elog(ERROR, "unexpected failure to find arbiter index");

	return true;
}

/*
 * Check for violation of an exclusion or unique constraint
 *
 * heap: the table containing the new tuple
 * index: the index supporting the constraint
 * indexInfo: info about the index, including the exclusion properties
 * tupleid: heap TID of the new tuple we have just inserted (invalid if we
 *		haven't inserted a new tuple yet)
 * values, isnull: the *index* column values computed for the new tuple
 * estate: an EState we can do evaluation in
 * newIndex: if true, we are trying to build a new index (this affects
 *		only the wording of error messages)
 * waitMode: whether to wait for concurrent inserters/deleters
 * violationOK: if true, don't throw error for violation
 * conflictTid: if not-NULL, the TID of the conflicting tuple is returned here
 *
 * Returns true if OK, false if actual or potential violation
 *
 * 'waitMode' determines what happens if a conflict is detected with a tuple
 * that was inserted or deleted by a transaction that's still running.
 * CEOUC_WAIT means that we wait for the transaction to commit, before
 * throwing an error or returning.  CEOUC_NOWAIT means that we report the
 * violation immediately; so the violation is only potential, and the caller
 * must recheck sometime later.  This behavior is convenient for deferred
 * exclusion checks; we need not bother queuing a deferred event if there is
 * definitely no conflict at insertion time.
 *
 * CEOUC_LIVELOCK_PREVENTING_WAIT is like CEOUC_NOWAIT, but we will sometimes
 * wait anyway, to prevent livelocking if two transactions try inserting at
 * the same time.  This is used with speculative insertions, for INSERT ON
 * CONFLICT statements. (See notes in file header)
 *
 * If violationOK is true, we just report the potential or actual violation to
 * the caller by returning 'false'.  Otherwise we throw a descriptive error
 * message here.  When violationOK is false, a false result is impossible.
 *
 * Note: The indexam is normally responsible for checking unique constraints,
 * so this normally only needs to be used for exclusion constraints.  But this
 * function is also called when doing a "pre-check" for conflicts on a unique
 * constraint, when doing speculative insertion.  Caller may use the returned
 * conflict TID to take further steps.
 */
static bool
check_exclusion_or_unique_constraint(Relation heap, Relation index,
									 IndexInfo *indexInfo,
									 ItemPointer tupleid,
									 Datum *values, bool *isnull,
									 EState *estate, bool newIndex,
									 CEOUC_WAIT_MODE waitMode,
									 bool violationOK,
									 ItemPointer conflictTid)
{
	Oid		   *constr_procs;
	uint16	   *constr_strats;
	Oid		   *index_collations = index->rd_indcollation;
	int			indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
	IndexScanDesc index_scan;
	ScanKeyData scankeys[INDEX_MAX_KEYS];
	SnapshotData DirtySnapshot;
	int			i;
	bool		conflict;
	bool		found_self;
	ExprContext *econtext;
	TupleTableSlot *existing_slot;
	TupleTableSlot *save_scantuple;

	if (indexInfo->ii_ExclusionOps)
	{
		constr_procs = indexInfo->ii_ExclusionProcs;
		constr_strats = indexInfo->ii_ExclusionStrats;
	}
	else
	{
		constr_procs = indexInfo->ii_UniqueProcs;
		constr_strats = indexInfo->ii_UniqueStrats;
	}

	/*
	 * If any of the input values are NULL, the constraint check is assumed to
	 * pass (i.e., we assume the operators are strict).
	 */
	for (i = 0; i < indnkeyatts; i++)
	{
		if (isnull[i])
			return true;
	}

	/*
	 * Search the tuples that are in the index for any violations, including
	 * tuples that aren't visible yet.
	 */
	InitDirtySnapshot(DirtySnapshot);

	for (i = 0; i < indnkeyatts; i++)
	{
		ScanKeyEntryInitialize(&scankeys[i],
							   0,
							   i + 1,
							   constr_strats[i],
							   InvalidOid,
							   index_collations[i],
							   constr_procs[i],
							   values[i]);
	}

	/*
	 * Need a TupleTableSlot to put existing tuples in.
	 *
	 * To use FormIndexDatum, we have to make the econtext's scantuple point
	 * to this slot.  Be sure to save and restore caller's value for
	 * scantuple.
	 */
	existing_slot = table_slot_create(heap, NULL);

	econtext = GetPerTupleExprContext(estate);
	save_scantuple = econtext->ecxt_scantuple;
	econtext->ecxt_scantuple = existing_slot;

	/*
	 * May have to restart scan from this point if a potential conflict is
	 * found.
	 */
retry:
	conflict = false;
	found_self = false;
	index_scan = index_beginscan(heap, index, &DirtySnapshot, indnkeyatts, 0);
	index_rescan(index_scan, scankeys, indnkeyatts, NULL, 0);

	while (index_getnext_slot(index_scan, ForwardScanDirection, existing_slot))
	{
		TransactionId xwait;
		XLTW_Oper	reason_wait;
		Datum		existing_values[INDEX_MAX_KEYS];
		bool		existing_isnull[INDEX_MAX_KEYS];
		char	   *error_new;
		char	   *error_existing;

		/*
		 * Ignore the entry for the tuple we're trying to check.
		 */
		if (ItemPointerIsValid(tupleid) &&
			ItemPointerEquals(tupleid, &existing_slot->tts_tid))
		{
			if (found_self)		/* should not happen */
				elog(ERROR, "found self tuple multiple times in index \"%s\"",
					 RelationGetRelationName(index));
			found_self = true;
			continue;
		}

		/*
		 * Extract the index column values and isnull flags from the existing
		 * tuple.
		 */
		FormIndexDatum(indexInfo, existing_slot, estate,
					   existing_values, existing_isnull);

		/* If lossy indexscan, must recheck the condition */
		if (index_scan->xs_recheck)
		{
			if (!index_recheck_constraint(index,
										  constr_procs,
										  existing_values,
										  existing_isnull,
										  values))
				continue;		/* tuple doesn't actually match, so no
								 * conflict */
		}

		/*
		 * At this point we have either a conflict or a potential conflict.
		 *
		 * If an in-progress transaction is affecting the visibility of this
		 * tuple, we need to wait for it to complete and then recheck (unless
		 * the caller requested not to).  For simplicity we do rechecking by
		 * just restarting the whole scan --- this case probably doesn't
		 * happen often enough to be worth trying harder, and anyway we don't
		 * want to hold any index internal locks while waiting.
		 */
		xwait = TransactionIdIsValid(DirtySnapshot.xmin) ?
			DirtySnapshot.xmin : DirtySnapshot.xmax;

		if (TransactionIdIsValid(xwait) &&
			(waitMode == CEOUC_WAIT ||
			 (waitMode == CEOUC_LIVELOCK_PREVENTING_WAIT &&
			  DirtySnapshot.speculativeToken &&
			  TransactionIdPrecedes(GetCurrentTransactionId(), xwait))))
		{
			reason_wait = indexInfo->ii_ExclusionOps ?
				XLTW_RecheckExclusionConstr : XLTW_InsertIndex;
			index_endscan(index_scan);
			if (DirtySnapshot.speculativeToken)
				SpeculativeInsertionWait(DirtySnapshot.xmin,
										 DirtySnapshot.speculativeToken);
			else
				XactLockTableWait(xwait, heap,
								  &existing_slot->tts_tid, reason_wait);
			goto retry;
		}

		/*
		 * We have a definite conflict (or a potential one, but the caller
		 * didn't want to wait).  Return it to caller, or report it.
		 */
		if (violationOK)
		{
			conflict = true;
			if (conflictTid)
				*conflictTid = existing_slot->tts_tid;
			break;
		}

		error_new = BuildIndexValueDescription(index, values, isnull);
		error_existing = BuildIndexValueDescription(index, existing_values,
													existing_isnull);
		if (newIndex)
			ereport(ERROR,
					(errcode(ERRCODE_EXCLUSION_VIOLATION),
					 errmsg("could not create exclusion constraint \"%s\"",
							RelationGetRelationName(index)),
					 error_new && error_existing ?
					 errdetail("Key %s conflicts with key %s.",
							   error_new, error_existing) :
					 errdetail("Key conflicts exist."),
					 errtableconstraint(heap,
										RelationGetRelationName(index))));
		else
			ereport(ERROR,
					(errcode(ERRCODE_EXCLUSION_VIOLATION),
					 errmsg("conflicting key value violates exclusion constraint \"%s\"",
							RelationGetRelationName(index)),
					 error_new && error_existing ?
					 errdetail("Key %s conflicts with existing key %s.",
							   error_new, error_existing) :
					 errdetail("Key conflicts with existing key."),
					 errtableconstraint(heap,
										RelationGetRelationName(index))));
	}

	index_endscan(index_scan);

	/*
	 * Ordinarily, at this point the search should have found the originally
	 * inserted tuple (if any), unless we exited the loop early because of
	 * conflict.  However, it is possible to define exclusion constraints for
	 * which that wouldn't be true --- for instance, if the operator is <>. So
	 * we no longer complain if found_self is still false.
	 */

	econtext->ecxt_scantuple = save_scantuple;

	ExecDropSingleTupleTableSlot(existing_slot);

	return !conflict;
}

/*
 * Check for violation of an exclusion constraint
 *
 * This is a dumbed down version of check_exclusion_or_unique_constraint
 * for external callers. They don't need all the special modes.
 */
void
check_exclusion_constraint(Relation heap, Relation index,
						   IndexInfo *indexInfo,
						   ItemPointer tupleid,
						   Datum *values, bool *isnull,
						   EState *estate, bool newIndex)
{
	(void) check_exclusion_or_unique_constraint(heap, index, indexInfo, tupleid,
												values, isnull,
												estate, newIndex,
												CEOUC_WAIT, false, NULL);
}

/*
 * Check existing tuple's index values to see if it really matches the
 * exclusion condition against the new_values.  Returns true if conflict.
 */
static bool
index_recheck_constraint(Relation index, Oid *constr_procs,
						 Datum *existing_values, bool *existing_isnull,
						 Datum *new_values)
{
	int			indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
	int			i;

	for (i = 0; i < indnkeyatts; i++)
	{
		/* Assume the exclusion operators are strict */
		if (existing_isnull[i])
			return false;

		if (!DatumGetBool(OidFunctionCall2Coll(constr_procs[i],
											   index->rd_indcollation[i],
											   existing_values[i],
											   new_values[i])))
			return false;
	}

	return true;
}

相关信息

greenplumn 源码目录

相关文章

greenplumn execAmi 源码

greenplumn execCurrent 源码

greenplumn execExpr 源码

greenplumn execExprInterp 源码

greenplumn execGrouping 源码

greenplumn execJunk 源码

greenplumn execMain 源码

greenplumn execParallel 源码

greenplumn execPartition 源码

greenplumn execProcnode 源码

0  赞